
Design and Evaluation of FA-MPI, A Transactional
Fault-Tolerant MPI

Amin Hassani, Anthony Skjellum
University of Alabama at Birmingham

1300 University Blvd
Birmingham, AL, 35205
{ahassani,tony}@cis.uab.edu

Ron Brightwell
Sandia National Laboratories

PO Box 5800
Albuquerque, NM 87185-1319

rbbrigh@sandia.gov

Abstract—It has been predicted that the rapid growth in the
size of large scale supercomputers will increase the frequency of
failures in such systems. Advanced fault-tolerant methods have
evolved to adapt to this high rate of failures, but the behavior
of MPI, as the most common communication middleware, is
insufficient when confronting these failures. We designed FA-MPI
(Fault-Aware MPI) as a set of new extensions to the MPI standard
to allow applications to implement a wide range of fault-tolerant
methods for their applications. FA-MPI introduces transactions
to MPI for the first time, in order to address failure detection,
isolation, mitigation, and recovery via application-driven policies.
In order to reach the maximum achievable performance of these
scalable machines, overlapping communication and I/O with
computation through non-blocking operations is necessary. We
leverage non-blocking communication operations combined with
a set of lightweight transactional TryBlock API extensions that can
be nested to support multi-level failure detection and recovery.
The goal is to support fault-awareness in MPI objects and
enable applications to run to completion with higher probability
than running on a non-fault-aware MPI. Scalability and fault-
free overhead are key concerns and can be managed through
changing transaction granularity. In this paper we demonstrate
the application of FA-MPI in a simple one dimentional “Game of
Life” program. Experimental results with different rates of failure
and checkpointing are evaluated. Failure models supported by
FA-MPI include but are not limited to process failures, unlike
other proposed systems.

I. INTRODUCTION

Resilience is one of the most significant challenges facing
large-scale scientific computing. Machines continue to grow
in size to achieve higher levels of compute performance, and
without significant increases in hardware reliability, platforms
will be prone to increased rates of failures. It is unclear that ex-
isting strategies for tolerating such failures will continue to be
effective. One of the basic tenets of fault-tolerance is replica-
tion in “time” and “space.” Such strategies have evolved from
fault-tolerance in a single machine, to distributed and parallel
systems, but programming environments implementing these
approaches have largely remained unchanged. An example is
message passing middleware based on the Message Passing
Interface (MPI) [1]. MPI was initially designed to achieve
high performance in parallel systems without regard to fault-
tolerance. The MPI model assumes a reliable communication
layer in which processes are always able to communicate once
they become known. Any failure management is considered
the responsibility of the application or the underlying MPI li-
brary implementation. The MPI programming interface has no

fault-management capability or semantics. MPI does support
registration of an error handler on a per-communicator rather
than per-function basis to allow applications to recognize and
potentially respond to local errors, such as library resource
exhaustion or invalid function arguments. Many studies have
revealed the impact of fault-tolerance in MPI based on differ-
ent methodologies like checkpoint/restart [2]–[4], pessimistic
logging [5], casual logging [6], optimistic logging [7], and
algorithm based fault-tolerance [8] implemented in different
levels of the software stack. Some approaches require col-
laboration of user application while others are transparent.
However, existing environments require the engagement of
hardware and every layer of the software stack to collaborate
for failure management, and the message passing middleware
plays an important role.

Adding fault-tolerance support to the MPI Standard has
been an important topic in the past few years. The MPI
Forum’s Fault-Tolerant Working Group (FTWG) has been
developing and considering proposals that extend the MPI in-
terface and provide semantics that support fault-tolerance. Two
recent proposals are Run-Through Stabilization (RTS) [9] and,
the more recent, User-Level Failure Mitigation (ULFM) [10].

In this paper, we present a new standalone approach
for fault-tolerance in MPI called Fault-Aware MPI or FA-
MPI [11]. The goal of FA-MPI is to extend MPI minimally to
support a lightweight transactional model for fault-awareness1

in message passing middleware. FA-MPI provides the ability
to execute a series of operations, wait for them to complete,
and disseminate information about any operation failures. This
approach allows for the application to control the appropriate
granularity of transactions. FA-MPI detects operation failures
and broadcasts information about errors through faul-tolerant
collective communication functions and provides notification
of local and non-local failures to the application via request
handles and other MPI objects, such as communicators. For
recovery purposes, failures are treated like operation state that
can be queried for success. An application can choose to isolate
and mitigate failures with the help of FA-MPI by creating
smaller communicators, replacing broken communicators with
new ones, and then try to recover from the failed state. FA-
MPI does not provide any failure recovery policy or semi-
automation. The approach is similar to the BSP [12] model,

1Throughout the paper we use fault-tolerance and fault-awareness inter-
changeably, but we leverage the concept of fault-awareness as the first step
toward resilience and, ultimately, fault-tolerance.

SAND2013-9102C

where asynchrony is reached in “epochs” and barrier synchro-
nization allows the application to enter a known good state.
FA-MPI allows different rates of faults to appear in the system,
and, instead of masking failures, the application can set the
granularity of transactions to handle different failure rates.

Unlike other approaches, the goal of FA-MPI is not to
ensure the healthy state of the MPI library (active fault-
tolerance) in order to provide continuous operation. Fault-
awareness allows MPI to make the application aware of
failures, and, consequently, fault-tolerance can be achieved
through the application’s use of other approaches, including
checkpoint/restart, message logging, or ABFT. However, to
achieve this level of fault-tolerance in the application, the MPI
library itself should be resilient to faults and be able to continue
operation after certain failures and helps application to recover.

The remainder of this paper is organized as follows.
In the next section, we provide background information on
transaction-based fault tolerance. Section III describes the
design of FA-MPI, followed by several examples using FA-
MPI which are presented in Section IV. In Section V, we
present performance results that illustrate the costs of our
approach. Relevant related work is discussed in Section VI,
and we provide a summary and description of future work in
Section VII.

II. BACKGROUND

Distributed database systems [13] have used transactional
models to ensure consistency, integrity, and fault-tolerance for
several decades. The goal of a transaction is to ensure data con-
sistency in a system by allowing a mutual agreement between
all participants either to accept (commit) or reject a series of
changes in system. While in distributed database systems the
transaction commit operation ensures data consistency and in-
tegrity in saved data, from the viewpoint of a message passing
system, a transaction commit operation ensures consistency
of a “communication” and/or a “computation” operation. This
approach allows the higher-level application to perform a series
of computation and communication operations (transactions)
and ensure the successful completion of operations at trans-
action commit. In case of a failure (transaction reject), the
application can determine whether or how to recover from a
failed state. The transactional model allows applications to do
a soft retry, rollback, roll-forward, or perform a restart of the
application from a checkpoint if continuing execution is not
possible. A transactional model allows versioning to be utilized
to manage the healthy and failed states of data. Parts of internal
data structure of MPI, like communicator objects, as well as
other application data can be versioned. Versioning allows
multiple snapshots of data to exist throughout the lifetime
of the application execution. Versions of data can be kept in
ephemeral or persistent storage to allow for various approaches
to recovery, including soft retry and checkpoint/restart. The
application can discard data that has been corrupted by a failed
transaction and revert to a previous known good version.

In a non-distributed system, local failure detection and
notification are the initial steps required for fault-tolerance.
In a distributed or parallel system, error notification may need
to be communicated throughout the system. FA-MPI proposes
an approach for failure detection and remote notification inside
a TryBlock, which will be described in more detail below.

Once the application has been notified of an error, it can
take steps to try to continue operation through a recovery
procedure. For example, if a transaction fails because of
an error in the communication used in an MPI Allreduce()
operation, the communicator may still be used successfully
for an MPI Bcast() operation if, for example, the underlying
point-to-point communication pattern avoids failed links or
processes. Peer communication operations may still succeed
on a communicator with failed ranks if no communication
involving those ranks is performed. FA-MPI can help with
spawning new processes and create a communicator for the
failed ranks and continue point-to-point operations on both
communicators. This isolation and mitigation approach allows
an application to retry the TryBlock and perform only those
operations that previously failed. To retry a failed collective
operation, FA-MPI can shrink the failed communicator into
a smaller size communicator with only healthy ranks, spawn
new processes to form a new communicator, and then merge
the two new communicators to form a new, healthy commu-
nicator. FA-MPI maintains the single-assignment properties of
MPI objects (communicators, windows, and files). Repairing
a failed communicator is not our approach. Rather, a failed
communicator is replaced with a new, healthy one 2.

We consider recovery as another block of computation and
communication that can be handled in a TryBlock even in
the presence of faults. FA-MPI provides an environment for
a successful multi-level recovery. Partial soft retry, complete
soft retry, rollback, rollforward, and checkpoint/restart can be
utilized based on application’s decision and policies.

The cost of fault-tolerant approaches is an important con-
sideration. Fault-free overhead is defined as the cost of running
a fault-aware MPI application, in case of no faults, compared
to the non-fault-aware version. We expect that applications
using FA-MPI will be able to run longer on larger machines as
compare to a non-fault-tolerant version of the application. In
order to achieve resiliency, a sacrifice in performance cannot be
avoided. We allow applications to run slightly slower, but with
enough forward progress to reach the completion of execution
more quickly. This is especially important given future exas-
cale machines that may contain more lower-powered proces-
sors with higher failure rates as compared to current systems.
We allow more failures to be detected by the system, and we
use FA-MPI to manage these failures properly. FA-MPI allows
the application to control the fault-free overhead by setting
the granularity of synchronization systematically. Most of the
fault-free overhead resides in transactional operations for start-
ing and ending a transaction – specifically transaction commit,
which is a synchronization collective call. We expect that in
the failure-free case, the transaction commit performs similar
to an MPI Allreduce() operation with one integer. However,
nominal MPI operations will have minimal or no overhead in
a practical implementation. It is one of the main features of
FA-MPI where failure is not checked/diagnosed/corrected right
after each operation so minimal or no overhead is introduced
in MPI operations.

2We did not provide API extensions for isolation and mitigation of failures
in this paper.

III. FA-MPI DESIGN

In this section, we describe the design of FA-MPI at the
API level and we provide rationale for our design decisions.

A. TryBlocks

FA-MPI extends MPI with a transactional model designed
to allow a series of operations to be “tried” and then “com-
mitted” when all operations succeed, or be “rolled backward”
or “rolled forward” when some operations fail. TryBlock
operations are fundamental building blocks upon which the
FA-MPI model is based. TryBlock operations model a transac-
tion block inside which several non-blocking communication,
computation and I/O operations maybe executed.

MPI TRYBLOCK START(comm,flag,tryreq)
IN comm communicator (handle)
IN flag flag (integer)
OUT tryreq tryblock request (handle)

Each TryBlock starts with MPI TryBlock start(), which
binds a communicator to its request handle. Any communi-
cators (including the communicators associated with window
and file objects) used inside a TryBlock should be a proper
or improper subset of TryBlock’s communicator’s group. Vi-
olation of this requirement may not produce any error, but
such a choice will not guarantee a successful fault-awareness
mechanism since it will ignore ranks that are not in TryBlock’s
communicator’s group.

Application might decide that only local errors are suf-
ficient for failure recovery and no global synchronization is
necessary. To extend the flexibility of fault-tolerance mech-
anisms, application can use the “flag” argument to no-
tify the MPI implementation the need for global error dis-
semination and synchronization transparently or in trans-
actional commit. MPI TRYBLOCK GLOBAL (default) and
MPI TRYBLOCK LOCAL are defined to capture this func-
tionality.

MPI TRYBLOCK IFINISH(tryreq,tout,nreq,reqs,stats)
IN tryreq tryblock request (handle)
IN tout timeout (handle)
IN nreq number of input requests (integer)
INOUT reqs array of requests (array of handles)
OUT stats array of statuses (array of status)

A TryBlock is completed (committed) by
MPI TryBlock ifinish(). This function is a synchronizing non
blocking collective operation that broadcast failures in a fault-
tolerant allreduce/allgather over all ranks in the TryBlock’s
communicator’s group. At the end of the transaction, ranks
decide consistently to accept or reject the transaction by
examining globally returned failures. TryBlock completion
allows determination of faulty and failed objects, requests,
ranks, and failures associated with each rank. This global
knowledge allows the application to define policies to achieve
resiliency with the help of FA-MPI. The non-blocking nature
of MPI TryBlock ifinish() allows multiple TryBlocks to be
executed simultaneously and an outer TryBlock sifts out
failed and successful TryBlocks. Its request handle can be
used to be waited or tested later.

FA-MPI doesn’t restrict mechanisms used to implement
the semantics of TryBlocks. Any implementation may use a

consensus algorithm through piggybacking, gossip, collective,
a hybrid algorithm, and/or other methods for broadcasting
failure information to live ranks. Some recent publications [14]
on implementation of the consensus problem can be used
to synchronize failures in TryBlock completion. Transient
error dissemination can be achieved using gossip [15] and/or
piggybacking [16] either during TryBlocks execution or at
the commit phase. Further study is needed to reveal the
performance and reliability of transient error dissemination.

TryBlocks can be nested to support multi-level failure
detection and recovery. The nested property of TryBlocks is
required to achieve high scalability through application of data
and task parallelism for smaller communicator groups and
multiple user threads. An outer TryBlock can provide global
application progress while several nested TryBlocks inside can
run in parallel (in different user threads) or serially. The outer
TryBlock can sift out successful and failed TryBlocks and
progress the application forward or backward based on the
recovery policy.

B. Failure Detection

Some failures are undetectable, transient, expensive to be
detected, or cannot be detected at the moment of operation.
Systems with different properties might encounter various
types and degrees of faults. FA-MPI does not impose any
restriction on failure detection and any local or global failure
detector like Heartbeat [17] can be used. In addition, FA-MPI
provides an environment which different types of faults in all
layers of software and hardware stack can be detected and
managed. Applications can help with failure detection through
the concept of failure injection. FA-MPI proposes a failure
injection mechanism at the application level inside TryBlock
to allow application and the MPI implementation to collaborate
consistently to detect and notify failures and resolve them with
each other’s help. Coordination can be done by allowing both
the application and MPI library to detect and raise (inject)
errors on requests inside a TryBlock. MPI should trust this
information as it was detected by MPI itself. Raising errors
on request implies raising error on MPI objects and ranks
associated with the request.

This approach allows the application to use an ABFT
approach, such as a checksum calculation on the result of
a computation or communication, and simply notify other
ranks about the failure in TryBlock completion. An MPI
implementation can choose to detect any failure and save the
associated error state among with the rank responsible in a
data structure invisible to user. At least one portable error
code will be provided and implementations will be permitted
add additional error states specific to their system. All error
injection API functions are local.

MPI REQUEST RAISE ERROR(request,code)
IN request request with failure (handle)
IN code error code (integer)

A few error codes defined already
are MPI ERR PROCESS FAILED and
MPI ERR REQUEST FAILED. Other error codes can
be defined by implementations.

C. Failure Dissemination

In the MPI programming model usually all ranks in a col-
lective operation such as MPI Allgather() or MPI Allreduce()
need to collaborate on results and even failure of one rank
may result in incorrect data. In a parallel or distributed system
where a group of processes are involved in executing a task,
synchronization is required between the processes. So in addi-
tion to failure detection, consistent synchronization regarding
failure is important.

Failure recovery decisions should be made locally and the
result has to be consistent with all other ranks in the communi-
cator. For example, different ranks in a communicator’s group
might have different failures associated with their requests and
different recovery procedures might be needed for each type
of failure. But after failure recovery MPI state in all ranks
in a group should be consistent. This requires global error
propagation so each rank can view a consistent state of other
ranks to make a consistent decision.

Failure dissemination is a modestly heavy operation and
not applicable if it needs to be checked after each operation.
However, error states should be disseminated consistently.
Dissemination of error states to all ranks in a TryBlock’s
group will be done at the TryBlock’s finish call using a fault-
tolerant Allgatherv/Allreducev protocol [14] implemented by
a consensus agreement.The reason we call the implementation
an Allgatherv/Allreducev is because it is a combination of
Allgatherv and Allreducev. Each rank has a variable number of
locally known failures. Failures can be error codes associated
with other ranks so multiple ranks can give opinion on a
particular rank. All failure codes from all ranks should be
gathered and merged into a final list. This list will have variable
length when failure rate in the system changes. At the end this
list should be broadcasted to all ranks of the TryBlock’s group
for global knowledge of failures.

D. Failure Notification

Failures can be revealed to the user after TryBlock’s finish
call. Failure notification is a bottom-to-up approach and user
should be aware of any failure in the system that cannot
be recovered at that specific level. Querying for failure is a
mechanism for user to retrieve information about local and
global failures in the system. We intend to provide the “query
for failure functionality” for the user. Different types of failures
and associated objects can be queried.

In this experimental model, we provide simple query
functions to notify the user of any local or global failure. After
getting the list of failed requests, error state for each request
shows the type of failure associate with the request. It can
be either failure injected by user or failure in the underlying
system. The API can also enumerate failed ranks and objects.
Although this API is not finalized, our current concept offers
a good start for further investigation.

MPI GET FAILED REQUESTS(tryreq,max,count,indices)
IN tryreq tryblock’s request (handle)
IN max maximum size of array indices (handle)
OUT count number of failed requests (integer)
INOUT rank array of indices to tryblocks’s give requests

(array of integer)

MPI GET FAILED RANKS(tryreq,franks)
IN tryreq tryblock’s request (handle)
OUT franks group of failed ranks (handle)

MPI GET FAILED OBJECTS(tryreq,max,count,comms)
IN tryreq tryblock’s request (handle)
IN max maximum size of array comms (handle)
OUT count number of failed communicators (integer)
INOUT rank array of failed communicators (array of handles)

E. Timeout

In future exascale systems, operations have to be marked
eventually as complete (successful or failed) through some
timeout mechanism. Timeout is an effective mechanism to
handle exceptional behaviors, such as delay in response or
remote failure. Communication layers normally use timeout as
a mechanism for detecting failure. In order to add a fine grain
of fault-tolerance in user space, timeout should be added to se-
mantics of message passing middleware. FA-MPI uses timeout
semantics to allow application variable granularity for trying
(and failing) a transaction so user application does not require
to wait “forever.” Application can decide to wait infinitely by
setting timeout value to zero. In this case operations work
as now where there is no timeout. We propose that timeout
granularity be no coarser than MPI Wtick().

Timeout can be treated as not just an error but a warning
to the application that this operation has not finished in the
specified time. Application can decide to wait longer on
operation to finish or utilize other approaches to somehow
finish the operation.

MPI TIMEOUT SET TICKS(timeout,ticks)
INOUT timeout timeout (handle)
IN ticks time out in ticks (integer)

MPI TIMEOUT GET TICKS(timeout,ticks)
IN timeout timeout (handle)
OUT ticks time out in ticks (integer)

F. Local Completion

TryBlock completion calls need communication operation
request handles to perform error detection and notification, but
local completion functions like MPI Wait() destroy request
handles on successful return. This behavior is insufficient if
the application needs completion of a communication request
before the TryBlock’s completion call and it needs to check
the request’s failure state and notify MPI. To take advantage
of error notification to MPI implementation, request handles
should not be freed at least until the TryBlock’s completion
call.

There are two solutions for this problem. The first approach
is to define a new set of non-blocking completion APIs with
two goals in mind. This new set of APIs resembles all MPI
completion calls except that these functions do not destroy
the request handle. In addition, timeout is used in all of
these API as a means to cope with time related failures and
deadlock prevention. Request handle can always be deleted
using MPI Request free().

The reason we use request handles for TryBlock’s finish
function and not their MPI Statuses is the fact that we need to
check status of operations in progress and not just operations

that already completed. For example a timeout error allows
the application to wait more time for the operation to finish.
If a request handle were deleted, there was no oportunity for
application to wait longer for the operation to finish.

MPI WAIT LOCAL(request,status,timeout)
INOUT request communication request (handle)
OUT status status object (status)
IN timeout timeout (handle)

MPI WAITANY LOCAL(count,requests,index,status,timeout)
IN count list length (non-negative integer)
INOUT requests array of requests (array of handles)
OUT index operation that completed (integer)
OUT status status object (status)
IN timeout timeout (handle)

MPI WAITALL LOCAL(count,requests,statuses,timeout)
IN count list length (non-negative integer)
INOUT requests array of requests (array of handles)
OUT statuses array of status objects (array of status)
IN timeout timeout (handle)

MPI WAITSOME LOCAL(incount,requests,outcount,indices,
statuses,timeout)

IN incount requests’ list length (non-negative integer)
INOUT requests array of requests (array of handles)
OUT outcount number of completed requests (integer)
OUT indices completed operations indices (array of integer)
OUT statuses array of completed statuses (array of status)
IN timeout timeout (handle)

The second approach is simpler with fewer API calls, but
requires changes in semantics of current MPI completion calls.
In this approach, completion calls will free request handle after
successful return as normal, but this approach still lacks the
timeout semantics needed for failure detection. To solve this
problem timeout can be attached to the request using the API
below. Any completion call can return with MPI TIMEOUT
failure if timeout happens.

MPI REQUEST TIMEOUT SET(request,timeout)
INOUT request request (handle)
IN timeout timeout value (handle)

G. Non-Blocking Communication

The path toward exascale and the need for scalable and
dependable applications and libraries motivates the use of non-
blocking communication calls in message passing systems to
achieve higher performance through overlapping computation,
communication, and I/O. Non-blocking semantics can be used
to help achieve fault-tolerance in MPI applications. As an
example, a communication operation should not hang because
of a failure in a remote rank. MPI blocking communication
operations halt in case of remote failure and a more critical
problem with blocking operations is untraceability of the
status of operation. As a programming model any resource
or reference to a blocking operations is freed after returning
from call. This means that there is no mechanism to track
what happened in the operation except than an error code
on return. However, returning from a blocking operation like
MPI Send() only guarantees that the data buffer can be used
and there is no guarantee of data transfer to remote node
neither any local failure notification. In other hand a non-
blocking call uses a request handle and in concept of fault-
tolerance this request handle can be used to save different

error states at different stages of operation. This motivates FA-
MPI to support only non-blocking communication calls and
to ignore legacy blocking APIs. Non-Blocking operations are
the most important part elaborated in FA-MPI mechanism. It
is the basic idea behind how an MPI implementation and a
user can collaborate for fault-tolerant and, specifically, fault-
detection. Local errors can be found in a request completion
function and global errors can be revealed at the transaction
commit. Although non-communicating blocking operations
like MPI Comm rank() is supported. We expect that tools will
be developed to enhance applications with blocking operations
automatically or semi-automatically to conform with FA-MPI’s
transactional fault tolerance capabilities.

H. One-Sided Semantics

One-sided semantics is provided in the MPI standard
(since MPI-2) to allow applications to utilize the low
latency and high bandwidth capability of RMA engines
for remote memory operations. MPI has both blocking
(MPI Put(), MPI Get(), and MPI Accumulate()) and non-
blocking (MPI Rput(), MPI Rget(), and MPI Raccumulate())
one-sided data transfer operations and we only emphasize on
non-blocking API. However, a real problem arises in target
synchronization of one-sided semantics. MPI has “active”
and “passive” forms of target synchronization. Active target
synchronization requires both points of communication to
be involved in the synchronization “epoch” while passive
synchronization requires only the initiator be involved in
synchronization explicitly. MPI does not specify any restriction
on when data transfer should start inside a synchronization
epoch. Implementations may decide to start data transfer at
the end of synchronization. In addition, all synchronization
calls are blocking and this violates the fundamental aspects
of transactional fault-tolerance because there is no mechanism
to track the failure state operations through synchronization
functions. In other words, success or failure of synchronization
functions should be a part of the failure detection mechanism
of FA-MPI, but there is no non-blocking target synchronization
API. In future we expect to provide solutions to this problem
by either introducing non-blocking target synchronization API
or proposing an alternative programming models in FA-MPI
using only current versions of one-sided semantics.

I. Files and I/O

Transactional properties of FA-MPI allows I/O operations
and files to behave as transactional activities. TryBlocks sup-
port files and local and global I/O failures can be reported to
user. Many scenarios of I/O faults can be handled using Try-
Block. TryBlocks allow full or partial recovery, for instance,
in a TryBlock all reads on a file might succeed, but subsequent
writes may fail and application can recover/retry the writes on
file, or rendering collective I/O maybe invalid while point-to-
point I/O still works. Users can employ a copy of a file portion
for rollback purposes. Parallel file I/O systems that support
shallow copy and copy-on-write semantics could also help
support less than complete rollback I/O work. Applications
can take advantage of a transactional distributed file system
to perform multi-levels checkpointing and recovery. An error
code validating that the underlying I/O subsystem cannot
continue operating is provided.

IV. APPLICATION EXAMPLES

Many execution models of computation derived from
communication topology and parallel programming semantics
can be modeled using FA-MPI to apply fault-tolerance for
successful execution. We show simple examples for master-
worker and data parallel models. Pseudocode for a master and
worker application is shown in Algorithm 1 and 2 respectively.
The master can spawn jobs to workers using non-blocking Try-
Blocks and handle each worker’s failure individually without
the need for global synchronization over all ranks. Workers
receive a job from Master, compute it and return the results
back to the Master in non blocking calls. All this will happen
inside a TryBlock for error synchronization.

Algorithm 1: A Master application
communication initialization;
create a communicator for each worker;
for i from 1 to number of workers do

MPI TryBlock start(comm[i],global,reqs[i]);
create jobs[i];
non-blocking send jobs[i];
non-blocking receive results;
MPI TryBlock ifinish(reqs[i]);

end
while more work to do and still have workers do

MPI Waitany local(req,idx);
if error occured in tryblock[idx] then

do recovery;
recover jobs[idx];
MPI TryBlock start(comm[idx],global,reqs[idx]);
non-blocking send jobs[idx];
non-blocking receive results;
MPI TryBlock ifinish(reqs[idx]);

else
free reqs[idx];
MPI TryBlock start(comm[idx],global,reqs[idx]);
create new jobs[idx];
non-blocking send jobs[idx];
non-blocking receive results;
MPI TryBlock ifinish(reqs[idx]);

end
end

Algorithm 2: A Worker application
initialization;
create a communicator with master;
while more work to do do

MPI TryBlock start(comm,global,req);
non-blocking receive job;
if not more work to do then goto finish compute results;
non-blocking send results;
finish: MPI TryBlock finish(req);
if failed then

do recovery;
goto start;

end
end

In data parallel models of computation, usually a hierarchy
of communicators exists. An example is a 2D grid of communi-
cators for matrix computation, row and column communicators
plus MPI COMM WORLD, which is the global communica-

tor. Processes in each row or column communicator can apply
fault-awareness individually in transactional blocks without
enquiring any failure knowledge about other communicators.
An outer TryBlock can synchronize failure of all ranks in
MPI COMM WORLD for a proper checkpoint of the process
state. Algorithm 3 shows how a data parallel program can
utilize TryBlock on one communicator.

Algorithm 3: A data-parallel application
communication initialization;
if restarted then

load data from last checkpoint (optional);
end
repeat

while more work to do do
MPI TryBlock start(comm,global,req);
computation, communication and/or I/O;
wait for operations to finish;
inject local errors;
MPI TryBlock ifinish();
MPI Wait local(req, status, timeout);
if failure happened then

isolate and mitigate the failure;
if recovery needed then break;

end
periodically checkpoint;

end
if recovery needed then

do recovery procedure;
end

until more work to do or restart needed;

Applications can utilize the TryBlock’s communicator to
form a fault-tolerance solution only in the group of ranks in
the communicator. This allows fine grained fault-management
by allowing two or more group of ranks to execute individually
and apply fault-tolerance distinctively. Although synchroniza-
tion between communicators is needed periodically for peri-
odic checkpoints. Figure 1 depicts how multiple communica-
tors can progress in case of failure. Individual communicators
can deal with faults disregarding other communicators and
multiple communicators can synchronize through a bigger
communicator. In order to achieve higher scalability we recom-
mend using global communicators like MPI COMM WORLD
as few as possible.

V. EXPERIMENTAL RESULTS

In this section we describe how to use FA-MPI in a
simple application and how it can be configured to achieve
the maximum resiliency and performance at the same time.

A. Game of Life

Conway’s “Game of Life” [18] is an inherently data parallel
program and is a good educational example used in the
HPC community to demonstrate various research results. This
program uses a two dimentional matrix of cells. Each cell
has two states, either dead or alive. At each evolution of the
program, state of a cell is computed base on states of its
eight neighbor cells. This property makes decomposing of this
evolution like algorithm into a set of localized problems. For
simplicity we chose a one dimentional row decomposition of

MPI_COMM_WORLD

Communicator A Communicator B

MPI_TryBlock_finish

Fault

MPI_TryBlock_finish
à (retry)

Fault
MPI_TryBlock_finish

à (retry)

MPI_TryBlock_finish
à (Checkpoint)

MPI_TryBlock_finish

MPI_TryBlock_finish

MPI_TryBlock_finish

MPI_TryBlock_finish

MPI_TryBlock_finish

Fig. 1. Multiple communicators progress in case of failure

the program so at each evolution a rank will send and recieve
buffers to and from its two neighbors (except first and last
ranks which have only one neighbor). In these experiments
we used the Game of Life program as an example of how
transactional concepts of FA-MPI can be applied to a data-
parallel application. A matrix of size 4800 by 4800 cells and
a maximum of 5000 evolutions is used for the experiments.
We decided to have more proof of concept experiments rather
than heavy optimizations. Algorithm 4 simply demostrates
how we applied TryBlocks and failure injection into Game
of Life program. “TryBlock step” is defined as how often
TryBlock operations are executed during multiple evolutions
of the program. A TryBlock step of n shows that TryBlock is
executed every nth evolution of the program.

B. System Specification

We used a cluster of 4 nodes with specifications in Table I
for experiments. We tried to utilize the total resources available
in the system. We implemented FA-MPI as a separate plugin
module for OpenMPI 1.7. Tests use the openib BTL (byte
transfer layer) and SM (shared memory) layers of OpenMPI.
For simplicity, we used a basic system for checkpoint restart
by writing and reading directly into local files on each node’s

Algorithm 4: Fault-Tolerant Game of Life with TryBlock
support

communication initialization;
read local matrix of game of life;
TryBlock step← n;
repeat

while not finished do
if evolution mod TryBlock step equals 0 then

MPI TryBlock start();
end
compute current generation;
communicate border cells with neighbors;
exponentially inject local errors;
if evolution mod TryBlock step == 0 then

MPI TryBlock finish();
if no failure then

read the last checkpoint into local buffers;
else

checkpoint;
end

end
end

until more work to do or restart needed;

TABLE I. EXPERIMENT SYSTEM SPECIFICATION

CPU Intel Xeon E5-2620 @2.00GHz
CPU per Node 2

Total Nodes 4
Total Cores 48

Total Threads 96
Memory 132 GB

Network (InfiniBand) Mellanox MT27500 ConnectX-3
Storage Raid5

local storage device. Each node is configured with a software
raid5.

C. TryBlock Evaluation

We implmented MPI TryBlock ifinish() using a fault-
tolerant Allgatherv/Allreducev algorithm. We have a linear
implementation for MPI TryBlock ifinish(), but a log and tree
based algorithm will have better performance and will scale
better1. Figure 2 shows the fault-free overhead of TryBlock by
increase in the number of ranks in communicator’s group. Re-
sults in Figure 2 indicate linear increase in the execution time
of TryBlock, but it is only due to the linear implementation of
the TryBlock.

D. Failure Model

For each individual rank we assume an exponential failure
rate with failure density function:

f(t) = λe−λt,

1For these experiments, our tree based algorithm which has logarithmic
performance based on [14] was not ready. We have high confidence that results
with log based algorithm and a state of the art checkpoint system will be ready
by the time of camera ready submission of this paper.

0	

50	

100	

150	

200	

250	

300	

350	

400	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

Ti
m
e	

(
 m

ic
ro
se
co
nd

s)
	

TryBlock's	
 Communicator	
 Size	

TryBlock	
 Execu8on	
 Time	

Fig. 2. Performance of TryBlock with linear implementation in fault-free
case.

TABLE II. EFFECT OF FAILURE RATE ON PERFORMANCE OF
TRYBLOCK. THE EXECUTION TIME IS ASSOCIATED WITH A LOOP OF

20000 CALL TO TRYBLOCK FUNCTIONS.

Node MTTF Total Failures Execution Time (secs)
100 0 13.92

2 74 9.94
1 154 11.29

0.1 883 12.56
0.01 5654 10.31
0.002 15914 10.57

and exponential failure distribution:

F (t) = 1− e−λt.

Where F (t) is the probability that a rank fails at a time in the
next t seconds. mean time to failure is define as:

MTTF = 1/λ

Exponential failure rate is memoryless. In other words time
to the next failure is independent of the time of past failures.
This model is used to describe the failure rate of many systems.
In the remainder of the paper any reference to MTTF means
MTTF of one rank or process.

We tried experimenting with different MTTFs for a loop
of 20000 times calling TryBlock’s start and finish functions.
Table II shows the effects of failure rate on the performance
of TryBlock. Instead of examining only process failures, we
raised errors in the program with rate F (t) at each rank. A
failure is raised by MPI Request raise error() on the Try-
Block’s request with MPI ERR TRYBLOCK INVALIDATE
errorcode. As results indicate, failure rate does not affect the
performance of TryBlock. This can be caused by the fact that
TryBlock implementation is not optimized yet.

In order to show the effects of executing TryBlock followed
by a checkpoint, we decreased the TryBlock step and we

0	

10	

20	

30	

40	

50	

60	

70	

0	
 5	
 10	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	

Ti
m
e	

(s
ec
on

ds
)	

TryBlock	
 Steps	

Program	
 TryBlock	
 Checkpoint	
 Total	
 Execu@on	
 Baseline	

Fig. 3. Effects of the decrease in the TryBlock steps while keeping number
of game’s evolution constant. 48 Ranks is used for this experiment.

60	

70	

80	

90	

100	

110	

120	

130	

0	
 5	
 10	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	

Ex
ec
u&

on
	
 T
im

e	

(s
ec
on

ds
)	

TryBlock	
 Steps	

100	

20	

10	

2	

1	

0.2	

Fig. 4. Effect of different TryBlock steps for systems with different failure
rates. MTTF is based on seconds

assumed no failures occur during execution. This resulted
in increase in total application execution time as expected.
Overal time spend on checkpointing also increased because
more checkpoints are repeated more often. Figure 3 shows the
results with breakdown of each segment of application.

For the following experiments with failures we did not
include failures happening during initialization/finalization and
checkpoint/restart phase, Although each one of these sections
of program can be protected by TryBlocks and be recovered
upon any failure. As we defined earlier even checkpoint/restart
recovery is a normal procedure that can be covered by Try-
Blocks and repeated untill successful or unable to continue
anymore.

Figure 4 depicts how systems with different failure rates re-
act to different granularity of TryBlocks. For example a system
with MTTF of 10 seconds have the optimal performance when

TryBlock is performed every four steps of application loop.
Systems with low MTTF will suffer from higher TryBlock
steps. In other words systems with high failure rates need to
be controlled with higher TryBlock constraints. The reason
that execution time increases with higher TryBlock steps is
a result of the need of more repetition of failed evolutions
after a failure happens and the application is restarted from
checkpoint.

VI. RELATED WORK

User-level failure mitigation (ULFM) [10] is a proposal for
a fault-tolerant MPI designed by MPI Forum’s fault-tolerance
working group (FTWG) and is currently under development.
The goal of ULFM is to add fault-tolerant support for MPI
to allow implementation of a wide range of fault-tolerant
techniques on top of ULFM. It adds a minimal set of API
extensions to MPI and is more suitable for libraries provid-
ing fault-tolerance rather than user applications. In ULFM’s
semantics, when an MPI operation fails because of process
failure, the user can acknowledge the failure and get the
group of locally known failed ranks. Revoking a communicator
provides global error propagation and prevents deadlock in
blocking point-to-point and collective functions.

Since ULFM encourages libraries to implement comple-
mentary fault-tolerant semantics on top of it and it appears
logical that we design FA-MPI using ULFM. However, this
approach proved difficult because of fundamental difference in
how two approaches handle failures. ULFM explicitly supports
only process failures and other transient failures are masked
to process failure. Although this approach resembles more
portability, it restricts application resiliency and scalability by
limiting ULFM’s capability to make a wider range of recovery
policies for different failure models. However, FA-MPI allows
more failure types like fail-stop, crash, omission, timing and
incorrect computation [19] to be detected, isolated, mitigated
and recovered at both the user and MPI level. For example,
applications can take advantage of low latency in unreliable
network protocols like UDP and handle checksum recovery at
application level and decrease jitter in the system. Omission
and timing failures can be handled coarse grained and explic-
itly by using timeout in the application. Byzantine failures is
not support by either proposal. Timeout is another aspect of
difficulty implementing FA-MPI using ULFM because of lack
of timeout semantics in MPI functions.

Agreement function in ULFM provides a means for global
per communicator agreement on a value and transparent global
failure propagation. MPI TryBlock finish() needs a special
version of fault-tolerant allgatherv and it can be implemented
using a non-fault-tolerant allgatherv followed by ULFM’s
agreement in a retry loop to cover failures happen during
the commit. But this approach introduces a high overhead of
(allgathervt+allreducet)∗retries which is not efficient. As
we insist on lightweight transactions, a fault-tolerant allgatherv
using consensus protocol can solve the problem with much
lower overhead.

As mentioned earlier, MPI was not designed with fault-
tolerance in mind. So trying to add fault-tolerance function-
ality for entire API of MPI seems overwhelming. FA-MPI
proposes adding fault-tolerance support for only non-blocking

communication operations as future system have to use non-
blocking semantics to increase scalability and performance by
overlapping computation, communication, and I/O.

In ULFM’s design, failure propagation is infused with
failure recovery by MPI Comm revoke(). Revoke is a failure
propagation mechanism and if a process detects a failure, it can
revoke the communicator. Revoking a communicator causes
associated communicators of all ranks in the communicator’s
group, skipping failed ranks, become invalid permanently for
future operations. While this approach might seem reasonable,
it restricts the ability of the user to make separate decisions
for failure detection and failure recovery. Also, it disables
operations like point-to-point which could be finished success-
fully. Revoke makes decision globally without having global
knowledge of the system, However, FA-MPI decides locally
and globally based on global knowledge of failures. Except
for blocking operations, FA-MPI can be reduced to ULFM by
having a TryBlock with local error propagation surrounding
each operation. the shrink operation in ULFM creates a new
communicator containing only healthy ranks. This can help
FA-MPI for recovery purposes but a communicator needs to
be revoked before shrinking.

VII. CONCLUSION AND FUTURE WORK

FA-MPI is a set of extension APIs for MPI standard to
allow achieving fault-awareness using a transactional model.
FA-MPI detects, disseminates, and notifies failures and helps
the user with isolation, mitigation, and recovery procedures.
We expect applications using FA-MPI to run to completion
with higher probability than the non-fault-aware versions. In
the design of FA-MPI we emphasize the use of lightweight
transactions combined with non-blocking operations to achieve
a high-level of scalability and resilience in future and current
large-scale systems. Non-blocking communication is the most
important aspect of message passing middleware that we
support. We implemented the system and showed performance
results with different rates of failures for different problem
sizes. This paper showed how granularity of TryBlocks can be
configured to address both resiliency and performance of the
program. The proposed API here is designed as preliminary
work and is subject to further modifications and enhancements
in the future. Further enhancement of the MPI Status structure
is needed to cover extensive support for different failure
models. More discussion is needed to target FA-MPI’s support
of one-sided semantics because MPI lacks the semantics of
non-blocking target synchronization at the present. Also not
all collective operations in MPI-3 have non-blocking forms.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under grant CCF-1239962 and Sandia National
Laboratories under grant PO-1330625. Sandia National Labo-
ratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lock-
heed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-
AC04-94AL85000.

REFERENCES

[1] Message Passing Interface Forum, “MPI: a message passing interface
standard version 3.0,” Tech. Rep., Sep. 2012.

[2] G. Stellner, “CoCheck: checkpointing and process migration for MPI,”
in Parallel Processing Symposium, 1996., Proceedings of IPPS ’96, The
10th International, 1996, pp. 526–531, cited by 0443.

[3] A. Agbaria and R. Friedman, “Starfish: Fault-tolerant dynamic MPI
programs on clusters of workstations,” in HPDC, 1999.

[4] S. Sankaran, J. M. Squyres, B. Barrett, and A. Lumsdaine, “The
LAM/MPI checkpoint/restart framework: System-initiated checkpoint-
ing,” in in Proceedings, LACSI Symposium, Sante Fe, 2003, p. 479493.

[5] R. Batchu, Y. S. Dandass, A. Skjellum, and M. Beddhu,
“MPI/FT: a model-based approach to low-overhead fault tolerant
message-passing middleware,” Cluster Computing, vol. 7, no. 4,
p. 303315, Oct. 2004, cited by 0034. [Online]. Available:
http://dx.doi.org/10.1023/B:CLUS.0000039491.64560.8a

[6] E. Elnozahy and W. Zwaenepoel, “Manetho: transparent roll back-
recovery with low overhead, limited rollback, and fast output commit,”
IEEE Transactions on Computers, vol. 41, no. 5, pp. 526–531, 1992,
cited by 0353.

[7] S. Rao, L. Alvisi, H. M. Viny, and D. C. Sciences, “Egida: An extensible
toolkit for low-overhead fault-tolerance,” in In Symposium on Fault-
Tolerant Computing. Press, 1999, p. 4855, cited by 0097.

[8] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Trans. Comput., vol. 33, no. 6, p. 518528, Jun.
1984. [Online]. Available: http://dx.doi.org/10.1109/TC.1984.1676475

[9] J. Hursey, R. L. Graham, G. Bronevetsky, D. Buntinas, H. Pritchard,
and D. G. Solt, “Run-through stabilization: An MPI proposal for process
fault tolerance,” in Recent Advances in the Message Passing Interface.
Springer, 2011, pp. 329–332.

[10] W. Bland, “User level failure mitigation in MPI,” in Euro-Par 2012:
Parallel Processing Workshops, 2013, pp. 499–504.

[11] A. Skjellum and P. V. Bangalore, “FA-MPI: fault-aware MPI specifica-
tion and concept of operations,” University of Alabama at Birmingham,
Tech. Rep. UABCIS-TR-2012-011912, May 2012.

[12] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990.

[13] P. A. Bernstein and N. Goodman, “Concurrency control in
distributed database systems,” ACM Comput. Surv., vol. 13,
no. 2, p. 185221, Jun. 1981, cited by 1091. [Online]. Available:
http://doi.acm.org/10.1145/356842.356846

[14] J. Hursey, T. Naughton, G. Vallee, and R. L. Graham, “A log-scaling
fault tolerant agreement algorithm for a fault tolerant MPI,” in EuroMPI,
2011, pp. 255–263.

[15] R. van Renesse, Y. Minsky, and M. Hayden, “A gossip-style failure
detection service,” in Proceedings of the IFIP International Conference
on Distributed Systems Platforms and Open Distributed Processing, ser.
Middleware ’98. London, UK, UK: Springer-Verlag, 1998, pp. 55–70.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1659232.1659238

[16] W. Jia and W. Zhao, “Fault-tolerant scaleable multicast algorithm with
piggybacking approach on logical process ring,” Computers and Digital
Techniques, IEE Proceedings -, vol. 145, no. 4, pp. 292–300, 1998.

[17] M. K. Aguilera, W. Chen, and S. Toueg, “Heartbeat: A timeout-
free failure detector for quiescent reliable communication,” in
Distributed Algorithms. Springer, 1997, p. 126140. [Online].
Available: http://link.springer.com/chapter/10.1007/BFb0030680

[18] M. Gardner, MATHEMATICAL GAMES The fantastic combinations
of John Conway’s new solitaire game ”life”. New York: Scientific
American, Oct. 1970.

[19] M. Barborak, A. Dahbura, and M. Malek, “The consensus
problem in fault-tolerant computing,” ACM Comput. Surv.,
vol. 25, no. 2, p. 171220, Jun. 1993. [Online]. Available:
http://doi.acm.org/10.1145/152610.152612

