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Developing a new DSMC code

SPARTA =
Stochastic PArallel Rarefied-gas Time-accurate Analyzer

General features:

2d or 3d, serial or parallel

Cartesian, hierarchical grid
oct-tree (up to 16 levels in 64-bit cell ID)
multilevel, general NxMxL instead of 2x2x2

Triangulated surfaces cut/split the grid cells
3d via Schwartzentruber algorithm
Zhang & Schwartzentruber, Comp & Fluids, 69, 122 (2012)
2d via Weiler/Atherton algorithm
formulated so can use as kernel in 3d algorithm

C++, but really object-oriented C
designed to be easy to extend
new collision/chemistry models, boundary conditions, etc
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Petascale and next-generation machines

100K to millions of nodes

Parallelism within node:

multi-core: 16 and growing
many-core: Intel Xeon Phi, 240 threads, vector len = 8
GPUs: NVIDIA/AMD, ∼1000 warps, vector len = 32

Examples:

ORNL Titan: 18K nodes, 16 cores/node + GPU
ANL BG/Q: 48K nodes, 16 cores/node + 4 MPI tasks/core

Programming model: MPI + X

Focus of this talk is on inter-node parallelism (MPI)

Next talk is about “X”: DSMC on GPUs
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SPARTA benchmarking

2 machines:

chama = Linux cluster at Sandia, 400 Tflops (20K cores)
dual Intel SandyBridge = 16 cores/node
Infiniband interconnect
up to 1024 nodes = 16K cores

mira = BG/Q at Argonne, 10 Pflops (768K cores)
custom interconnect
slower cores, less memory, 4 threads per core
up to 8192 nodes = 128K cores = 512K MPI tasks

2 test cases:

Free molecular flow
stress test for communication
3d regular grid ⇒ 1M to 10B grid cells
10 particles/cell ⇒ 10M to 100B particles

Collisional flow
about 2x slower (sorting, collisions)
same grid cell & particle counts
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Free molecular flow on two machines



Collisional flow on BG/Q



Performance issues to address for 100K-1M MPI tasks

Load-balancing

Efficient communication

Problem setup and adaptive gridding

Visualization



Load balancing

Balance across procs, static or dynamic

Granularity = grid cell with its particles

Geometric method: recursive coordinate bisection (RCB)

Weighted by cell count or particles or CPU (not yet)

RCB is fast

Bigger cost is data move

1B cells on
1024 BG/Q nodes

worst case: move all cells
balance time = 15 secs
RCB = 2, move = 12,

ghosts = 1
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Efficient communication

One proc = compact clump of cells via load balancing

Ghost region = nearby cells within user-defined cutoff

Store surface info for ghost cells to complete move

Efficiently distributes grid info across procs

With sufficient cutoff, only one communication per step

Multiple passes if needed (or can bound particle move)

Communication with modest count of neighbor procs
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Problem setup and adaptive gridding

Create/adapt grid in situ, rather than pre-process & read in

Examples: refine around surface to user-specified resolution,
adapt grid based on flow properties

Algorithms should be efficient if only require local comm

Another setup task: label cells as outside/inside flow

Simple if pre-processing, in situ easier for large problems

Idea: label cells next to surf, paint outward, communicate

Fast in practice, iteration count scales as P1/3
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On-the-fly visualization

Not a replacement for interactive viz, but ...

Quite useful for debugging & quick analysis

At end of simulation (or during) ⇒ instant movie

Render a JPG snapshot every N timesteps:

each proc starts with blank image (1024x1024)
proc draws its cells/surfs/particles with depth-per-pixel
merge pairs of images, keep the pixel in front, recurse
draw is parallel, merge is logarithmic (like MPI Allreduce)

Images are ray-traced quality
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Simple example of on-the-fly viz

Particles + surface triangles + plane thru grid cells

% convert image*jpg movie.gif ⇒ play in browser



Big example of on-the-fly viz

Rayleigh-Taylor instability in 2d

Two-fluid mixing under gravity, heavy over light

100M cells (10K x 10K), 1B particles, 10K steps, 1024 cores



Rayleigh-Taylor with rough surface



Rayleigh-Taylor with flat surface & pressure wave



Aiming for MPI+X via Kokkos

Programming model in development at Sandia
hope to minimize impact of new chip designs on applications
Carter Edwards and Christian Trott

Goal: write application kernels only once,
run them efficiently on variety of hardware

Two major components:
1 Data access abstraction via Kokkos arrays

optimal layout & access pattern for each device
GPU, Xeon Phi, etc

2 Parallel dispatch of small chunks of work

auto-mapped onto back-end languages
CUDA, OpenMP, etc

Key task for us is to write DSMC kernels so they:
operate at fine granularity
are thread-safe
use Kokkos-compatible data structures
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Next steps for SPARTA

Issues to address:

more efficient cache usage
adaptive gridding
validation and verification

Planning for open-source release in a few months

Thanks!
Nathan Fabian (Sandia), graphics wizard
Jeff Hammond (ANL/ALCF), help with BG/Q issues
Jay LeBeau (NASA Johnson)
Sandia management support
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