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Developing a new DSMC code

SPARTA =
Stochastic PArallel Rarefied-gas Time-accurate Analyzer

General features:

2d or 3d, serial or parallel

Cartesian, hierarchical grid
e oct-tree (up to 16 levels in 64-bit cell ID)
e multilevel, general NxMxL instead of 2x2x2
e Triangulated surfaces cut/split the grid cells /; ﬁ
e 3d via Schwartzentruber algorithm
o Zhang & Schwartzentruber, Comp & Fluids, 69, 122 (2012)
o 2d via Weiler/Atherton algorithm
o formulated so can use as kernel in 3d algorithm
o C++, but really object-oriented C

e designed to be easy to extend
e new collision/chemistry models, boundary conditions, etc



Petascale and next-generation machines

@ 100K to millions of nodes
@ Parallelism within node:

e multi-core: 16 and growing
e many-core: Intel Xeon Phi, 240 threads, vector len = 8
e GPUs: NVIDIA/AMD, ~1000 warps, vector len = 32

@ Examples:

e ORNL Titan: 18K nodes, 16 cores/node + GPU
o ANL BG/Q: 48K nodes, 16 cores/node + 4 MPI tasks/core



Petascale and next-generation machines

100K to millions of nodes

Parallelism within node:

e multi-core: 16 and growing
e many-core: Intel Xeon Phi, 240 threads, vector len = 8
e GPUs: NVIDIA/AMD, ~1000 warps, vector len = 32

Examples:

e ORNL Titan: 18K nodes, 16 cores/node + GPU
o ANL BG/Q: 48K nodes, 16 cores/node + 4 MPI tasks/core

Programming model: MPI 4+ X

Focus of this talk is on inter-node parallelism (MPI)
Next talk is about “X": DSMC on GPUs



SPARTA benchmarking

2 machines:

@ chama = Linux cluster at Sandia, 400 Tflops (20K cores)
o dual Intel SandyBridge = 16 cores/node
e Infiniband interconnect
e up to 1024 nodes = 16K cores
e mira = BG/Q at Argonne, 10 Pflops (768K cores)
e custom interconnect
@ slower cores, less memory, 4 threads per core
e up to 8192 nodes = 128K cores = 512K MPI tasks



SPARTA benchmarking

2 machines:

@ chama = Linux cluster at Sandia, 400 Tflops (20K cores)
o dual Intel SandyBridge = 16 cores/node
e Infiniband interconnect
e up to 1024 nodes = 16K cores
e mira = BG/Q at Argonne, 10 Pflops (768K cores)
e custom interconnect
@ slower cores, less memory, 4 threads per core
e up to 8192 nodes = 128K cores = 512K MPI tasks

2 test cases:

@ Free molecular flow

e stress test for communication

e 3d regular grid = 1M to 10B grid cells

o 10 particles/cell = 10M to 100B particles
e Collisional flow

e about 2x slower (sorting, collisions)

e same grid cell & particle counts



Free molecular flow on two machines
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Collisional flow on BG/Q
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Performance issues to address for 100K-1M MPI tasks

@ Load-balancing
o Efficient communication
@ Problem setup and adaptive gridding

@ Visualization



Load balancing

@ Balance across procs, static or dynamic

o Granularity = grid cell with its particles

e Geometric method: recursive coordinate bisection (RCB)
e Weighted by cell count or particles or CPU (not yet)




Load balancing

@ Balance across procs, static or dynamic

o Granularity = grid cell with its particles

e Geometric method: recursive coordinate bisection (RCB)
e Weighted by cell count or particles or CPU (not yet)

@ RCB is fast
o Bigger cost is data move

@ 1B cells on
1024 BG/Q nodes
worst case: move all cells
balance time = 15 secs
RCB = 2, move = 12,
ghosts = 1




Efficient communication

@ One proc = compact clump of cells via load balancing
@ Ghost region = nearby cells within user-defined cutoff

@ Store surface info for ghost cells to complete move




Efficient communication

@ One proc = compact clump of cells via load balancing
@ Ghost region = nearby cells within user-defined cutoff

@ Store surface info for ghost cells to complete move

o Efficiently distributes grid info across procs

e With sufficient cutoff, only one communication per step
e Multiple passes if needed (or can bound particle move)

@ Communication with modest count of neighbor procs



Problem setup and adaptive gridding

e Create/adapt grid in situ, rather than pre-process & read in
@ Examples: refine around surface to user-specified resolution,
adapt grid based on flow properties

@ Algorithms should be efficient if only require local comm
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Problem setup and adaptive gridding

e Create/adapt grid in situ, rather than pre-process & read in
@ Examples: refine around surface to user-specified resolution,
adapt grid based on flow properties

@ Algorithms should be efficient if only require local comm
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Another setup task: label cells as outside/inside flow
Simple if pre-processing, in situ easier for large problems
Idea: label cells next to surf, paint outward, communicate
Fast in practice, iteration count scales as P1/3



On-the-fly visualization

@ Not a replacement for interactive viz, but ...
@ Quite useful for debugging & quick analysis

@ At end of simulation (or during) = instant movie
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merge pairs of images, keep the pixel in front, recurse
draw is parallel, merge is logarithmic (like MPI Allreduce)



On-the-fly visualization

Not a replacement for interactive viz, but ...

Quite useful for debugging & quick analysis

@ At end of simulation (or during) = instant movie

Render a JPG snapshot every N timesteps:

each proc starts with blank image (1024x1024)

proc draws its cells/surfs/particles with depth-per-pixel
merge pairs of images, keep the pixel in front, recurse
draw is parallel, merge is logarithmic (like MPI Allreduce)

@ Images are ray-traced quality



Simple example of on-the-fly viz

Particles + surface triangles + plane thru grid cells

% convert image*jpg movie.gif = play in browser



Big example of on-the-fly viz

o Rayleigh-Taylor instability in 2d

o Two-fluid mixing under gravity, heavy over light
@ 100M cells (10K x 10K), 1B particles, 10K steps, 1024 cores




Rayleigh-Taylor with rough surface




Rayleigh-Taylor with flat surface & pressure wave




Aiming for MPI+X via Kokkos

@ Programming model in development at Sandia
e hope to minimize impact of new chip designs on applications
o Carter Edwards and Christian Trott
@ Goal: write application kernels only once,
run them efficiently on variety of hardware
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Aiming for MPI+X via Kokkos

@ Programming model in development at Sandia

e hope to minimize impact of new chip designs on applications
o Carter Edwards and Christian Trott

@ Goal: write application kernels only once,
run them efficiently on variety of hardware
@ Two major components:
@ Data access abstraction via Kokkos arrays

e optimal layout & access pattern for each device
GPU, Xeon Phi, etc

@ Parallel dispatch of small chunks of work
@ auto-mapped onto back-end languages
CUDA, OpenMP, etc
o Key task for us is to write DSMC kernels so they:
e operate at fine granularity
o are thread-safe
o use Kokkos-compatible data structures



Next steps for SPARTA

@ Issues to address:

e more efficient cache usage
e adaptive gridding
e validation and verification

@ Planning for open-source release in a few months



Next steps for SPARTA

@ Issues to address:

e more efficient cache usage
e adaptive gridding
e validation and verification

@ Planning for open-source release in a few months

e Thanks!

Nathan Fabian (Sandia), graphics wizard

Jeff Hammond (ANL/ALCF), help with BG/Q issues
Jay LeBeau (NASA Johnson)

Sandia management support



