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Outline

ALD for ReRAM
Resistive switching of PEALD-AIN

Summary




ALD for ReRAM



Surging needs for high density memory

Paradigm shift: compute-centric - data-centric era

Devices 5.6M disk 21M disk
Space 26,292 ft2 98,568 ft2
Power 25 MW 93 MW

Storage system 2020 for server computer

Ever increasing demand for high density memory!
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R. F. Freitas and W. W. Wilcke, IBM J. Res. Dev. 52, 439 (2008) @



Strong candidate: ReRAM

A Resistive Random Access Memory (ReRAM)

 Materials: Metal oxides,

+V set +V reset

Chalcogenides

« Switching:
* Low R <> High R

 Emerging technology

Connect RN Disconnect
(LCZ‘;",,R) (H'f’orl R) - High potential, but unclear

R. Waser et al. Adv. Mater. 21, 2632 (2009)
K. M. Kim et al. Nanotechnology 22, 254002 (2011)



ALD for ReRAM

1 ALD enabled crossbar-type ReRAM

. Switching materials in 3-D structure,

materials engineering (alloying, multiple layers, etc
Electrode : Conducting nitride and oxide electrode

: Tunnel barrier as a selector device,

switching interface control

N —

J. Choi et al. J. Appl. Phys. 98, 033715 (2005)

M. Kim et al. Electrochem. Solid-State Lett. 9, G343 (2006)
L

K

ee et al. ACS Nano 6, 8166 (2012) @
. Kim et al. Appl. Phys. Lett. 102, 082903 (2013)
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Materials selection: TIN/AIN
Why TiN/AIN?

Fab preferred materials

Process Simple ALD process available

Phase stability

Device High durability expected

Analogue to oxide switching
N ion movement?

Mechanism

. B. J. Choi et al. Appl. Phys. A, 109, 1 (2012) (invited paper) @




Outline

Resistive switching of PEALD-AIN

- ALD process and device performance



5 PEALD process: AIN switching materials
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» Growth temperature: 150 — 400 °C (350 °C preferred)

» Source: TMA, N,+H, or NH; w/ remote plasma (400W)

os B. J. Choi et al. Appl. Phys. A, 109, 1 (2012) (invited paper) @
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PEALD process: Film composition
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B. J. Choi et al. Appl. Phys. A, 109, 1 (2012) (invited paper)

7



1

B Device performance: Reproducibility

|

100 consecutive cycles
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* First switching in nitride materials

 Compliance current (l.,,,) defines device resistance and
I
OFF

e B. J. Choi et al. Appl. Phys. A, 109, 1 (2012) (invited paper) @



B Device performance: Ultra-fast switching

Transmission line Device Real-‘“me m0n|tor|ng
7 read T Write (OFFyead -
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< I
£ K \
c -2r o
g-4r ] Switched OFF
— m — §_6_ :‘ ,," (decreased current)
¥ By 5 e 15 20
* 100ps switching speed
* Nonlinear switching dynamics = lonic switching mechanism
B. J. Choi et al. “Sub-100ps ultra-fast and energy- QD
. g . . : /
e conservative nitride memristors”, to be submitted



% Device performance: Scalability and energy

_—
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* Nano-device (50nm x 50nm) with crossbar structure
* Low energy device; lower than oxides device
B. J. Choi et al. “Sub-100ps ultra-fast and energy- @
e conservative nitride memristors”, to be submitted



Outline

Resistive switching of PEALD-AIN
- Switching mechanism

Summary




Mechanism: Analogous to oxide

a8
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Inert interface favorable!
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Yang et al. Appl. Phys. Lett. 97, 232102 (2010) @
Miao et al. Adv. Mater. 23, 5633 (2012)



Mechanism: Localized channels

Various evidences

a8
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Strachan et al. Adv. Mater. 22, 3573 (2010) @
e Miao et al. Adv. Mater. 23, 5633 (2012)



a8

Mechanism: Al(N) channels

e —— LR D

« Strongly localized heating

« Formation of N-deficient AI(N) - Localized channel

Al 15@3 |
AIN 6nm" - ZN

1718

B. J. Choi et al. “Sub-100ps ultra-fast and energy-
conservative nitride memristors”, to be submitted




Summary

« AIN grown by PEALD

Process * Low impurity level

* Reproducible switching

Device @ High speed and low energy

* Analogue to oxide switching
« AI(N) channel formed

Mechanism
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Resistive switching materials
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Full - nitride memristor
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TiN/AIN structure

1) TiN: fab preferred material
2) AIN and TiN: thermodynamic equilibrium between AIN and TiN
3) TiN: a large solubility of N = perfect electrode (serving as N reservoir)

4) AIN: only two stable solid phases = perfect switching material (a conducting phase + an
insulting phase, same as Ta-0) QD
/
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AIN film structure
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« XRD amorphous matrix

* Fine nano-crystalline (hexagonal AIN) phases
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Application (1); alloying materials by ALD

AlIxMyN
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* Ternary nitride memristors implemented

» Low forming voltage and uniform switching
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Application (2); tunnel barrier by ALD

Stacking of tunneling barrier and switching materials
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Yang et al. Appl. Phys. Lett. 100, 113501 (2012)
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Switchable interface?

Switching mechanism: Switching polarity

Current (A)

-0.8 -04 0.0 04

Voltage (V)

-08 -04 00 04
Voltage (V)

Questions:
Another oxide switch
or real nitride switch?!

- 1 1 1 |
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Mechanism: Anatomy of conducting channel

EDS analysis

(vacuum)
Pt 30nm

Pt
Al

Pt

formed region
» Effort for e|UCidating 778 30 nm

HAADF MAG: 450000 x HV: 200.0 kV WD: -1.0 mm

conducting filament

B. J. Choi et al. “Sub-100ps ultra-fast and energy- @
2rne conservative nitride memristors”, to be submitted
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» The switching interface (Pt/AIN) remains O-free!

» Chemical changes? (Al(N) channel?)

» Strong heat
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