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Grain-scale simulations of SDT in HNS

3Simulations: Flyer impact at 3.15 km/s, Mean pore size 86 um

6.45 ns

23.2 ns

20 um10 um

Voids are potential sites 
for energy localization

“hot-spot” where shock 
energy has been localized

Competition between energy 
release and the relief wave



Extrapolation = Bad. 
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Low pressure 
gas-gun data

Quadratic

#WhyIsMySimulationWrong?



Density Functional Theory (DFT) and XC functionals:
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Molecular Dynamics (MD):
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Finding the Hugoniot, Iterative compression 
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Key Point: jump conditions are only 
valid on the Hugoniot

1 unit cell
Iterative compression

Rankine-Hugoniot Relations:
Mass: 

ρoD = ρ1 (D – u1)
Momentum: 

P1= ρoDu1

Energy: 
E – Eo = ½(P + Po)(Vo – V)
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P-V Hugoniot Relation



Finding the Hugoniot  (TATB V=0.85*Vo):
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E(T) – Eo = ½[P(T) + Po][Vo – V]

732 K



First-principles EoS for PETN
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Remarkable Agreement!

P-V Hugoniot

Isotherm and Hugoniot

- Uniaxial compression gives similar 
results (at least for pressure).

- Have all the components necessary to 
write a tabular EOS. 

- Isotherm and Hugoniot are super close 
in P-V space.

Single Crystal Data



Isotropic vs. Uniaxial shocks in PETN
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Uniaxial shocks in PETN: 
Different Temperatures ???
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EoS for Hexanitrostilbene (HNS) from DFT-MD
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DFT-MD Isotherm

Two issues:
1. No crystalline experimental data.
2. Predicted isotherm doesn’t match 

Gump’s DAC data.



Porous Hugoniot from the Crystalline Hugoniot
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Hexanitrostilbene (HNS) Crystalline and Porous Hugoniots
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Isotherm of HNS, Validation?

15

HNS-IV
99.6 % Pure

1. Degradation
2. Hydrostatic
3. Polycrystalline
4. Defects



ReaxFF MD, Isotherm of HNS w/ DMF
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DFT-MD Hugoniot of TATB and data for PBX-5902
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TATB Crystalline and Porous Hugoniots
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Comparison of shock temperature:
Implications for sensitivity?
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Conclusions / Future Work
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1. We can predict EoS data using DFT-MD and ReaxFF

2. We should make a tabular EoS and remove the need for 
making approximations to Cv and Gamma. Temperatures are 
predicted… need to be validated.

3. Impurities (solvent, defects) changes the EoS.  How much? 
We can predict it and account for it.

4. Shock temperature could be linked to sensitivity.

5. Working to incorporate DFT-MD EoS with microstructural 
characterization and reactive process to build a predictive 
grain-scale simulation of shock initiation.
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