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Filter Arrays for Handsets

« Diagram Contains 28 Filters Operating in ~ 7 Bands

« Microresonator Technology Can Potentially Address Many of These Filters on a
Single Chip, Reducing Size and Assembly Costs
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Filters in Military Radios )
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« Current Military Radios Are Mandated to be Backwards Compatible
« Legacy and Updated Frequencies and Waveforms
« Many RF Frequencies and Bandwidths Required

« Future Military Radios Will Require Spectral Knowledge and Real Time
Adaptability to Mitigate Both Co-Site and Adversary Jamming
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Frequency Adaptability on the RF ) s
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Waveform and Bandwidth ) i
Adaptability IF Filtering

) ) R. H. Olsson I, J. Nguyen and T. Pluym, “A Programmable
- - Notional Phase Ill Deliverable | ______________ . Bandwidth Aluminum Nitride Microresonator Filter,” Gout.
Microcircuit App. and Critical Tech. Conf., March 2013.
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RF Spectral Awareness )
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Microresonator Technology

Microresonators are miniature,
high quality factor acoustic
resonators that:

» Are mass produced using CMOS IC
fabrication techniques

> Are lithographically defined,
allowing any resonant frequency

between 32 kHz and 14 GHz on a 0.

single chip ol 1 7 MHz

> Are an enabling filter technology for = o 3dB H

multi-band and cognitive radios 0, andwialt

AIN Filters

> Can be integrated with CMOS = in a Wafer

transistors for configurability and > 5 Lel\(/el

added signal processing af ackage
-70

» Can be Engineered with High
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Microresonator Filter Arrays - DE
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Why Micromachining for Acoustic ) i,
Resonators

» Acoustic isolation from the substrate via undercut
and etched sidewalls
QO Many frequencies on a single chip
Q Higher Q-factor
O Lower loss
O Vastly Smaller size
O Closely packed filters
O Thermal isolation for ovenization

Acoustic
Wave

* Increased interaction of the acoustic wave and
electric field
Q Higher coupling coefficient
O Lower loss
O Wider bandwidth
Q Higher tuning range

-y

Microresonator

» Decouple acoustic wavelength and transduction

gap
O Vastly Smaller Size
Q Increased Transduction Microresonator 11




Piezoelectric Resonator Transduction )i
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Types of Acoustic Resonators (Thermally G; by
Stable For Narrow Band Filters)

Technology/
Metric

Quartz SAW 0.16% 0.16% 10000 16 Yes <0.1 No
Temperature
Compensated
AIN 1.3% 1.3% 2000 26 Yes <0.5 Yes

Microresonator

» Aluminum Nitride Microresonator Has

Higher Figure of Merit for Lower Loss . SAW Filter

» Aluminum Nitride Microresonator Has
Massively Reduced Size

Microresonator

» Aluminum Nitride Microresonator Can be Filter

Integrated With CMOS




Types of Acoustic Resonators (Wideband and (i) i
Low Loss RF Filters)
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Technology/ Q@ Multiple
Metric theory | experiment | ~1 | Measured | Frequencies | (ppm/
GHz ona C)
Substrate

AIN BAW/FBAR  6.5% 7% 3000 200 High Cost -30 Yes
Standard

LiNbO, SAW 6.5% 6.5% 1000 65 Yes -70 No
AIN

Microresonator 2% 2% 2000 40 Yes -30 Yes

» AIN Microresonator Has Higher Lower Figure of Merit Than SAW or BAW

» AIN Microresonator Only For Applications
= Arrays
= CMOS Integration
= Size

= Low Frequency 14




Post-CMOS AIN MEMS Fabrication

— E—
CMOS Wafer

> 6-Masks

> Replace Poly
Release Layer with
400C a-Si

> a-Si Thickness
Limit is 600 nm

» CMOS Metals for
RF Routing and
Passives

Start. Deposit oxide and low
temperature custom Si release
layer over foundry CMOS
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CMOS Wafer

Pattern Si release layer, deposit
planar SiO, temperature
compensation film and form W

contacts to CMOS

— Y
CMOS Wafer —
CMOS Wafer

Finish: Etch trenches to Si
release layer and suspend Deposit and pattern bottom Al
the accelerometer using dry electrode, AIN piezoelectric layer

SFg and top Al electrode
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K. E. Wojciechowski, R. H. Olsson, T. A. Hill, M. R. Tuck and E. Roherty-
Osmun, “Single-Chip Precision Oscillators Based on Multi-Frequency, High-Q
Aluminum Nitride MEMS Resonators,” IEEE International Solid-State Sensors,
Actuators and Microsystems Conference, pp. 2126-2130, June, 2009.
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Temperature Compensation ) e,

A2

. Metal Electrodes

.SiO2 Temperature
Compensation Layer

.Aluminum Nitride

. Acoustic Wave Propagation

Resonator Cross-Section
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R. H. Olsson lll, C. M. Washburn, J. E. Stevens, M. R. Tuck and C. D.
Nordquist, “VHF and UHF Mechanically Coupled Aluminum Nitride
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Wafer Level Packaging

» Maintains Small Footprint

» Surface Mount or Chip and Wire
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Wafer of

 Packaged AIN

Assembly

g MEMS Devices

» Enables Wafer Level Release
» Protects MEMS During Dicing

» Wafer Level Auto-Probe For Part
Down Select

» Package Pressure = 10 Torr, Lower
with Getters

Packaged
Surface Mount
AIN Filter on a

PCB

« Chip and Wire
**. AIN MEMS Die

M. D. Henry, K. D. Greth, J. Nguyen, C. D. Nordquist, R. Shul, M. Wiwi, T. A.
Plut and R. H. Olsson lll, “Hermetic Wafer-Level Packaging for RF MEMs:
Effects on Resonator Performance,” IEEE Electronic Components and
Technology Conf., pp. 362-369, May 2012. 17




WLP Integration ) .

Die Wafer from CMOS foundry Advantage of WLP : Release of resonators on a
wafer scale, hermetic encapsulation on a wafer
e gy S — scale, inexpensive lid technology (silicon) .

Au pad / bond ring patterning  Lid Wafer from CMOS foundry
. _

XeF2 release of suspended Au-aSi Eutectic Bond Lid Back Etch
resonators

L, —
I R

Microresonator Wafer-Level-Packaging Process Flow 18
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AIN MEMS Oscillators

» Overcome Thickness Limitations of
Quartz Crystals

» Oscillator Synthesis Directly at RF for
Reduced Power (No PLL) and Size

» Communications Grade Phase Noise
Performance

> Ovenization at Ultra Low Power Levels

1.3x1.3x0.2mm
Microresonator
Packaging

R. H. Olsson lll, K. E. Wojciechowski, M. R. Tuck, J. E. Stevens and C. D.
Nordquist, “Multi-Frequency Aluminum Nitride Micro-Filters for Advanced RF
Communications,” Gowvt. Microcircuit App. and Critical Tech. Conf., pp. 257-
260, March 2010.
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AIN MEMS Accelerometers ) iz
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* Resolution =70 HG/\/HZ 0 ~-70mG at 20Hz
-#-70mG at 70Hz
- Mobile Phone Level Performance .
I
- Integration with CMOS -
- Wafer Level and Thin Packaging = =
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Conclusions

» Aluminum Nitride MEMS Devices Offer
Advantages Over Incumbent Technologies

= Contour Mode AIN Filters

= Frequency/Bandwidth Diversity, Size
= AIN MEMS Oscillators

= Power, Thermal Stability, Thickness
= AIN Inertial Sensors

= Power, Size, Resolution

> In the Future
= Reconfigurable and Tunable Filters

= Higher FOM Materials for Lower Loss, Wider

Bandwidth and Tuning
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