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Malware Overview

One of the most prevalent cybersecurity threats.

Most organizations rely on anti-virus software to identify
malware, which utilize signatures.

Signature-based detection only allows anti-virus software to

detect known malware (cannot generalize to unseen
instances).

Instead, use supervised machine learning for learning more
robust malware detection rules from the data.
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Malware Dataset

ID Dates Goodware count | Malware count
2010 | 10-2010 to 01-2011 10260 8501
2011 | 11-2011 to 02-2012 3409 13011
2012 | 01-2012 to 03-2012 54153 16911

m Malware collected from Arbor Networks!.

m Goodware collected from live feeds of all files that crossed a
corporate network border. Filtered through multiple antivirus
scanners to reduce the risk of contaminating the feed with
malware.

'http:/ /www.arbornetworks.com/
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Feature Extraction

m Features based on Portable Executable (PE) headers, which
specify the layout of executable files for the Windows
operating system.

m Approximately 100 features.

m Some example features:

CheckSum

number_of_sections

file_info

RT_DIALOG
REMOVABLE_RUN_FROM_SWAP
SizeOfHeapReserve
HeaderCharacteristicsValue
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Batch Decision Trees
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Tree growing procedure:
m Exhaustively check all possible splits (requires revisiting data).

m Pick best split (based on objective function), split node, and
recurse.
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Streaming Decision Trees

Observation:
If you relax the notion of the“best” split, only a small subset of
data may be needed to find best attribute at a given node.

Idea:
m Maintain list of leaves in current tree.
m Filter examples from stream into appropriate leaf.

m Expand a leaf only when it contains enough examples to
“reliably” pick the “best” attribute for splitting.



Hoeffding Trees

Let G(A) be the quality of splitting a leaf using attribute A.

Suppose that A; and A are the 1%t and 2"9 best attributes with
respect to G(-), so far. Define

AG = G(A;) — G(A) > 0.

If AG > ¢, then A; is best attribute with probability 1 — &
(based on Hoeffding bound).
Tree growing procedure:

m Pick §. (Remember: € is a function of ¢ and n.)

m Accumulate samples at a node (that is, increase n) until the
best split is € better than the second best split.

m Then make the best split, and recurse.
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Batch Ensembles — Bagging
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m Bagging seems to require revisiting data.



Streaming Ensembles — “Oza" Bagging

Sampling with replacement from a data set of size N means each
bag has K copies of a sample, where K is binomial:

e - ()G (-5)"

e—l

That is, K tends to a Poisson(1) distribution as the number of
samples increases. So:

m Choose to start C base classifiers.

m Consider each sample x;. For each base classifier ¢; , pick Kj;
from a Poisson(1) distribution and give Kj; copies of x; to ;.

Each sample is handled only once.
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Gradual Concept Drift

Accuracy, averaged over available time deltas
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m Malware detection accuracy degrades over time.
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Sudden Concept Drift
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m Result of a suddenly invalidated malware detector.
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Baseline Performance without Concept Drift

Data

Batch Ensemble

Streaming Ensemble

2010
2011
2012

98.80
98.45
98.60

96.77
96.51
96.73

m Ten-fold cross-validated bagged ensemble analysis of each
year individually.

m Both batch and streaming decision tree ensembles are pretty
good at distinguishing between malware and goodware.

m Streaming ensemble is somewhat less accurate than its batch
counterpart, because the trees have to commit to splits early
(i.e., after only seeing a fraction of the data).
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Performance with Concept Drift and Copious Malware

Train | Test | Type Batch Ensemble | Streaming Ensemble
2010 | 2011 | Standard 90.97 91.87
2010 | 2011 | Interleaved — 95.69
2010 | 2012 | Standard 90.03 85.80
2010 | 2012 | Interleaved — 92.82
2011 | 2012 | Standard 91.25 81.36
2011 | 2012 | Interleaved — 93.32

m Impact of concept drift when all of the additional malware

data is available for training and testing.

m Interleaved streaming ensemble always outperforms the batch
ensemble, because it is able to make use of new data not
available to the batch model.

m So, one should always add in new data as it arrives?
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Performance with Concept Drift and Class Imbalance

Train | Test | Type Batch Ensemble | Streaming Ensemble
2010 | 2011 | Standard 91.96 90.63
2010 | 2011 | Interleaved — 90.70
2010 | 2012 | Standard 87.46 86.77
2010 | 2012 | Interleaved — 82.09
2011 | 2012 | Standard 93.63 84.38
2011 | 2012 | Interleaved — 75.60
m Train on the full set of malware and goodware, but thin test

malware to only 180 samples. Repeated ten times, average
performance reported.

Here, interleaved streaming ensemble did worse than batch.
Proportion of new data input is so skewed that the interleaved
model learns it can do best by predicting that nothing is
malware.
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Conclusion and Future Work

m Characterized the effect of concept drift and class imbalance
on batch and streaming decision tree ensembles using a
malware dataset collected from live feeds.

m Demonstrated how bagged ensembles of decisions trees can be
well-adapted to the streaming data case.

m lllustrated a perhaps surprising vulnerability stemming from
updating a model based on new data.

m Need to investigate performance of algorithms designed to
handle concept drift.

m Need to investigate efficacy of skew-correction techniques.
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Questions?
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