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Grain-scale simulations of SDT in HNS i) s
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Extrapolation = Bad. i) S
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Density Functional Theory (DFT) and XC functionals:
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“Easy” problem to solve

Schrodinger view _ -~ DFT view
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Molecular Dynamics (MD):
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Finding the Hugoniot, Iterative compression @) s
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Iterative compression
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Finding the Hugoniot (TATB V=0.85*V): A e
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First-principles EoS for PETN )
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Isotropic vs. Uniaxial shocks in PETN ) e
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Uniaxial shocks in PETN: ) e
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Different Temperatures ???

1000 , . |
) sol 010 s s -
| ~ - [001] o L o
) Isotropic | |
‘E‘ﬂ OO0 -
E : a
= I o© o
400F----------- R hGECRCEEEEEEEEREREE R
L O m
o ©
Pressure (GPa)
: y Orientation | EXPt 2 This work
""" Stress (GPa) | Stress (GPa) | Uy (km/s) | Uy, (km/s)
[00] | 313 | 211 | 60 | 2231 |

11



EoS for Hexanitrostilbene (HNS) from DFT-MD ) i
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Porous Hugoniot from the Crystalline Hugoniot ) e
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[1] wUg =vg (Usg -us) Rankine - Hugoniot Relations
[.2: P?ﬁ = Up UE

1
[3] e-e; = —P (vyg-v)
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[4] Ug = Cp + S;up+S;ul ... Polynomial Fit

(P - Pp) )
sy | ——— runeisan Parameter
[3] G
(e - eg)
Assume solid and porous material have the same refernce, Pg = Py = Oandeg = e
r r
[6] P = — (e - &) (Solid) P* = — (e" - @) (Porous’)
v v
r
[7] P-P" = — (e-e") The two pressures can be related at any shock state, v
v
Tl 1
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v L2 2
iv
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r
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[10] wug = —— by solving [1] for particle velocity

by substituting [10] into [2]

This does not depend on microstructure, only depends on initial density (... and purity)
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Hexanitrostilbene (HNS) Crystalline and Porous Hugoniots
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Isotherm of HNS, Validation?

Degradation
Hydrostatic
Polycrystalline
Defects

A\

Pressure (GPa)

HNS-IV
99.6 % Pure

EQUATIONS OF STATE OF HEXANITROSTILBENE

(HNS)

Jared C. Gump, Chad A. Stoltz, Brian P. Mason and Emily M. Heim'

Naval Surface Warfare Cenrer, Indian Head Division, Indian Head, MID 20640
"Waval Research Enterprise Intern Program

Sandia
ﬂ'l National
Laboratories

20+

15+

DFT-MD »

Gump DAC

07

15




ReaxFF MD, Isotherm of HNS w/ DMF )
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DFT-MD Hugoniot of TATB and data for PBX-5902 i
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TATB Crystalline and Porous Hugoniots )
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Comparison of shock temperature: 7l
Implications for sensitivity?
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Conclusions / Future Work ) e
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1. We can predict EoS data using DFT-MD and ReaxFF

2. We should make a tabular EoS and remove the need for
making approximations to C, and Gamma. Temperatures are
predicted... need to be validated.

3. Impurities (solvent, defects) changes the EoS. How much?
We can predict it and account for it.

4. Shock temperature could be linked to sensitivity.
5. Working to incorporate DFT-MD EoS with microstructural

characterization and reactive process to build a predictive
grain-scale simulation of shock initiation.
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