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ALD for ReRAM

Resistive switching of PEALD-AlN    

Summary
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Summary
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Surging needs for high density memorySurging needs for high density memory

Compute-centric Data-centric

Devices 5.6M disk 21M disk

Space 26,292 ft2 98,568 ft2

Power 25 MW 93 MW

Storage system 2020 for server computerStorage system 2020 for server computer

R. F. Freitas and W. W. Wilcke, IBM J. Res. Dev. 52, 439 (2008)

Paradigm shift: compute-centric  data-centric era

Ever increasing demand for high density memory!
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R. Waser et al. Adv. Mater. 21, 2632 (2009)
K. M. Kim et al. Nanotechnology 22, 254002 (2011)

• Materials: Metal oxides,  

Chalcogenides

• Switching: 

Low R  High R

• Emerging technology

• High potential, but unclear

 Resistive Random Access Memory (ReRAM)

Connect
(Low R)

“1”

Disconnect
(High R)

“0”

Strong candidate: ReRAMStrong candidate: ReRAM
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ALD for ReRAMALD for ReRAM

B. J. Choi et al. J. Appl. Phys. 98, 033715 (2005)
K. M. Kim et al. Electrochem. Solid-State Lett. 9, G343 (2006)
W. Lee et al. ACS Nano 6, 8166 (2012)
S. K. Kim et al. Appl. Phys. Lett. 102, 082903 (2013)

 ALD enabled crossbar-type ReRAM

Switching

Electrode

Functional

: Switching materials in 3-D structure, 
materials engineering (alloying, multiple layers, etc)

: Conducting nitride and oxide electrode

: Tunnel barrier as a selector device,
switching interface control
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Materials selection: TiN/AlNMaterials selection: TiN/AlN

Why TiN/AlN?

B. J. Choi et al. Appl. Phys. A, 109, 1 (2012) (invited paper)

• Fab preferred materials
• Simple ALD process available
• Fab preferred materials
• Simple ALD process availableProcessProcess

• Phase stability 
• High durability expected
• Phase stability 
• High durability expectedDeviceDevice

• Analogue to oxide switching 
• N ion movement?
• Analogue to oxide switching 
• N ion movement?MechanismMechanism
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ALD for ReRAM

Resistive switching of PEALD-AlN

- ALD process and device performance    

Summary
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GR = 0.065nm/cy. 

PEALD process: AlN switching materialsPEALD process: AlN switching materials

• Growth temperature: 150 – 400 oC (350 oC preferred)

• Source: TMA, N2+H2 or NH3 w/ remote plasma (400W)
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B. J. Choi et al. Appl. Phys. A, 109, 1 (2012) (invited paper)
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PEALD process: Film compositionPEALD process: Film composition

• N-rich AlN with negligible impurities 

• Uniform depth profiles with O < 1%  

RBS SIMS
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B. J. Choi et al. Appl. Phys. A, 109, 1 (2012) (invited paper)
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Device performance: ReproducibilityDevice performance: Reproducibility

• First switching in nitride materials 

• Compliance current (Icomp) defines device resistance and 
IOFF

100 consecutive cycles

EF

B. J. Choi et al. Appl. Phys. A, 109, 1 (2012) (invited paper)
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• 100ps switching speed

• Nonlinear switching dynamics  Ionic switching mechanism

Device performance: UltraDevice performance: Ultra--fast switchingfast switching

B. J. Choi et al. “Sub-100ps ultra-fast and energy-
conservative nitride memristors”, to be submitted

BETE

Transmission line

Transmission line

Device

(b)

read readWrite (OFF)

85ps

(a)

Switched OFF
(decreased current)

Real-time monitoring



13/18

Device performance: Scalability and energyDevice performance: Scalability and energy
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• Nano-device (50nm x 50nm) with crossbar structure

• Low energy device; lower than oxides device

B. J. Choi et al. “Sub-100ps ultra-fast and energy-
conservative nitride memristors”, to be submitted
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ALD for RRAM

Resistive switching of PEALD-AlN    

- Switching mechanism

Summary
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Mechanism: Analogous to oxideMechanism: Analogous to oxide
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Yang et al. Appl. Phys. Lett. 97, 232102 (2010)
Miao et al. Adv. Mater. 23, 5633 (2012)
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Strachan et al. Adv. Mater. 22, 3573 (2010)
Miao et al. Adv. Mater. 23, 5633 (2012)
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Mechanism: Al(N) channelsMechanism: Al(N) channels

Pt

Pt

AlN

• Strongly localized heating

• Formation of N-deficient Al(N)  Localized channel

B. J. Choi et al. “Sub-100ps ultra-fast and energy-
conservative nitride memristors”, to be submitted

Pt 30nm

-V: off

Al 15nm

AlN 6nm N-

Pt 30nm

Al
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SummarySummary

• AlN grown by PEALD
• Low impurity level
• AlN grown by PEALD
• Low impurity level

ProcessProcess

• Reproducible switching
• High speed and low energy
• Reproducible switching
• High speed and low energy

DeviceDevice

• Analogue to oxide switching 
• Al(N) channel formed
• Analogue to oxide switching 
• Al(N) channel formed

MechanismMechanism
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Resistive switching materials

Ag2S
Ag

Pt

Jo & Lu, Nano Lett. 8, 392 (2008)Waser et al. Adv. Mat. 21, 2632 (2009)Terabe et al. Nature 433,47 
(2005)

Ag/Ag2S

Ag/GeSe

Ag/a-Si

Kwon et al. Nature Nanotechnol. 
5, 148 (2010)

Lee et al. Nature Mater.
10, 625 (2011)

Chen et al. ‘2012 IEDM

Ti4O7

TiO2

Ta2O5-x

HfO2
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Full - nitride memristor

TiNAlN

TiN/AlN structure

1) TiN: fab preferred material

2) AlN and TiN: thermodynamic equilibrium between AlN and TiN

3) TiN: a large solubility of N  perfect electrode (serving as N reservoir)

4) AlN: only two stable solid phases perfect switching material (a conducting phase + an 
insulting phase,  same as Ta-O)



23/18

20 30 40 50 60

In
te

n
si

ty
 (

a
.u

.)

2 (degree)

h
c
p

 (
1

0
1

)
P

t 
(1

1
1

)

h
c
p

 (
1

0
2

)

AlN 
on SiO2

on Si

on Pt

Pt blanket

S
i

• XRD amorphous matrix

• Fine nano-crystalline (hexagonal AlN) phases

5nm

1/2nm

{100}
{002}
{101}
{102}
{110}
{103}
hcp (AlN)

fcc (Pt)
{222}
{311}
{220}
{200}
{111}

5nm

AlN on Pt

AlN

plan-view TEM

AlN film structureAlN film structure



24/18

AlxMyN

Application (1); alloying materials by ALD

• Ternary nitride memristors implemented

• Low forming voltage and uniform switching

SiO2

ALD-TiN
Pt 50nm

ALD-AlxMyN

TiN/Pt 100µm
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Stacking of tunneling barrier and switching materials

Application (2); tunnel barrier by ALD
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Switchable interface?

Switching mechanism: Switching polarity
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Mechanism: Anatomy of conducting channelMechanism: Anatomy of conducting channel

Pt 30nm

Pt 25nm
AlN 6nm

formed region

Al 10nmPt

Pt
AlN
Al

(vacuum)

EDS analysis

• Effort for elucidating 
conducting filament

B. J. Choi et al. “Sub-100ps ultra-fast and energy-
conservative nitride memristors”, to be submitted
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• Strong heating

• The switching interface (Pt/AlN) remains O-free!

• Chemical changes? (Al(N) channel?) – on going

Switching mechanism: O-free switching 
interface Switching interface

Pt AlN Al surfacesubstrate Pt


