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Forward UQ

UQ means many things

Best estimate + uncertainty
Model validation

Model calibration
Reliability analysis

Robust design/optimization

A key to many UQ tasks is forward uncertainty propagation

Given uncertainty model of input data (aleatory, epistemic, ...)
Propagate uncertainty to output quantities of interest

There are many forward uncertainty propagation approaches

Monte Carlo

Stochastic collocation

NISP/NIPC

Regression PCE (“point/probabilistic collocation”)
Stochastic Galerkin

Key challenges:

Achieving good accuracy
High dimensional uncertain spaces
Expensive forward simulations

Sandia National Laboratories



Emerging Architectures Motivate New Approaches

« UQ approaches usually implemented as an outer loop
— Repeated calls of deterministic solver

 Single-point forward simulations use very little available node
compute power (unstructured, implicit)

— 3-5% of peak FLOPS on multi-core CPUs (P. Lin, Charon, RedSky)
— 2-3% on contemporary GPUs (Bell & Garland, 2008)

 Emerging architectures leading to dramatically increased on-
node compute power

— Not likely to translate into commensurate improvement in forward
simulation

— Many simulations/solvers don’t contain enough fine-grained
parallelism

« Can this be remedied by inverting the outer UQ/inner solver
loop?
— Add new dimensions of parallelism through embedded
approaches

117! Sandia National Laboratories




Outline

* Polynomial chaos-based UQ approaches
— Non-intrusive spectral projection (NISP/NIPC)
— Stochastic Galerkin (SG)

* Tools for implementing SG methods in large-
scale PDE codes

« Application to model 3-D mechanics problems

* Reordering SG mat-vecs for contemporary
multicore architectures
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Polynomial Chaos Expansions (PCE)

» Steady-state finite dimensional model problem:
Find u(£) such that f(u,&) =0, £: Q2 — T C RM, density p
* (Global) Polynomial Chaos approximation:

u(§) = a(§) = Zui‘l’i(é)a (P; W) = /F‘1’7:(3'3)‘1’;;‘(513)9(33)6133 = 3;;(¥3)

* Non-intrusive polynomial chaos (NIPC, NISP):
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/F (@)U, (2) p(z)de =

— Sparse-grid quadrature methods for scalability to moderate stochastic
dimensions

— Need to be careful to ensure quadrature rule preserves discrete
orthogonality

« SPAM (Constantine, Eldred, Phipps, CMAME, 2012)
 Method is equivalent to stochastic collocation
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Embedded Stochastic Galerkin UQ Methods

« Steady-state stochastic problem (for simplicity):
Find u(¢) such that f(u,£) =0, ¢: Q2 — T C RM, density p

» Stochastic Galerkin method (Ghanem and many, many others...):

a(§) = Z u;ihi(§) = Fi(uo,...,up) = / f(a(y), y)vi(y)p(y)dy =0, ¢ =0,...,P

(¥7)

— Multivariate orthogonal basis of total order at most N — (generalized polynomial chaos)
« Method generates new coupled spatial-stochastic nonlinear problem (intrusive)
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- Advantages: Stochastic sparsity Spatial sparsity

— Many fewer stochastic degrees-of-freedom for comparable level of accuracy

« Challenges:
— Computing SG residual and Jacobian entries in large-scale, production simulation codes
— Solving resulting systems of equations efficiently, particularly for nonlinear problems

117! Sandia National Laboratories




Traditional Approach for SG Operator

» Galerkin equations and Jacobian blocks:

u(§) = Zui¢i(£) — Fi(ugy-..,up) = - o3 / f(a(y), y)vi(y)p(y)dy =0, ¢ =0,...,P
oF, 1 (i) | OF &

ou, — W) e (U(y) Y (¥);(y)p(y)dy ~ kZOJk W = U ’;)G@Jk,
of < (Yihr)
%(U(ﬁ),ﬁ) N};Jkﬂpkz(&)a Jp = ) / —( (¥), ¥)Yu(y)p(y)dy, Gr(i,j) = )

— Polynomial chaos expansion of the deterministic Jacobian operator.

* This is used to implement matrix-vector products without forming the SG
Jacobian explicitly (matrix-free):

(i tr) <8F ) = o (it r)
V] = Jov.:
,;) ey T \au ), ;,;) M)

Bug

» Sparsity determined by triple products ¢, = G, (i, ;) = (Yii1hr)
— Symmetric for orthonormal bases (%‘2 )
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Stokhos: Trilinos Tools for Embedded
Stochastic Galerkin UQ Methods

* Eric Phipps, Chris Miller, Habib Najm, Bert Debusschere,
Omar Knio

» Tools for describing SG discretization
— Stochastic bases, quadrature rules, etc...

http://trilinos.sandia.gov

« C++ operator overloading library for automatically evaluating
SG residuals and Jacobians

— Replace low-level scalar type with orthogonal polynomial
expansions

— Leverages Trilinos Sacado automatic differentiation library

P P P p
@ = Zai¢i’ D= Z bjvj, c =ab= Z CkWPr, Ck = Z a;b; (Wit ¥r)

2
1=0 =0 k=0 i,7=0 <¢k>

* Tools forming and solving SG linear systems
— SG matrix operators
— Stochastic preconditioners
— Hooks to Trilinos parallel solvers and preconditioners

* Nonlinear SG application code interface
— Connect SG methods to nonlinear solvers, time integrators,
optimizers, ... 117 Sandia National Laboratories
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Incorporating Embedded SG Methods in M
Large-scale Simulations

« Template-based generic programming2
— Template relevant code on scalar type

template <class ScalarType>
inline ScalarType simple_function(const ScalarType& u) {

— Instantiate template code on different types for retum 1.0/(std::pow(std:log(u),2.0) + 1.0);

embedded calculations }
— Derivatives: Sacado operator overloading-based

AD library ‘9
— SG expansions: Stokhos overloaded operators [ Fieid Manager |

+ Element-driven approach = oo
— Apply TBGP only at “element-fill” level PDE Terms ééhde;icge it T
— Developers write templated C++ code for element fill used for Compute Phase
. . roperties ! 2

calculations (physics) ,,,,,,,,,,,,,,,,

— Handwritten glue code for initializing/extracting Template Specializations for

Seed and Extract phases:

Jacobian

derivatives from/to global data structures

FE Interpolation
Compute Derivs

« Demonstrated by Albany code (SNL) | Get Coordinates ) .f@
Adjoint

— Salinger et al —
— Unstructured Galerkin FEM

— Pulls together numerous Trilinos packages in a fully
functional code for rapid development of complex ‘L,
physics

— Incompressible fluids, thermo-mechanics,
neutronics, ...

— Embedded analysis algorithms

Gather (Seed
|||

x velocity standard deviation

.2Pawlowski, Phipps, Salinger et al, Journal of Scientific Programming, vol. 20 (2-3), 2012. EERTETRTR LENERT
0 0.2256 ratories




3-D Linear & Nonlinear Elasticity
Model Problems’

* Linear finite elements, 32x32x32 mesh
— Nonlinear: neo-Hookean strain energy potential
* Uncertain Young’s modulus random field
— Truncated KL expansion (exponential covariance)

» Albany/LCM code (Salinger, Ostien, et al)
— Trilinos discretization and solver tools

— Automatic differentiation
— Embedded UQ
— MPI parallelism

http://trilinos.sandia.qov
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Solve Performance

« Comparison to non-intrusive polynomial chaos/spectral projection
(NISP)
— Isotropic sparse-grid quadrature
— Gauss-Legendre abscissas
— Linear growth rules

2 Linear Problem 3 Nonlinear Problem
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Comparison Between Linear and Nonlinear PDEs

* Difference in performance due to dramatically reduced
sparsity of the stochastic Galerkin operator

— Increased cost of matrix-vector products

Linear Problem Nonlinear Problem
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* On-going R&D
— Improved stochastic preconditioning
— Dimension reduction for SG Jacobian operator
— Multicore acceleration 1) Sandia National Laboratories




Structure of Galerkin Operator

« Operator traditionally organized with outer-stochastic, inner-spatial

structure

— Allows reuse of deterministic solver data structures and
preconditioners

— Makes sense for sparse stochastic discretizations

P
Jt’rad — Z Gk ® Jk:

k=0

P
Jeom — Z J. ® Gy

k=0
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* For nonlinear problems, makes sense to commute this layout to

outer-spatial, inner-stochastic

— Leverage emerging architectures to handle denser stochastic

blocks
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SG Mat-Vec = Orthogonal Polynomial Multiply

* Traditional layout: matrix-valued polynomial times vector-valued
polynomial:

J(&) = Z Jii(£), v(€) = Z vihi(€), w(€) = J(€)v(€) = Z w;P; (€)

P . P
— w; = z kaj (¢z¢;¢k> — [(Z Gk: ® Jk> ,vt'r-ad] — [Jtrad,vtrad}i
j,k=0 <1’b’t > k=0 i

« Commuted layout: scalar polynomial multiplication:

Jij(€) = Z Tijethi(€)s v;(8) = Z viRtpn(€), wi(€) = > Jii()vi(€) = ) winthu(€)

= [Jcom,vcom] ik

P
— Wi — Z Z ngl im ¢]Zz;1p>m> = [(Z Jl ®Gl> =P

j=0 l,m=0 =0

1k

 Either way, we have the choice of forming the blocks or using the
polynomial algorithm directly

Sandia National Laboratories



Commuted SG Matrix Orthogonal
Polynomial Multiply

* Two level algorithm
— Outer: traditional CRS matrix-vector multiply algorithm
— Inner: orthogonal polynomial multiply

stochastic stochastic stochastic stochastic triple
basis bases sum basis basis product

Arow(row+1)—1 P

w(i, row) = Z Z Avalue(k,t)v(j, Acol(t))Ci;,k

t=Arow(row) 3,k=0

FEM FEM bases FEM FEM
basis sum basis basis

 Symmetric sparse tensor stored in compressed format:

Arow(row+1)—1 Crow(i+1)—1

w(i, row) = Z Z (Avalue(C(n).k,t)v(C(n).j, Acol(t))+

t=Arow(row) n=Crow (i)
Avalue(C(n).j,t)v(C(n).k, Acol(t)))C(n).value

* Opportunities for iteration concurrency: row ,i,t, n
Sandia National Laboratories



4 ﬁ)mmuted SG Matrix Dense Block
Y P Multiply

* Replace inner orthogonal polynomial multiply with
dense matrix-vector

Arow(row+1)—1 P

w(i, row) = Z Z v(g, Acol(t))

t=Arow(row) j=0

 Symmetric diagonal storage:

* Trade eliminated inner sparse indexing for
— Increased memory costs: O(P) — O(P?*)terms
— Increased flops if blocks aren’t really dense

— Cost of pre-assembling blocks
(1) Sandia National Laboratories




Multicore Architectures

* CPU - Quad-socket Intel Sandy Bridge

— 8 cores/socket x 4 sockets x = 32 threads (Hyperthreading
disabled)

« GPU - NVIDIA M2090

— Fermi architecture
— 512 cores, 665 GFLOPS peak (double precision)
— Hierarchical thread structure:
« Thread blocks must execute independently
« Each block contains multiple warps (up to 32)
« Each warp contains 32 threads which are synchronized (SIMT)
— ~6 GB global memory which all threads can access (slow)
— Each block accesses 48 kB shared memory (fast)

— Hardware hides latency of global memory access by fast context
switching of active block

» To achieve high performance, threads need to work with shared
memory

* Programmer controls movement of data between host memory,
GPU global memory, and block shared memory
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" Multicore-CPU: One-level Concurrency

w(i, row) =

parallel

w(i, Tow)

parallel

« Each block row “owned” by a CPU thread
 Owning CPU thread computes w(x,row) in serial

(1) Sandia National Laboratories




Manycore-GPU with Inner Polynomial
Multiply: Two-level Concurrency

thread-block thread-block
parallel shared memory

Crow(i+1)—1{Arow(row+1)—1

w(, row) = Z Z (Avalue(C(n).k,t)v(C(n).j, Acol(t))+

n=Crow(i) t=Arow(row)

Avalue(C(n).j,t)v(C(n).k, Acol(t)))C(n).value

thread-warp thread serial within
parallel parallel _ thread-block
shared memory

« Multiple levels of concurrency:
— Each row owned by a thread-block
— Each warp within a thread-block owns an “i”

— Warps within a thread perform polynomial multiply in
parallel, executing CRS loop serially

» Currently sparse tensor stored in GPU global memory
111/ Sandia National Laboratories




Manycore-GPU with Inner Block Multiply:
Two-level Concurrency

thread
thread-block parallel thread-block
parallel shared
P Arow(row+1)—1 memaory

w(i, row) = » > Ablock((i, 7), t)v(g, Acol(t))
j=0 t=Arow(row)
parallel

« Multiple levels of concurrency:
— Each row owned by a thread-block
— Each warp within a thread-block owns an “i”

— Warps within a thread perform block multiply in
parallel, executing CRS loop serially

 Currently blocks stored in GPU global memory
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GFLOPS - Intel Sandy Bridge CPU
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« Standard 3-D first-order FEM grid (12x12x12)

— Small FEM size due to large memory usage by block and flat-CRS
approaches

* N = polynomial order (larger N, denser blocks)
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Speedup Relative to Flat CRS
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* Polynomial approach is the clear winner
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GFLOPS - NVIDIA M2090
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« Standard 3-D first-order FEM grid (5x5x5)

— Small FEM size due to large memory usage by block and flat-CRS
approaches

* N = polynomial order (larger N, denser blocks)
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Speedup Relative to Flat CRS
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* Polynomial approach is the clear winner
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Comparison to Original Matrix-Free

GFLOP/s
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* Reasonable FEM size (64x64x64)
« Significant speedup of polynomial approach over

original matrix-free algorithm
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Comparison to Original Matrix-Free
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* Reasonable FEM size (32x32x32)

« Significant speedup of polynomial approach except for larger
stochastic discretizations

— Too much shared memory usage per CUDA block reduces
occupancy
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Concluding Remarks

¥Vith_ t|§>Iroper software infrastructure stochastic Galerkin methods are
easible

— Template-based generic programming
— Stokhos/Trilinos solver tools

Stochastic Galerkin method exhibits reasonable performance for
small to moderate numbers of random variables

Reordering layout improves performance of SG matrix-vector product
— Significant improvement with commuted polynomial multiply
— Significant additional levels of parallelism

Performance issues with GPU version of algorithm
— Tiling of sparse tensor to reduce shared memory consumption
— Reordering to improve memory bandwidth performance

Mat-vecs are only part of the picture
— Preconditioning with commuted layout requires significant R&D

117! Sandia National Laboratories
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What is Automatic Differentiation (AD)?

Technique to compute analytic

derivatives without hand-coding the

derivative computation

How does it work -- freshman calculus
— Computations are composﬂion

of simple operations (+, *

, sin(),

etc...) with known derivatives

— Derivatives computed line-

-by-

line, combined via chain rule

Derivatives accurate as original
computation

— No finite-difference truncation

errors

Provides analytic derivatives without

the time and effort of hand-codi
them

ng

y =sin(e® + xlogx), = = 2

u «— logx
V +— TU
w+—t+ov

Y «— sinw

d

T -

dx
2.000 | 1.000
7.389 | 7.389
0.301 | 0.500
0.602 | 1.301
7.991 | 8.690
0.991 | -1.188
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Sacado: AD Tools for C++ Codes

 Several modes of Automatic Differentiation
— Forward
— Reverse
— Univariate Taylor series

— Modes can be nested for various forms of o .
higher derivatives http://trilinos.sandia.gov

« Sacado uses operator overloading-based
approach for C++ codes \

— Phipps, Gay (SNL ASC)

— Sacado provides C++ data type for each AD
mode > B /‘

— Replace scalar type (e.g., double) with template HS5LC
parameter

— {nstantiate template code on various Sacado AD
ypes

— Mathematical operations replaced by
overloaded versions

— Expression templates to reduce overhead

117! Sandia National Laboratories
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Our AD Tools Perform Extremely Well
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» Simple set of representative PDEs
— Total degrees-of-freedom = number of nodes x number of PDEs for

each element

» Operator overloading overhead is nearly zero
« 2x cost relative to hand-coded, optimized Jacobian (very problem

dependent)
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AD to TBGP

» Benefits of templating

— Developers only develop, maintain, test one templated code base

— Developers don’t have to worry about what the scalar type really is

— Easy to incorporate new scalar types

 Templates provide a deep interface into code
— Can use this interface for more than derivatives

— Any calculation that can be implemented in an operation-by-operation

fashion will work

* We call this extension Template-Based Generic Programming (TBGP)

— Extended precision
+ Shadow double
— Floating point counts
— Logical sparsity 48
— Uncertainty propagation 45'@
* Intrusive stochastic Galerkin/polynomial chaos
+ Simultaneous ensemble propagation
— 2 papers under revision to Jou. Sci. Prog.

A
AsC

Sandia National Laboratories



Generating SG Residual/Jacobian Entries
Through Automatic Differentiation (AD)

 Trilinos package Sacado provides AD capabilities to C++ codes

— AD relies on known derivative formulas for all intrinsic operations plus
chain rule

— AD data types & overloaded operators
— Replace scalar type in application with Sacado AD data types

« Similar approach can be used to apply SG projections in an
operation by operation manner
P

Given a(y) = Z a;i(y), b= Z bivi(y), find c(y) = ) cipi(y)

1=0

such that | (c(y) — @(a(w): b)) ¥ (@p(w)dy = 0, i=0.....P

— Simple formulas for addition, subtraction, multiplication, division
— Transcendental operations are more difficult

117! Sandia National Laboratories




SG Projections of Intermediate Operations

« Addition/subtraction
c=atb=c =a; b
* Multiplication

c—axb= Z ci; = Z Z aibj’l,bz"l,bj — Cp = Z Z b <¢z:bbﬂ)bk>
i J *

%

* Division
c=a/b= Z Z cibjvip; = Z a;p; — Z Z cibj (Yipjbe) = ar(tby)

» Several approaches for transcendental operatlons

— Taylor series and time integration (Fortran UQ Toolkit by Najm,
Debusschere, Ghanem, Knio)

— Tensor product and sparse-grid quadrature (Dakota)

* These ideas allow the implementation of Sacado “AD” types for
intrusive stochastic Galerkin methods

— Easy transition once code is setup to use AD

117! Sandia National Laboratories




Templated Components Orthogonalize Physics
and Embedded Algorithm R&D

Field Manager

DOF Manager

Discretization
Cell Topology
Mesh

MDArray

DOF Manager

i component/library

Embedded Analysis
| component/library -

o Application Interface
@E’ { Scatter (Extract)
computeResidual() <
W computeJacobian() [ PDE Terms ]
SR computeTangent() f :
UQ [ Properties ]
computeHessian() i
[ Source Terms ]
- computeAdjoint() 1
(' Error estimation )e¢— FE InterpolationJ
computePCE() ComputTe Derivs
@tability Analysis computeResponse() [ Get Coordinates ]
Legend: |
e i | ——p Global Data Structures i
' Application | |

____________________________________________________

_________________________________________

Template Specializations for
Seed and Extract phases:

i [ Jacobian | | Adjoint
| Tangent | | PCE

.........................................

[ Residual ]_J Hessian

Sandia National Laboratories



