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Why Memristors?

• Current nonvolatile memory (NVM) technologies like Flash are 
expected to be increasingly limited by scaling

• Resistive RAM (ReRAM) is a strong candidate to replace Flash 
with many promising performance metrics

– Scalability

– Endurance

– Speed

– Low power

• State of the art is rapidly advancing

• TaOx and TiO2 radiation effects

– High tolerance for both displacement damage and ionization

– Different responses at high damage levels



Memristor I-V Characteristics

• Resistive RAM (ReRAM) is a 
memristor

• Applied current and voltage 
can change resistance state

– Hysteresis loop

• Low voltages can read state

– Read window
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• Resistive switching

– Oxygen vacancies

• TaOx

– Oxygen anions



Previous Radiation Experiments

• TiO2

– 45 Mrad(Si) γ-rays and 23 
Mrad(Si) Bi ions

– 1 MeV alpha particles

– 1014 cm-2 fluence

• TaOx

– Thickness dependence 
from Peking University

– Varying responses to TID 
seen previously by Sandia

– Heavy ions and 
displacement damage

Barnaby et al., Trans Nuclear Sci, vol. 
58, pp. 2838-2844, 2011.



Ion Beam Experiments

• 800 keV Ta ions and 28 MeV Si ions

– Displacement damage vs. ionization

• Parts irradiated in vacuum

– Sequence of runs

– Full set/reset cycle between runs

– Read sweeps between shots

• Fluence values have been translated to oxygen vacancy 
concentration and rad(Si) via SRIM calculations

– Charge yield is not accounted for



Experimental Details

• All samples use same stack:

– SiO2(substrate)/Ti/Pt/TaOx/Ta/Pt

• Random “dogbone” shadow mask

– Memristors formed at crossing electrodes



800 keV Ta Irradiation - TaOx

• Gradual resistance 
degradation

• Creation of oxygen 
vacancies

– Threshold ~1019 cm-3

• Reset operation recovers 
significant portion of 
resistance loss

– Cumulative damage



Displacement Damage
Accumulation and Annealing

• Percolation model for 
resistive switching

• Cumulative damage

– Not all oxygen 
vacancies removed by 
oxidation/diffusion?

• Repeated resetting can 
return device closer to 
original state

– Runs 5 and 6



28 MeV Si Irradiation - TaOx

• Resistance change abrupt 
and consistent

– Different mechanism

• Ionization

– Rad(Si) per shot

• Threshold ~200 Mrad(Si)

• Critical dose per shot 
threshold

– Cumulative between reads



28 MeV Si Irradiation - TaOx

• 28 MeV primarily causes 
ionization

– Displacement damage 
mechanism still present

• Shots in run two half of critical 
dose threshold

• O vacancy threshold ~6.5×1018

cm-3

– Consistent with 800 keV Ta

• Dose threshold ~1.8 Grad(Si)

– 10x larger than 800 keV Ta

– Charge yield or variation



800 keV Ta Irradiation – TiO2

• Gradual increases in 
resistance with 
inconsistent abrupt 
decreases

– ROFF doesn’t drop  
to on-state values

• Post-rad behavior 
inconsistent

– High variability

– Degrading ROFF

– Higher reset current 
may be needed



28 MeV Si Irradiation – TiO2

• Similar critical dose per 
shot between read sweep 
threshold behavior

• Variability in resistance 
to which device switched

• Four upsets occurred at 
500 Mrad(Si)

– One at 250 Mrad(Si)



10 keV X-ray – TaOx and TiO2

• Grounded and floating

– Steps up to 10 
Mrad(SiO2)

• DUT 4 changed 
resistance at 4 
Mrad(SiO2)

– No lasting damage

– Unrepeatable

• No other effects on any 
devices



Summary and Conclusions

• Both TaOx and TiO2 memristors appear to be tolerant to very high levels 
of radiation

– 200 Mrad(Si) to 2 Grad(Si) calculated dose from 28 MeV Si ions and 
at least 10 Mrad(SiO2) from 10 keV X-rays

– Fluences of 1010 cm-2 for 800 keV Ta and 5×1012 cm-2 for 28 MeV Si

• Displacement damage

– TaOx: Gradual resistance decrease above ~1019 cm-3 oxygen vacancies

– Post-rad cycling can restore degraded resistance

– TiO2: Gradual resistance increases with inconsistent abrupt decreases 
above ~1019 cm-3 oxygen vacancies

– Post-rad cycling can lead to further degradation and high variability



Summary and Conclusions (cont.)

• Ionization – TaOx and TiO2

– Ionizing dose per shot between read sweep critical threshold

– Threshold can range from 200 Mrad(Si) to 2 Grad(Si) calculated for 
28 MeV Si ion irradiation

– Little change from 10 keV X-rays up to 10 Mrad(SiO2) steps and 35 
Mrad(SiO2) cumulative

– Applying small read voltages may bleed charge and prevent 
resistance switch

• TaOx and TiO2 memristor characteristics appear unchanged 
at high total doses and fluences and show great promise for 
future radiation-hardened non-volatile memory applications


