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• Diagram Contains 28 Filters Operating in ~ 7 Bands

• Microresonator Technology Can Potentially Address Many of These Filters on a 

Single Chip, Reducing Size and Assembly Costs

R. Vazny et al.  
“Front-End 
Implications to 
Multi-Standard 
Cellular Radios: 
State-of-the-Art 
and Future 
Trends”, Proc. Of 
the 2010 IEEE 
Ultrasonics
Symposium, pp. 
95 – 98, Oct. 
2010

RF Front-End of a Modern Cellular Radio

Filter Arrays for Handsets
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• Current Military Radios Are Mandated to be Backwards Compatible

• Legacy and Updated Frequencies and Waveforms

• Many RF Frequencies and Bandwidths Required

• Future Military Radios Will Require Spectral Knowledge and Real Time 

Adaptability to Mitigate Both Co-Site and Adversary Jamming   

Filters in Military Radios
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Frequency Adaptability on the RF 

Front-End
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S-Band Switched Filter Array on CMOS for RF Center 
Frequency Adaptability

E. R. Crespin, R. H. Olsson III, K. E. Wojciechowski, D. W. Branch, P. Clews,
R. Hurley and J. Gutierrez, “Fully Integrated Switchable Filter Banks,” IEEE
International Microwave Symposium, pp. 1-3, June 2012.



Waveform and Bandwidth 

Adaptability IF Filtering
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IF Filter with 
Programmable 

Bandwidth from 5.1 
MHz to 0.48 MHz

R. H. Olsson III, J. Nguyen and T. Pluym, “A Programmable
Bandwidth Aluminum Nitride Microresonator Filter,” Govt.
Microcircuit App. and Critical Tech. Conf., March 2013.



RF Spectral Awareness
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16-Channel Filter Array for RF Spectral 
Sensing

• 16-Channels
• 4 dB I.L
• 1.3 MHz BW



Microresonator Technology
Microresonators are miniature, 

high quality factor acoustic 

resonators that:

� Are mass produced using CMOS IC 

fabrication techniques

� Are lithographically defined, 

allowing any resonant frequency 

between 32 kHz and 14 GHz on a 

single chip

� Are an enabling filter technology for 

multi-band and cognitive radios

� Can be integrated with CMOS 

transistors for configurability and 

added signal processing

� Can be Engineered with High 

Thermal Isolation for Low Power 

Ovenization

1.7 MHz     
3 dB 

Bandwidth 
AlN Filters 
in a Wafer 

Level 
Package
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Microresonator Filter Arrays
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• Filter Banks for Cognitive and Multi-Band 

Radios

• Anti-Jam and Secure Adaptive RF Front-

Ends

• Filter Arrays for Fast Spectrum Analysis

• Ultra Small Footprint 

• HF to X Band!

• 16-
Channels

• 4 dB I.L
• 1.3 MHz 

BW

• X-Band
• 100 MHz 

BW
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• HF-Band

• 25 kHz BW

• 12-Channels



Why Micromachining for Acoustic 

Resonators

SAW

E 
Field

Acoustic 
Wave

Microresonator

•Acoustic isolation from the substrate via undercut 

and etched sidewalls 

� Many frequencies on a single chip 

� Higher Q-factor 

� Lower loss

� Vastly Smaller size

� Closely packed filters

� Thermal isolation for ovenization

• Increased interaction of the acoustic wave and 

electric field

� Higher coupling coefficient

� Lower loss

� Wider bandwidth

� Higher tuning range

•Decouple acoustic wavelength and transduction 

gap

� Vastly Smaller Size

� Increased Transduction Microresonator 11



Piezoelectric Resonator Transduction
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� Proportional to FOM

� Filter Bandwidth
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Types of Acoustic Resonators (Thermally 
Stable For Narrow Band Filters)

Technology/ 
Metric

kt
2

theory
kt

2

experiment
Q @ 
~ 1 

GHz

~FOM 
Measured

Multiple
Frequencies 

on a 
Substrate

TCF 
(ppm/

C)

CMOS
Integr
ation

Quartz SAW 0.16% 0.16% 10000 16 Yes <0.1 No

Temperature
Compensated 
AlN 
Microresonator

1.3% 1.3% 2000 26 Yes <0.5 Yes

Microresonator 

Filter

SAW Filter

� Aluminum Nitride Microresonator Has 

Higher Figure of Merit for Lower Loss

�Aluminum Nitride Microresonator Has 

Massively Reduced Size

� Aluminum Nitride Microresonator Can be 

Integrated With CMOS
13



Technology/ 
Metric

kt
2

theory
kt

2

experiment
Q @ 
~ 1 

GHz

~FOM 
Measured

Multiple
Frequencies 

on a 
Substrate

TCF 
(ppm/

C)

CMOS
Integr
ation

AlN BAW/FBAR 6.5% 7% 3000 200 High Cost -30 Yes

Standard 
LiNbO3 SAW 6.5% 6.5% 1000 65 Yes -70 No

AlN 
Microresonator 2% 2% 2000 40 Yes -30 Yes

Types of Acoustic Resonators (Wideband and 
Low Loss RF Filters)

� AlN Microresonator Has Higher Lower Figure of Merit Than SAW or BAW

� AlN Microresonator Only For Applications

� Arrays

� CMOS Integration 

� Size

� Low Frequency
14



Post-CMOS AlN MEMS Fabrication

� 6-Masks

� Replace Poly 

Release Layer with 

400C a-Si

� a-Si Thickness 

Limit is 600 nm

� CMOS Metals for 

RF Routing and 

Passives

K. E. Wojciechowski, R. H. Olsson, T. A. Hill, M. R. Tuck and E. Roherty-
Osmun, “Single-Chip Precision Oscillators Based on Multi-Frequency, High-Q
Aluminum Nitride MEMS Resonators,” IEEE International Solid-State Sensors,
Actuators and Microsystems Conference, pp. 2126-2130, June, 2009.
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R. H. Olsson III, C. M. Washburn, J. E. Stevens, M. R. Tuck and C. D.
Nordquist, “VHF and UHF Mechanically Coupled Aluminum Nitride
MEMS Filters,” IEEE Frequency Control Symposium, pp. 634-639, June
2008.



Wafer Level Packaging
� Maintains Small Footprint

� Surface Mount or Chip and Wire 

Assembly

� Enables Wafer Level Release

� Protects MEMS During Dicing

� Wafer Level Auto-Probe For Part 

Down Select  

� Package Pressure = 10 Torr, Lower 

with Getters

17

M. D. Henry, K. D. Greth, J. Nguyen, C. D. Nordquist, R. Shul, M. Wiwi, T. A.
Plut and R. H. Olsson III, “Hermetic Wafer-Level Packaging for RF MEMs:
Effects on Resonator Performance,” IEEE Electronic Components and
Technology Conf., pp. 362-369, May 2012.



WLP Integration

Die Wafer from CMOS foundry

Lid Wafer from CMOS foundryAu pad / bond ring patterning

XeF2 release of suspended 
resonators

Au-aSi Eutectic Bond
Lid Back Etch 

Advantage of WLP : Release of resonators on a 

wafer scale, hermetic encapsulation on a wafer 

scale, inexpensive lid technology (silicon) .

Microresonator Wafer-Level-Packaging Process Flow 18



AlN MEMS Oscillators

1.3 x 1.3 x 0.2 mm 
Microresonator 

Packaging 

� Overcome Thickness Limitations of 

Quartz Crystals

� Oscillator Synthesis Directly at RF for 

Reduced Power (No PLL) and Size

� Communications Grade Phase Noise 

Performance

� Ovenization at Ultra Low Power Levels

Picture and Phase Noise of a 532 MHz AlN 
Oscillator Integrated Directly Over CMOS

CMOS 
Pierce 

Oscillator 
Circuit

532 MHz 
AlN Micro-
Resonator

GSM Spec. 

Referenced to 

532 MHz

19

R. H. Olsson III, K. E. Wojciechowski, M. R. Tuck, J. E. Stevens and C. D.
Nordquist, “Multi-Frequency Aluminum Nitride Micro-Filters for Advanced RF
Communications,” Govt. Microcircuit App. and Critical Tech. Conf., pp. 257-
260, March 2010.



AlN MEMS Accelerometers

• Resolution = 70 µG/√√√√Hz

• Mobile Phone Level Performance

• Integration with CMOS

• Wafer Level and Thin Packaging

Inertial Sensor Die Photo and Measurement
AlN Accelerometer on CMOS7 Photo



Conclusions

21

S-Band 
Switched 

Filter Array

� Aluminum Nitride MEMS Devices Offer 

Advantages Over Incumbent Technologies

� Contour Mode AlN Filters

� Frequency/Bandwidth Diversity, Size

� AlN MEMS Oscillators

� Power, Thermal Stability, Thickness

� AlN Inertial Sensors

� Power, Size, Resolution

� In the Future

� Reconfigurable and Tunable Filters

� Higher FOM Materials for Lower Loss, Wider 
Bandwidth and Tuning
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