
Exploring Emerging Manycore Architectures 
for Uncertainty Quantification Through 

Embedded Stochastic Galerkin Methods 

Eric Phipps (etphipp@sandia.gov), 
H. Carter Edwards and Jonathan Hu, Jakob Ostient

Sandia National Laboratories

The Mathematics of Finite Elements and Applications 

June 11-14, 2013 

SAND 2013-xxxx
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia 
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of 
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2013-4606C

mailto:etphipp@sandia.gov
mailto:etphipp@sandia.gov


Forward UQ

• UQ means many things
– Best estimate + uncertainty
– Model validation
– Model calibration
– Reliability analysis
– Robust design/optimization
– …

• A key to many UQ tasks is forward uncertainty propagation
– Given uncertainty model of input data (aleatory, epistemic, …)
– Propagate uncertainty to output quantities of interest

• There are many forward uncertainty propagation approaches
– Monte Carlo
– Stochastic collocation
– NISP/NIPC
– Regression PCE (“point/probabilistic collocation”)
– Stochastic Galerkin
– …

• Key challenges:
– Achieving good accuracy
– High dimensional uncertain spaces
– Expensive forward simulations



Emerging Architectures Motivate New Approaches

• UQ approaches usually implemented as an outer loop
– Repeated calls of deterministic solver

• Single-point forward simulations use very little available node 
compute power (unstructured, implicit)
– 3-5% of peak FLOPS on multi-core CPUs (P. Lin, Charon, RedSky)
– 2-3% on contemporary GPUs (Bell & Garland, 2008)

• Emerging architectures leading to dramatically increased on-
node compute power
– Not likely to translate into commensurate improvement in forward 

simulation
– Many simulations/solvers don’t contain enough fine-grained 

parallelism

• Can this be remedied by inverting the outer UQ/inner solver 
loop?
– Add new dimensions of parallelism through embedded 

approaches



Outline

• Polynomial chaos-based UQ approaches

– Non-intrusive spectral projection (NISP/NIPC)

– Stochastic Galerkin (SG)

• Tools for implementing SG methods in large-
scale PDE codes

• Application to model 3-D mechanics problems

• Reordering SG mat-vecs for contemporary 
multicore architectures



Polynomial Chaos Expansions (PCE)

• Steady-state finite dimensional model problem:

• (Global) Polynomial Chaos approximation:

• Non-intrusive polynomial chaos (NIPC, NISP):

– Sparse-grid quadrature methods for scalability to moderate stochastic 
dimensions

– Need to be careful to ensure quadrature rule preserves discrete 
orthogonality

• SPAM (Constantine, Eldred, Phipps, CMAME, 2012)
• Method is equivalent to stochastic collocation



• Steady-state stochastic problem (for simplicity):

• Stochastic Galerkin method (Ghanem and many, many others…):

– Multivariate orthogonal basis of total order at most N – (generalized polynomial chaos)

• Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

• Advantages:

– Many fewer stochastic degrees-of-freedom for comparable level of accuracy

• Challenges:

– Computing SG residual and Jacobian entries in large-scale, production simulation codes

– Solving resulting systems of equations efficiently, particularly for nonlinear problems

Stochastic sparsity Spatial sparsity

Embedded Stochastic Galerkin UQ Methods



Traditional Approach for SG Operator

• Galerkin equations and Jacobian blocks:

– Polynomial chaos expansion of the deterministic Jacobian operator.

• This is used to implement matrix-vector products without forming the SG 
Jacobian explicitly (matrix-free):

• Sparsity determined by triple products
– Symmetric for orthonormal bases



Stokhos:  Trilinos Tools for Embedded 
Stochastic Galerkin UQ Methods

• Eric Phipps, Chris Miller, Habib Najm, Bert Debusschere, 
Omar Knio

• Tools for describing SG discretization
– Stochastic bases, quadrature rules, etc…

• C++ operator overloading library for automatically evaluating 
SG residuals and Jacobians

– Replace low-level scalar type with orthogonal polynomial 
expansions

– Leverages Trilinos Sacado automatic differentiation library

• Tools forming and solving SG linear systems
– SG matrix operators
– Stochastic preconditioners
– Hooks to Trilinos parallel solvers and preconditioners

• Nonlinear SG application code interface
– Connect SG methods to nonlinear solvers, time integrators, 

optimizers, …

http://trilinos.sandia.gov 

http://trilinos.sandia.gov


Incorporating Embedded SG Methods in 
Large-scale Simulations

• Template-based generic programming1,2

– Template relevant code on scalar type
– Instantiate template code on different types for 

embedded calculations
– Derivatives:  Sacado operator overloading-based 

AD library
– SG expansions:  Stokhos overloaded operators

• Element-driven approach
– Apply TBGP only at “element-fill” level
– Developers write templated C++ code for element fill 

calculations (physics)
– Handwritten glue code for initializing/extracting 

derivatives from/to global data structures

• Demonstrated by Albany code (SNL)
– Salinger et al
– Unstructured Galerkin FEM
– Pulls together numerous Trilinos packages in a fully 

functional code for rapid development of complex 
physics

– Incompressible fluids, thermo-mechanics, 
neutronics, …

– Embedded analysis algorithms

template <class ScalarType>

inline ScalarType simple_function(const ScalarType& u) {

return 1.0/(std::pow(std::log(u),2.0) + 1.0);

}

Shape Opt
PCE

Adjoint
Hessian 

Field Manager 

Gather (Seed) 

FE Interpolation 
Compute Derivs

Get Coordinates

Scatter (Extract) 

Source Terms

Tangent
Jacobian 

Residual

Generic Template Type
used for Compute Phase

<EvalT> 

PDE Terms

Template Specializations for
Seed and Extract phases:

Legend: 

Properties

Global Data Structures 

Local Data Structures 

1,2Pawlowski, Phipps, Salinger et al, Journal of Scientific Programming, vol. 20 (2-3), 2012. 



3-D Linear & Nonlinear Elasticity 
Model Problems1

• Linear finite elements, 32x32x32 mesh
– Nonlinear:  neo-Hookean strain energy potential

• Uncertain Young’s modulus random field
– Truncated KL expansion (exponential covariance)

• Albany/LCM code (Salinger, Ostien, et al)
– Trilinos discretization and solver tools
– Automatic differentiation
– Embedded UQ
– MPI parallelism

Displacement (Mean) Displacement (Std. Dev.)

http://trilinos.sandia.gov

1Phipps, Edwards, Hu and Ostien, International Journal of Computer Mathematics, submitted. 

http://trilinos.sandia.gov


Solve Performance

• Comparison to non-intrusive polynomial chaos/spectral projection 
(NISP)

– Isotropic sparse-grid quadrature
– Gauss-Legendre abscissas
– Linear growth rules



• Difference in performance due to dramatically reduced 
sparsity of the stochastic Galerkin operator
– Increased cost of matrix-vector products

• On-going R&D
– Improved stochastic preconditioning

– Dimension reduction for SG Jacobian operator

– Multicore acceleration

Linear Problem Nonlinear Problem

Comparison Between Linear and Nonlinear PDEs



Structure of Galerkin Operator

• Operator traditionally organized with outer-stochastic, inner-spatial 
structure
– Allows reuse of deterministic solver data structures and 

preconditioners
– Makes sense for sparse stochastic discretizations

• For nonlinear problems, makes sense to commute this layout to 
outer-spatial, inner-stochastic
– Leverage emerging architectures to handle denser stochastic 

blocks



SG Mat-Vec = Orthogonal Polynomial Multiply

• Traditional layout:  matrix-valued polynomial times vector-valued 
polynomial:

• Commuted layout:  scalar polynomial multiplication:

• Either way, we have the choice of forming the blocks or using the 
polynomial algorithm directly



Commuted SG Matrix Orthogonal 
Polynomial Multiply

• Two level algorithm

– Outer: traditional CRS matrix-vector multiply algorithm

– Inner: orthogonal polynomial multiply

• Symmetric sparse tensor stored in compressed format:

• Opportunities for iteration concurrency: row , i , t , n

stochastic 
basis

stochastic 
basis

FEM 
basis

FEM 
basis

FEM 
basis

stochastic 
basis

triple 
product

stochastic 
bases sum

FEM bases 
sum



• Replace inner orthogonal polynomial multiply with 
dense matrix-vector 

• Symmetric diagonal storage:

• Trade eliminated inner sparse indexing for
– Increased memory costs:                       terms
– Increased flops if blocks aren’t really dense
– Cost of pre-assembling blocks

Commuted SG Matrix Dense Block 
Multiply



Multicore Architectures

• CPU – Quad-socket Intel Sandy Bridge
– 8 cores/socket x 4 sockets x = 32 threads (Hyperthreading

disabled)

• GPU – NVIDIA M2090
– Fermi architecture
– 512 cores, 665 GFLOPS peak (double precision)
– Hierarchical thread structure:

• Thread blocks must execute independently
• Each block contains multiple warps (up to 32)
• Each warp contains 32 threads which are synchronized (SIMT)

– ~6 GB global memory which all threads can access (slow)
– Each block accesses 48 kB shared memory (fast)
– Hardware hides latency of global memory access by fast context 

switching of active block
• To achieve high performance, threads need to work with shared 

memory
• Programmer controls movement of data between host memory, 

GPU global memory, and block shared memory



• Each block row “owned” by a CPU thread
• Owning CPU thread computes              in serial

Multicore-CPU: One-level Concurrency

parallel
serial within a multicore-CPU thread

parallel



• Multiple levels of concurrency:

– Each row owned by a thread-block

– Each warp within a thread-block owns an “i”

– Warps within a thread perform polynomial multiply in 
parallel, executing CRS loop serially

• Currently sparse tensor stored in GPU global memory

Manycore-GPU with Inner Polynomial 
Multiply: Two-level Concurrency

thread-block 
parallel

thread-warp 
parallel

thread 
parallel

serial within 
a thread

thread-block 
shared memory

thread-block 
shared memory

GPU global 
memory



Manycore-GPU with Inner Block Multiply: 
Two-level Concurrency

thread-block 
parallel

thread 
parallel

serial within a 
thread

thread-block

shared 
memory

GPU global 
memory

• Multiple levels of concurrency:
– Each row owned by a thread-block

– Each warp within a thread-block owns an “i”

– Warps within a thread perform block multiply in 
parallel, executing CRS loop serially

• Currently blocks stored in GPU global memory

thread-warp 
parallel



GFLOPS – Intel Sandy Bridge CPU

• Standard 3-D first-order FEM grid (12x12x12)
– Small FEM size due to large memory usage by block and flat-CRS 

approaches

• N = polynomial order (larger N, denser blocks)

0�

5�

10�

15�

20�

25�

30�

35�

40�

45�

0� 50� 100� 150� 200� 250�

G
FL

O
P

/s
�

Stochas c�Discre za on�Size�P�

�Intel�Sandybridge��
(n=1728,�N=3,�32�threads)��

Polynomial�
Mul ply�

Dense�Block�
Mul ply�

Flat�CRS�
(Commuted)�

Flat�CRS�(Original)�

0�

5�

10�

15�

20�

25�

30�

35�

40�

45�

0� 50� 100� 150� 200� 250�

G
FL

O
P

/s
�

Stochas c�Discre za on�Size�P�

�Intel�Sandybridge��
(n=1728,�N=3,�32�threads)��

Polynomial�
Mul ply�

Dense�Block�
Mul ply�

Flat�CRS�
(Commuted)�

Flat�CRS�(Original)�

0�

5�

10�

15�

20�

25�

30�

35�

40�

0� 100� 200� 300�

G
FL

O
P

/s
�

Stochas c�Discre za on�Size�P�

�Intel�Sandybridge��
(n=1728,�N=5,�32�threads)��

Polynomial�
Mul ply�

Dense�Block�
Mul ply�

Flat�CRS�
(Commuted)�

Flat�CRS�(Original)�

0�

5�

10�

15�

20�

25�

30�

35�

40�

0� 100� 200� 300�

G
FL

O
P

/s
�

Stochas c�Discre za on�Size�P�

�Intel�Sandybridge��
(n=1728,�N=5,�32�threads)��

Polynomial�
Mul ply�

Dense�Block�
Mul ply�

Flat�CRS�
(Commuted)�

Flat�CRS�(Original)�



Speedup Relative to Flat CRS

• Polynomial approach is the clear winner

0�

1�

2�

3�

4�

5�

6�

7�

8�

0� 50� 100� 150� 200� 250�

Sp
ee

d
u

p
�R

el
a

ve
�t

o
�F

la
t�

C
R

S�
(O

ri
gi

n
al

)�

Stochas c�Discre za on�Size�P�

�Intel�Sandybridge��
(n=1728,�N=3,�32�threads)��

Polynomial�
Mul ply�

Dense�Block�
Mul ply�

Flat�CRS�
(Commuted)�

0�

1�

2�

3�

4�

5�

6�

7�

8�

0� 50� 100� 150� 200� 250�

Sp
ee

d
u

p
�R

el
a

ve
�t

o
�F

la
t�

C
R

S�
(O

ri
gi

n
al

)�

Stochas c�Discre za on�Size�P�

�Intel�Sandybridge��
(n=1728,�N=3,�32�threads)��

Polynomial�
Mul ply�

Dense�Block�
Mul ply�

Flat�CRS�
(Commuted)�

0�

0.5�

1�

1.5�

2�

2.5�

3�

3.5�

0� 50� 100� 150� 200� 250� 300�

Sp
ee

d
u

p
�R

el
a

ve
�t

o
�F

la
t�

C
R

S�
(O

ri
gi

n
al

)�

Stochas c�Discre za on�Size�P�

�Intel�Sandybridge��
(n=1728,�N=5,�32�threads)��

Polynomial�
Mul ply�

Dense�Block�
Mul ply�

Flat�CRS�
(Commuted)�

0�

0.5�

1�

1.5�

2�

2.5�

3�

3.5�

0� 50� 100� 150� 200� 250� 300�

Sp
ee

d
u

p
�R

el
a

ve
�t

o
�F

la
t�

C
R

S�
(O

ri
gi

n
al

)�

Stochas c�Discre za on�Size�P�

�Intel�Sandybridge��
(n=1728,�N=5,�32�threads)��

Polynomial�
Mul ply�

Dense�Block�
Mul ply�

Flat�CRS�
(Commuted)�



GFLOPS – NVIDIA M2090

• Standard 3-D first-order FEM grid (5x5x5)
– Small FEM size due to large memory usage by block and flat-CRS 

approaches

• N = polynomial order (larger N, denser blocks)

0�

5�

10�

15�

20�

25�

30�

35�

40�

0� 50� 100� 150� 200� 250�

G
FL

O
P

/s
�

Stochas c�Discre za on�Size�P�

�NVIDIA�M2090�
(n=125,�N=3)��

Polynomial�
Mul ply�

Dense�Block�
Mul ply�

Flat�CRS�
(Commuted)�

Flat�CRS�(Original)�

0�

5�

10�

15�

20�

25�

30�

35�

40�

0� 50� 100� 150� 200� 250�

G
FL

O
P

/s
�

Stochas c�Discre za on�Size�P�

�NVIDIA�M2090�
(n=125,�N=3)��

Polynomial�
Mul ply�

Dense�Block�
Mul ply�

Flat�CRS�
(Commuted)�

Flat�CRS�(Original)�

0�

5�

10�

15�

20�

25�

30�

35�

40�

45�

50�

0� 100� 200� 300�

G
FL

O
P

/s
�

Stochas c�Discre za on�Size�P�

�NVIDIA�M2090�
(n=125,�N=5)��

Polynomial�
Mul ply�

Dense�Block�
Mul ply�

Flat�CRS�
(Commuted)�

Flat�CRS�(Original)�

0�

5�

10�

15�

20�

25�

30�

35�

40�

45�

50�

0� 100� 200� 300�

G
FL

O
P

/s
�

Stochas c�Discre za on�Size�P�

�NVIDIA�M2090�
(n=125,�N=5)��

Polynomial�
Mul ply�

Dense�Block�
Mul ply�

Flat�CRS�
(Commuted)�

Flat�CRS�(Original)�



Speedup Relative to Flat CRS

• Polynomial approach is the clear winner

0�

0.5�

1�

1.5�

2�

2.5�

3�

0� 50� 100� 150� 200� 250�

Sp
e

e
d

u
p

�R
e

la
ve

�t
o

�F
la

t�
C

R
S�

(O
ri

gi
n

al
)�

Stochas c�Discre za on�Size�P�

�NVIDIA�M2090�
(n=125,�N=3)��

Polynomial�
Mul ply�

Dense�Block�
Mul ply�

Flat�CRS�
(Commuted)�

0�

0.5�

1�

1.5�

2�

2.5�

3�

0� 50� 100� 150� 200� 250�

Sp
e

e
d

u
p

�R
e

la
ve

�t
o

�F
la

t�
C

R
S�

(O
ri

gi
n

al
)�

Stochas c�Discre za on�Size�P�

�NVIDIA�M2090�
(n=125,�N=3)��

Polynomial�
Mul ply�

Dense�Block�
Mul ply�

Flat�CRS�
(Commuted)�

0�

0.2�

0.4�

0.6�

0.8�

1�

1.2�

1.4�

1.6�

0� 50� 100� 150� 200� 250� 300�

Sp
e

e
d

u
p

�R
e

la
ve

�t
o

�F
la

t�
C

R
S�

(O
ri

gi
n

al
)�

Stochas c�Discre za on�Size�P�

�NVIDIA�M2090�
(n=125,�N=5)��

Polynomial�
Mul ply�

Dense�Block�
Mul ply�

Flat�CRS�
(Commuted)�

0�

0.2�

0.4�

0.6�

0.8�

1�

1.2�

1.4�

1.6�

0� 50� 100� 150� 200� 250� 300�

Sp
e

e
d

u
p

�R
e

la
ve

�t
o

�F
la

t�
C

R
S�

(O
ri

gi
n

al
)�

Stochas c�Discre za on�Size�P�

�NVIDIA�M2090�
(n=125,�N=5)��

Polynomial�
Mul ply�

Dense�Block�
Mul ply�

Flat�CRS�
(Commuted)�



Comparison to Original Matrix-Free

• Reasonable FEM size (64x64x64)

• Significant speedup of polynomial approach over 
original matrix-free algorithm

0�

0.5�

1�

1.5�

2�

2.5�

0� 100� 200� 300� 400� 500�

Sp
e

ed
u

p
�R

e
la

ve
�t

o
�M

at
ri

x-
Fr

ee
�(

O
ri

gi
n

al
)�

Stochas c�Discre za on�Size�P�

Intel�Sandybridge��
(n=262k,�32�threads)��

Polynomial�
Mul ply�(N=3)�

Polynomial�
Mul ply�(N=5)�

0�

0.5�

1�

1.5�

2�

2.5�

0� 100� 200� 300� 400� 500�

Sp
e

ed
u

p
�R

e
la

ve
�t

o
�M

at
ri

x-
Fr

ee
�(

O
ri

gi
n

al
)�

Stochas c�Discre za on�Size�P�

Intel�Sandybridge��
(n=262k,�32�threads)��

Polynomial�
Mul ply�(N=3)�

Polynomial�
Mul ply�(N=5)�

0�

10�

20�

30�

40�

50�

60�

70�

80�

0� 100� 200� 300� 400� 500�

G
FL

O
P

/s
�

Stochas c�Discre za on�Size�P�

Intel�Sandybridge��
(n=262k,�32�threads)��

Polynomial�
Mul ply�(N=3)�

Polynomial�
Mul ply�(N=5)�

Original�Matrix-
Free�(N=3)�

Original�Matrix-
Free�(N=5)�0�

10�

20�

30�

40�

50�

60�

70�

80�

0� 100� 200� 300� 400� 500�

G
FL

O
P

/s
�

Stochas c�Discre za on�Size�P�

Intel�Sandybridge��
(n=262k,�32�threads)��

Polynomial�
Mul ply�(N=3)�

Polynomial�
Mul ply�(N=5)�

Original�Matrix-
Free�(N=3)�

Original�Matrix-
Free�(N=5)�



Comparison to Original Matrix-Free

• Reasonable FEM size (32x32x32)
• Significant speedup of polynomial approach except for larger 

stochastic discretizations
– Too much shared memory usage per CUDA block reduces 

occupancy

0�

10�

20�

30�

40�

50�

60�

70�

0� 100� 200� 300� 400� 500�

G
FL

O
P

/s
�

Stochas c�Discre za on�Size�P�

NVIDIA�M2090�
(n=32k)��

Polynomial�
Mul ply�(N=3)�

Polynomial�
Mul ply�(N=5)�

Original�Matrix-
Free�(N=3)�

Original�Matrix�
Free�(N=5)�0�

10�

20�

30�

40�

50�

60�

70�

0� 100� 200� 300� 400� 500�

G
FL

O
P

/s
�

Stochas c�Discre za on�Size�P�

NVIDIA�M2090�
(n=32k)��

Polynomial�
Mul ply�(N=3)�

Polynomial�
Mul ply�(N=5)�

Original�Matrix-
Free�(N=3)�

Original�Matrix�
Free�(N=5)�

0�

0.2�

0.4�

0.6�

0.8�

1�

1.2�

1.4�

1.6�

1.8�

0� 100� 200� 300� 400� 500�

Sp
ee

d
u

p
�R

el
a

ve
�t

o
�M

at
ri

x-
Fr

ee
�(

O
ri

gi
n

al
)�

Stochas c�Discre za on�Size�P�

NVIDIA�M2090�
(n=32k)��

Polynomial�
Mul ply�(N=3)�

Polynomial�
Mul ply�(N=5)�

0�

0.2�

0.4�

0.6�

0.8�

1�

1.2�

1.4�

1.6�

1.8�

0� 100� 200� 300� 400� 500�

Sp
ee

d
u

p
�R

el
a

ve
�t

o
�M

at
ri

x-
Fr

ee
�(

O
ri

gi
n

al
)�

Stochas c�Discre za on�Size�P�

NVIDIA�M2090�
(n=32k)��

Polynomial�
Mul ply�(N=3)�

Polynomial�
Mul ply�(N=5)�



Concluding Remarks

• With proper software infrastructure stochastic Galerkin methods are 
feasible

– Template-based generic programming
– Stokhos/Trilinos solver tools

• Stochastic Galerkin method exhibits reasonable performance for 
small to moderate numbers of random variables

• Reordering layout improves performance of SG matrix-vector product
– Significant improvement with commuted polynomial multiply
– Significant additional levels of parallelism

• Performance issues with GPU version of algorithm
– Tiling of sparse tensor to reduce shared memory consumption
– Reordering to improve memory bandwidth performance

• Mat-vecs are only part of the picture
– Preconditioning with commuted layout requires significant R&D



Extra Slides



What is Automatic Differentiation (AD)?

• Technique to compute analytic 
derivatives without hand-coding the 
derivative computation

• How does it work -- freshman calculus

– Computations are composition 
of simple operations (+, *, sin(), 
etc…) with known derivatives

– Derivatives computed line-by-
line, combined via chain rule

• Derivatives accurate as original 
computation

– No finite-difference truncation 
errors

• Provides analytic derivatives without 
the time and effort of hand-coding 
them

2.000 1.000

7.389 7.389

0.301 0.500

0.602 1.301

7.991 8.690

0.991 -1.188

2.000

7.389

0.301

0.602

7.991

0.991



Sacado:  AD Tools for C++ Codes

• Several modes of Automatic Differentiation
– Forward 
– Reverse
– Univariate Taylor series
– Modes can be nested for various forms of 

higher derivatives

• Sacado uses operator overloading-based 
approach for C++ codes
– Phipps, Gay (SNL ASC)
– Sacado provides C++ data type for each AD 

mode
– Replace scalar type (e.g., double) with template 

parameter
– Instantiate template code on various Sacado AD 

types
– Mathematical operations replaced by 

overloaded versions 
– Expression templates to reduce overhead

http://trilinos.sandia.gov 

http://trilinos.sandia.gov


Our AD Tools Perform Extremely Well

• Simple set of representative PDEs
– Total degrees-of-freedom = number of nodes x number of PDEs for 

each element

• Operator overloading overhead is nearly zero
• 2x cost relative to hand-coded, optimized Jacobian (very problem 

dependent)

0.0�

2.0�

4.0�

6.0�

8.0�

10.0�

12.0�

14.0�

0� 20� 40� 60� 80� 100� 120� 140�

Ja
co

vi
an

�E
va

lu
a

o
n

�T
im

e
�R

el
a

ve
�t

o
�H

an
d

-c
o

d
ed

�

Total�Degrees-of-Freedom�Per�Element�

Original�Sacado�FAD�

New�Sacado�FAD�

Source�Transforma on�

Hand-coded�

0.0�

2.0�

4.0�

6.0�

8.0�

10.0�

12.0�

14.0�

0� 20� 40� 60� 80� 100� 120� 140�

Ja
co

vi
an

�E
va

lu
a

o
n

�T
im

e
�R

el
a

ve
�t

o
�H

an
d

-c
o

d
ed

�

Total�Degrees-of-Freedom�Per�Element�

Original�Sacado�FAD�

New�Sacado�FAD�

Source�Transforma on�

Hand-coded�



AD to TBGP

• Benefits of templating
– Developers only develop, maintain, test one templated code base
– Developers don’t have to worry about what the scalar type really is
– Easy to incorporate new scalar types

• Templates provide a deep interface into code
– Can use this interface for more than derivatives
– Any calculation that can be implemented in an operation-by-operation 

fashion will work

• We call this extension Template-Based Generic Programming (TBGP)
– Extended precision

• Shadow double

– Floating point counts
– Logical sparsity
– Uncertainty propagation

• Intrusive stochastic Galerkin/polynomial chaos
• Simultaneous ensemble propagation

– 2 papers under revision to Jou. Sci. Prog.



Generating SG Residual/Jacobian Entries 
Through Automatic Differentiation (AD)

• Trilinos package Sacado provides AD capabilities to C++ codes
– AD relies on known derivative formulas for all intrinsic operations plus 

chain rule

– AD data types & overloaded operators

– Replace scalar type in application with Sacado AD data types

• Similar approach can be used to apply SG projections in an 
operation by operation manner

– Simple formulas for addition, subtraction, multiplication, division

– Transcendental operations are more difficult



SG Projections of Intermediate Operations

• Addition/subtraction

• Multiplication

• Division

• Several approaches for transcendental operations

– Taylor series and time integration (Fortran UQ Toolkit by Najm, 
Debusschere, Ghanem, Knio)

– Tensor product and sparse-grid quadrature (Dakota)

• These ideas allow the implementation of Sacado “AD” types for 
intrusive stochastic Galerkin methods

– Easy transition once code is setup to use AD



Templated Components Orthogonalize Physics 
and Embedded Algorithm R&D

Application
component/library 

Embedded Analysis 
component/library PCE

Adjoint
Hessian 

Field Manager 

Gather (Seed) 

FE Interpolation 
Compute Derivs

Get Coordinates

Scatter (Extract) 

Source Terms

Tangent
Jacobian 

Residual

Generic Template Type
used for Compute Phase <EvalT> 

PDE Terms

Template Specializations for 
Seed and Extract phases:

Legend: 

Properties

Global Data Structures 

Local Data Structures 

Application Interface

computeResidual() 

computeJacobian() 

computeTangent() 

computeHessian() 

computeAdjoint() 

computePCE() 

computeResponse() 

… 

Nonlinear solver 

Optimization 

UQ 

Error estimation 

Stability Analysis

… 

Discretization

Cell Topology 

Mesh

MDArray

DOF Manager 

DOF Manager 

Application
component/library 

Embedded Analysis 
component/library PCE

Adjoint
Hessian 

Field Manager 

Gather (Seed) 

FE Interpolation 
Compute Derivs

Get Coordinates

Scatter (Extract) 

Source Terms

Tangent
Jacobian 

Residual

Generic Template Type
used for Compute Phase <EvalT> 

PDE Terms

Template Specializations for 
Seed and Extract phases:

Legend: 

Properties

Global Data Structures 

Local Data Structures 

Application Interface

computeResidual() 

computeJacobian() 

computeTangent() 

computeHessian() 

computeAdjoint() 

computePCE() 

computeResponse() 

… 

Nonlinear solver 

Optimization 

UQ 

Error estimation 

Stability Analysis

… 

Discretization

Cell Topology 

Mesh

MDArray

DOF Manager 

DOF Manager 


