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'3 — Different responses at high damage levels

Why Memristors?

Current nonvolatile memory (NVM) technologies like Flash are
expected to be increasingly limited by scaling

Resistive RAM (ReRAM) is a strong candidate to replace Flash
with many promising performance metrics

— Scalability
— Endurance
— Speed
— Low power
State of the art is rapidly advancing
TaO, and TiO, radiation effects
— High tolerance for both displacement damage and ionization
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Memristor I-V Characteristics

Resistive RAM (ReRAM) is a

memristor
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Previous Radiation Experiments

« TiO,
— 45 Mrad(Si) y-rays and 23
Mrad(Si) Bi ions
— 1 MeV alpha particles
— 104 cm? fluence
« TaO,

— Thickness dependence
from Peking University

— Varying responses to TID
seen previously by Sandia
= — Heavy ions and
| displacement damage
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Ion Beam Experiments

e 800 keV Ta ions and 28 MeV Si ions

— Displacement damage vs. ionization

* Parts irradiated in vacuum
— Sequence of runs
— Full set/reset cycle between runs
— Read sweeps between shots

* Fluence values have been translated to oxygen vacancy
concentration and rad(Si) via SRIM calculations

‘W — Charge yield is not accounted for
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Experimental Details

* All samples use same stack:

— SiO,(substrate)/Ti/Pt/TaO,/Ta/Pt
 Random “dogbone” shadow mask

— Memristors formed at crossing electrodes
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800 keV Ta Irradiation - TaO,
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Displacement Damage
Accumulation and Annealing

 Percolation model for
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28 MeV Si Irradiation - TaO,
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28 MeV Si Irradiation - TaO,

* 28 MeV primarily causes

ionization 1051
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800 keV Ta Irradiation — TiO,

Gradual increases in
resistance with
inconsistent abrupt
decreases

— Rgpp doesn’t drop
to on-state values

Post-rad behavior
inconsistent

— High variability
— Degrading Rgy

— Higher reset current

may be needed
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28 MeV Si Irradiation — TiO,

« Similar critical dose per
shot between read sweep
threshold behavior

* Variability in resistance
to which device switched

 FKFour upsets occurred at
500 Mrad(Si)

— One at 250 Mrad(Si)
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10 keV X-ray — TaO, and TiO,
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Summary and Conclusions

Both TaO, and TiO, memristors appear to be tolerant to very high levels
of radiation

— 200 Mrad(Si) to 2 Grad(Si) calculated dose from 28 MeV Si ions and
at least 10 Mrad(SiO,) from 10 keV X-rays

— Fluences of 101° cm2 for 800 keV Ta and 5x10'2 cm2 for 28 MeV Si
Displacement damage

— TaO,: Gradual resistance decrease above ~10' cm3 oxygen vacancies

— Post-rad cycling can restore degraded resistance

— TiO,: Gradual resistance increases with inconsistent abrupt decreases
above ~10'° cm™ oxygen vacancies

— Post-rad cycling can lead to further degradation and high variability
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Summary and Conclusions (cont.)

* TJonization — TaO, and TiO,

Tonizing dose per shot between read sweep critical threshold

Threshold can range from 200 Mrad(Si) to 2 Grad(Si) calculated for
28 MeV Si ion irradiation

Little change from 10 keV X-rays up to 10 Mrad(SiO,) steps and 35
Mrad(SiO,) cumulative

Applying small read voltages may bleed charge and prevent
resistance switch

 TaO, and TiO, memristor characteristics appear unchanged
at high total doses and fluences and show great promise for
future radiation-hardened non-volatile memory applications
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