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Abstract

Developing constitutive models of the physics in mechanical joints is currently
stymied by inability to measure forces and displacements within the joint. The
current state of the art estimates whole joint stiffness and energy loss per cycle from
external measured force input and one or two acceleration responses. To validate
constitutive models beyond this state requires a measurement of the distributed forces
and displacements at the joint interface. Unfortunately, introducing measurement
devices at the interface completely disrupts the desired physics. A feasibility study is
presented for a non-intrusive method of solving for the interface dynamic forces from
an inverse problem using full field measured responses. The responses come from
the viewable surface of a beam. The noise levels associated with digital image
correlation and continuous scanning laser Doppler velocimetry are evaluated from
typical beam experiments. Two inverse problems are simulated. One utilizes the
extended Sum of Weighted Accelerations Technique (SWAT). The second is a new
approach dubbed the method of truncated orthogonal forces. These methods are
much more robust if the contact patch geometry is well identified. Various
approaches to identifying the contact patch are investigated, including ion marker
tracking, Prussian blue and ultrasonic measurements. A typical experiment is
conceived for a beam which has a lap joint at one end with a single bolt connecting it
to another identical beam. In a virtual test using the beam finite element analysis, it
appears that the SWAT inverse method requires evaluation of too many coefficients
to adequately identify the force distribution to be viable. However, the method of
truncated orthogonal forces appears viable with current digital image correlation (and
probably other) imaging techniques.
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1. INTRODUCTION

Modeling of joints is the weakest link in structural analysis. This LDRD studied the
feasibility of providing non-intrusive measured interface force and displacement data to develop
first principle constitutive models that currently do not exist. The need is highlighted by a quote
from the 2" Workshop on Joints Modeling, Dartington Hall, UK, where it was stated that “the
greatest experimental challenge to joint interface research is obtaining a measurement of the
distribution of local interface forces in the joint.” Figure 1 shows a loaded lap joint. During the
loading process, there is a contact patch in which part of the area is slipping and part is not.
Furthermore, the contact area and forces change with load. No sensor is currently available to
measure the contact patch force and motion without changing the joint dynamics. These data are
required for understanding and modeling structural joints.

Figure 1 — Lap joint hardware and model with large static tensile load

This LDRD proposed assessing feasibility of non-intrusive measurements of the contact patch
motion and dynamic forces without compromising the joint physics. The current state of the art
only measures the force applied to the joint hardware and a single displacement across the joint
to determine stiffness and energy dissipation per cycle of vibration[1,2], but does not obtain any
information on the force or displacement field at the interface. This is key to understanding the
physics of joint dynamics so that appropriate constitutive models can be discovered. The
proposed development would advance validation of joint constitutive model theory, benefitting
weapons programs that could then apply such models to their hardware. This report first
discusses sensor technologies to gather data non-intrusively and then the algorithms which could
be utilized to extract the forces in the contact patch. Section 2 provides the studies that were
performed to sense the contact area and its motion. Section 3 deals with gathering digital image
correlation (DIC) data from typical beam experiments, and section 4 does the same using
continuous scanning laser Doppler velocimetry (CSLDV) to gather the data. Section 5 proposes
an experimental setup for which the joint forces would be investigated. Section 6 shows the
results of the virtual experiment using the extended SWAT technique to reconstruct the force
distribution, and section 7 shows a much more successful technique for reconstructing the force
distribution. The final conclusions are presented in section 8.
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2. CONTACT AREA STUDIES FOR A BOLTED LAP JOINT

The determination of the contact area would provide one metric for assessing a constitutive
model in a finite element code. In addition, force algorithms only need be applied in the contact
area, so knowing the contact area would be extremely beneficial. Multiple methods were
investigated to determine the static contact area of a bolted joint without violating the joint. One
attractive idea was to implant ion markers beneath the interface surface of the material in a lap
joint. Here we chose aluminum as the material for two plates 2 x 1” x 0.1” which could be
utilized to form a bolted lap joint with a nominal 1 square inch overlap. Sample plates were
masked and implanted using particle accelerators with either helium or gold ions with various
energy levels and dose rates. Then the plates were viewed under x-ray and mapped with
computed tomography (CT). However, even with the highest dose rates utilized for long times,
the imaging could only identify an indistinct zone of the implanted gold ions and not specific
distinct marks, as necessary for tracking images. With the small displacements that would be
imposed statically in a joint, this appeared unfeasible as a contact tracking algorithm. A picture
of the highest dose image (white shows the area of ion implants) is shown in the CT scan of
Figure 2.

'l
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Figure 2 — First layer CT scan of aluminum plate

Several plates were painted with Prussian blue on one surface and then bolted with different
torque levels (finger tight, 5, 10, 15, 20 in-1b) to see how the ink transferred to the other
interface. This provided insight as to the contact area. One of the many samples is shown in
Figure 3. The plate on the right to which the ink transferred shows there are contact areas over
the entire one square inch overlap, with more toward the center where the bolt was located.
Although there were differences from sample to sample, this shows the general trend, with more
ink transferred for higher torques.

12
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Figure 3 — Contact area for one moderate torque level from Prussian blue ink transfer

Ultrasonic scans were also conducted for %4 of the contact area. Here the two plates were bolted
together and submerged. Ultrasonic signals were imparted and the reflections showed the degree
of contact with the plate beneath it. Figure 4 shows the scan for one setup over one quarter of
the overlap area. The hole for the bolt is shown in black. Red would indicate full contact and
black would indicate little contact. The scan showed some contact over most of the overlap area.

| M 5

Figure 4 — Ultrasonic scan showing some contact over most of overlap area

The results of both the ultrasonic and Prussian blue testing indicate we could get some
quantification of the initial static contact area in a lap joint with these methods.
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3. DIGITAL IMAGE CORRELATION ON STATIC BEAM TESTS

Two similar beam configurations were conceived to provide static test environments on which
digital image correlation (DIC) could be applied to measure full field displacement. Figure 5
shows the elevation view schematic of the static test concept. An aluminum beam one inch
wide, 0.125 inches thick and ten inches long was clamped at one end, simply supported at center
span with a static force was applied at the other end. Figure 6 shows the plan view of the beam
hardware with the speckle pattern applied to the beam for the DIC study. A second similar test
setup had a two inch long, one inch wide, 0.0625 inch thick plate inserted between the simple
support and the beam to spread the load acting on the beam from the simple support.

V

49 N
Force

Figure 5 — Static beam test schematic

Figure 6 — Plan view of beam static test setup with speckle pattern on beam for DIC

DIC was performed for the static test configuration both with and without the spreader plate.
The beam was divided into 300 subsets along the length and 23 subsets across the width. Then
all the subsets across the width were averaged to reduce the noise, with the assumption that the
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response across the width should be the same. The DIC deflection for both tests is shown in
Figure 7. Experimentalists determined that the noise on the deflection measurements of Figure 7
was about 0.008 mm standard deviation on a subset. By averaging across the beam, this equates
to about 0.025% of the signal at the beam tip.

Cantilever Beam Load=11 Ibs
T T

T
Pin Support
Distributed Support| |

Deflection (in)
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o
P

2 4 6 8 10
Cantiliver distance (in)

Figure 7 — DIC deflection for two static beam test configurations

Another possible inverse problem is to calculate moments, shears and load per unit length using
one of the beam theories and the DIC displacements. If Bernoulli-Euler theory was used, the
second, third and fourth derivative of displacement provides moment, shear and load per unit
length in the vertical direction. Figure 8 shows the results for 2™ derivative with the simplest
finite difference approach, which would clearly be unusable for the inverse problem. If more
sophisticated derivative calculations are utilized, which basically provide more averaging, one
can theoretically get some reasonable information about the forces in the vertical direction. The
more averaging that is required, the less distinct will be the spatial distribution. For example, if
one uses a ninth order polynomial to represent the displacement, the error for each of the 300
subsets is averaged out over calculation of ten coefficients, which could provide a fairly accurate
estimate of the fourth derivative, but averaged over about a 10 percent length of the beam. This
provides a fairly blurry estimate of the force per unit length that might be applied with the two
inch long spreader plate. It appears that we are on the edge of feasibility for the vertical
direction force calculation with inverse analysis based on one of the beam theories.
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Figure 8 — Most simple finite difference calculation for second derivative of beam vertical
displacement
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4. CONTINUOUS SCAN LASER DOPPLER VELOCIMETRY (CSLDV)
FOR DYNAMIC BEAM EXPERIMENTS

The beam previously described in the DIC static test section was set up in a very similar
configuration at University of Wisconsin — Madison laboratories. A similar schematic is shown
in Figure 9. However, the beam extension from the clamped support is 10.5 inches instead of 10
inches as before. Also, the beam is excited dynamically with a sinusoidal force of 7 N amplitude
at 20 cycles per second. Both the simple support and the two inch long spreader plate
configurations were tested. Figure 10 and Figure 11 show the elevation and plan view setup.
Figure 11 depicts the view the laser head had as it scanned back and forth down the length of the
beam.

1\ 20 Hz 7 N Force

Figure 9 — Schematic of CSLDV test setup

Figure 10 — Elevation view of CSLDV test setup with spreader plate
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Figure 11 — Top view of CSLDV setup with laser scan location identified

The sinusoidal force was applied to the tip of the beam and a time history of the velocity was
obtained over 102 seconds while the laser scanned the length of the beam right and left three
times per second. The sample rate is such that velocities at 1700 locations along the beam are
sampled. The magnitude of the autospectrum of this time history is shown in Figure 12. The
largest peak is seen at 20 Hz which is the forcing frequency. A pair of side lobes is observed at
multiples of the 3 Hz scan frequency on both the right and left sides of the main peak. These
side lobe amplitudes are converted to coefficients of a polynomial in beam length x that describe
the motion of the beam. The amplitude plot related to this polynomial is shown in Figure 13 for
both the simple support and the spreader configurations.

Output Spectrum Syy

10°

iﬁ_l 0 sirl

8|49 .10

~

20 30 40 50 60
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Figure 12 — Autospectrum of CSLDV velocity time history
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Measured shape at 20Hz using CSLDV with 3Hz scan Frequency
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Figure 13 — CSLDV displacement plot for test beams

There is speckle noise in the velocity signal. Averaging the shape sampled over the 102 seconds
produces a standard deviation that is about 0.026% of the largest velocity at the beam tip. The
speckle noise occurs mostly at integer multiples of the scan frequency, in this case 0,3,6,9... Hz.
By appropriate setting of the sinusoidal input frequency and the scan frequency, the side lobe
amplitudes are at different frequencies than the speckle noise spikes. This reduces the effect of
the speckle noise on the shape calculation. Wisconsin researchers analyzing this data believe
that one can use about seven pairs of the side lobes before one begins to get close to the noise
floor. So theoretically, estimates of a smooth polynomial fit to the shape can easily predict a
second, third and fourth derivative for use in force calculations using the inverse beam theory.
The second derivative (which is proportional to moment) plot is shown in Figure 14.
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Figure 14 — Second derivative of CSLDV displacement
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The disadvantage of utilizing the polynomial solution is that it does not capture local
instantaneous discontinuities in moment, shear or load per unit inch since the polynomial is by
definition a smooth curve with no discontinuities. Therefore, local instantaneous changes in
force distribution, such as one would have at each end of the spreader plate will be blurred
without a very large number of polynomial coefficients. However, some information about the
load distribution is contained for the vertical motion in these velocity plots. This method is also
producing dynamic information, not just static information. It may be feasible with this method
to provide an inverse calculation to estimate vertical forces from beam theory.
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5. VIRTUAL LAP JOINT FORCE RECONSTRUCTION EXPERIMENT

A virtual experiment was envisioned which could be used to gather full field data for use in
solving the inverse problem of the force distribution in the contact area of a lap joint. A finite
element model (FEM) of the beam was developed to perform the virtual experiment. The two
dimensional problem is shown in Figure 15. The structure would be two beams with end masses
supported by soft bungee cords in a near free configuration. A single bolt would attach the two
beams together. A sinusoidal forcing function, F, would be applied near the center of gravity of
one mass/beam. A full field sensor could capture response on the top surface and sides of the red
beam/mass. The goal would be to reconstruct the forces being applied by the blue beam through
the contact area to the red beam. This system could be designed such that the first elastic mode
of the system could be excited by providing the appropriate sinusoidal forcing frequency for F.
This would allow relatively large deflections to be realized for small force inputs by exciting
near the resonant frequency. The first mode of vibration would have the nice feature of applying
large shear forces to the red beam in the contact patch which would enhance micro-slip type
behavior, the type of behavior for which we need to develop/validate constitutive models.

Figure 15 — Proposed lap joint system for the inverse force reconstruction

The two dimensional problem was simulated with a finite element beam model in MATLAB.
Several geometries were attempted, but the one that met with some success was based on the
beams and masses made from aluminum, two inch long beams with a one inch overlap at the
bolted joint, large masses of about 30 pounds weight to bring the system first elastic mode down
to about 20 Hz. The sinusoidal force applied would be on the order of 20 to 50 pounds peak, and
it would be applied just far enough off the resonant frequency that damping could be neglected
for the steady state response. Imaging of the entire top surface of the red beam would be
envisioned with the results averaged down to 41 nodes that correspond to the 41 nodes of a FEM
of the beam.
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6. FEASIBILITY OF DETERMING INTERFACE CONTACT FORCES
WITH THE EXTENDED SUM OF WEIGHTED ACCELERATIONS
TECHNIQUE

Using the same FEM from the previous section, a truth set of smoothly varying horizontal,
vertical and moment forces were applied to the contact area of the red beam. To attempt to
predict these truth forces, the extended sum of weighted accelerations technique (SWAT) was
applied using noise free full field horizontal and vertical displacements obtained at each node of
the red beam FEM. The SWAT technique[3,4] was developed by multiple researchers at Sandia
labs in the 80’s and 90’s and is a very robust method for obtaining the sum of all forces on a
structure from an array of point acceleration responses. It does not determine the distribution of
forces. However, the theory of SWAT was extended by Genaro and Rade[5] to extend the
capability to approximate the force distributions. The theory is briefly developed below.

Mii+Ci+Ku=f (D
M®G + CDG + Kdg = f )
O"MDG + D' CDOG + P KDg =D f (3)
I 0. [7 o 7. [0 o }
q+ g+ g=ao" 4)
{0 1}] [o 2;,1@”}] [0 wf}q J(@)
7|1 0 '@(0) = F(0) 5)
0 o +,j20 00 -0

M,C and K are the mass, stiffness and damping matrices. The force vector is represented by f
and the displacement vector by u. Generalized displacements are represented by ¢g. The mode
shape matrix is given by @, and {, represents the modal damping ratio, while @, represents the
system natural frequency, and @ represents any frequency in which there is excitation. Standard
SWAT uses the upper row of eqn (5). The extended SWAT utilizes the additional partition of
the second row of eqn(5).

The “truth” forces of Figure 16 were applied to the contact area on the red beam FEM. Vertical
forces are in the top plot, horizontal forces in the second plot and moments in the third plot.
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True Distributed Forces on the physical nodes of System A
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Figure 16 — True forces imposed on contact area of red beam FEM

Genaro and Rade’s extended SWAT calculation was used to estimate the force in the contact
area. [ was expected that only the lower frequency modes would contribute strongly to the
solution so that a truncated set of the modes could achieve an accurate force reconstruction. The
first attempt utilized 15 modes of the red beam and its result is shown in Figure 17. Here the
result has nearly converged to the true horizontal force distribution (middle plot), but the vertical
forces and moments are off by a factor of 10 and have the wrong distribution. In Figure 18, the
result is displayed retaining 75 modes. Again the horizontal force is accurate, but the vertical
forces and moments are off by several orders of magnitude and have wildly oscillating
distributions. Finally in Figure 19, the result using almost every mode of the FEM converges to
the “right” answer. However, real experimental data will have noise on the displacement
vector. The multipliers on the displacement vector in the lower row of eqn (5) are the square of
the circular natural frequency. These multipliers on the noise become astronomical after only a
half dozen modes. This method is practically infeasible for this example, because the vertical
forces and moments do not monotonically converge on the answer, but actually diverge until
nearly all terms are gathered.
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Estimated Forces on the physical nodes of System A
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Figure 17 — 15 mode force approximation
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Figure 18 — 75 mode force approximation
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Estimated Forces on the physical nodes of System A
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Figure 19 — 120 mode force approximation

Perhaps this is the reason that there is not widespread use of Genaro and Rade’s method. For
this problem, the method of standard SWAT works well to determine the sum of the forces, but
as soon as any additional rows of eqn (5) are added to determine the distributions, the vertical
forces and moments begin to diverge. In a practical implementation, even 15 modes would be a
large number to retain, and could be amplifying noise on the displacement vector data. This
exercise indicated that extended SWAT was not viable for this process.
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7. METHOD OF TRUNCATED ORTHOGONAL FORCES

Since the extended SWAT technique did not work, a different algorithm was conceived and
dubbed the method of truncated orthogonal forces, which was implemented with promise on the
FEM. It has some similarities to the extended SWAT technique, but turned out to be much more
stable. In this method we first discretize the forces in the contact area at the nodes of the finite
element model. It is known that the forces in the vertical and horizontal directions can be
represented by a weighted sum of orthogonal vectors. In this case a Fourier series was chosen as
the set of orthogonal vectors to represent the vertical and the horizontal force distribution. This
expresses the force in one direction as a sum of a constant and sines and cosines as a function of
the distance along the beam axis. The orthogonal vectors can be summed together with
appropriate coefficients to obtain a force reconstruction. When the number of orthogonal vectors
is equal to the number of discretized forces, the solution is exact. However, it is envisioned that
in practice a truncated set of orthogonal vectors will be sufficient to describe the force
distribution. In addition, noise on the measured data will make higher order terms of the series
very uncertain. In this case, each orthogonal force vector was applied to the model, and the
corresponding displacement shape was obtained. These corresponding shapes were incorporated
with simulated test data of the vertical and in plane responses including noise similar to the noise
we obtained using DIC in the lab. The data were averaged over time and spatially to obtain the
vertical and horizontal displacements at the 41 axial locations of the FEM of the red beam,
Figure 14. This averaged response was then utilized with the equations of motion and the
characteristic shapes to estimate the force as a sum of the weighted truncated orthogonal vectors.
Reconstructed forces (red) are compared with four truth force distributions (blue) in the
following figures. First, a force was assumed in both directions that was a constant plus a sine
wave in the x direction. These are two of the truncated orthogonal shape vectors, so they should
be reconstructed with least difficulty. Figure 20 shows that with the averaging previously
described, the reconstructed force is very accurate. f, is the vertical force, f; is the horizontal
(extensional) force and M is the moment.

The next assumed force distribution is a shifted triangle wave with one period for the horizontal
force direction. This should not be able to be reproduced exactly with the truncated number of

sines and cosines, and the result is shown in Figure 21.

Now consider a horizontal force assumption with the triangle wave distorted on one end as
shown in Figure 22.

Finally consider an assumed distorted triangle wave in the vertical force assumption in Figure
23.
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Estimated Forces with Noise vs True Forces
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Figure 20 — Assumed force is a sine wave plus constant (blue) and reconstruction (red) utilizing
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Figure 21 — Assumed force is a shifted triangle wave (blue) with reconstruction (red) using 7

Fourier series terms and 10,000 virtual DIC images with noise
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Estimated Forces with Noise vs True Forces
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Figure 22 — Assumed distorted triangle wave in axial force (blue) with reconstruction (red) with

7 Fourier series terms and 10,000 virtual DIC images with noise
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Figure 23 — Assumed distorted triangle wave in vertical force (blue) with reconstruction (red)

with 7 Fourier series terms and 10,000 virtual DIC images with noise
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The theory to obtain force reconstruction with truncated orthogonal forces begins with the
equations of motion, repeated here for convenience.

Mii+Ci+Ku=f (6)
Exciting the system off resonance with a sinusoidal force for a structure made of one piece
aluminum with low damping, the damping term can be ignored. Transforming into the
frequency domain for convenience yields
[-o’M +KJu=f - (7

Select a truncated set of orthogonal force vectors which shall be retained as a matrix F. (In our
case we selected terms of a Fourier series in x). Apply each column of F to obtain a response
vector u. Each response vector shall be placed in a matrix I'. Measure the available DoF, which
is a subset of all DoF of the FEM. For example, in this case all rotations are unmeasured.
Approximate the full u vector as

u=ITu, (8)
where the m subscript indicates the measured DoF. Substituting eqn (8) into eqn(7) yields

[-0’M +KIT: %@, = f . )
The resulting f vector will be constrained in the vector space of matrix F. If more vectors are
added to F, the solution can be more spatially refined, but typically becomes more unstable due
to experimental noise errors. The solution will converge if the noise is reduced enough (for
example, by averaging).

For the beam analysis, the approximate number of images that were required to average out
random noise and get a converged force reconstruction was related to the number of terms
retained in the Fourier series as given below.

No. terms for both vertical and horizontal truncated vectors No. images required
3 100

5 1000

7 10,000

This tradeoff will impact the test setup and data processing resource requirements. DIC analysts
say that 10,000 images can be processed in an overnight computer run, which is quite feasible.
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8. CONCLUSIONS

In conclusion, the method of truncated orthogonal forces conditions the inverse problem in a
manner that proved viable in a virtual test (based on a FEM) for a logistically practical
experimental setup with noise levels consistent with standard DIC approaches. Thus the non-
intrusive approach now appears feasible with DIC and possibly other imaging technologies in
which at least two dimensional (out of plane and in-plane in direction of applied force) full field
displacement data may be acquired. It appears that the extended SWAT methodology is not
feasible using full field data, as for the best virtual experiment that was conceived the method
failed for a reasonable number of retained modes, even with perfect response data from the FEM.

For solving an inverse problem directly from beam theory, the DIC and CSLDV appear to be
able to provide fairly low noise out of plane deflection data for full field type measurements.
These might be applicable for determining vertical forces for an inverse problem using beam
theory, although resources did not allow us to determine this viability for an example problem.
There are some potential improvements that might reduce the noise even further. For example,
after this study, it appears that it might be better to focus in on the contact patch portion of the
beam instead of the entire beam. DIC has better resolution in the horizontal direction than the
vertical, which appeared to be enough for the virtual test configuration. CSLDV had slightly
better vertical response results than the DIC, and the data analysis is designed for dynamic
analysis. However, CSLDV requires a more exotic two or three laser setup to obtain three
dimensional response, which is already standard in DIC 2 camera systems. Both technologies
deserve further investigation if a future LDRD is allowed to proceed.

Using either Prussian blue ink or ultrasonic scanning techniques provided an estimate of the

contact area for the statically bolted lap joint. Dynamic measurements of the contact area
displacements are still an open question.
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