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= Comparing Echo Decay Results
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= Summary of New Findings
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Central Spin Decoherence ) e

localized solid state electron
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localized solid state electron
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random nuclear field
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Central Spin Decoherence ) e

random nuclear field
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Central Spin Decoherence ) e

ensemble: inhomogeneous broadening
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Central Spin Decoherence ) e

Hahn spin echo
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Central Spin Decoherence ) e

random fluctuations
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Central Spin Decoherence ) e

ensemble: spectral diffusion
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Nuclear-induced Spectral Diffusion: .
Problem Hamiltonian and Evolution

Laboratories

Effective Hamiltonian (large B-field) Hahn echo evolution

IH f— 'HZe + ’Hzn + :HJA + ’HB, _/298i ‘ U(T) — e_zHTo,x’ee—lHT
tHZe — AI'IS-B‘SZa T .

, Initialize transverse spin,
Hzn = thermal bath:

_’YIBZInz:
— ZAnInzSZa
; |

Hp = ) bam(IntIm— — 2In:Im:).

n#m

— 1 o —Hn/kBT
po = 2A1|ye><ye| ®e

X
e
I

p(t) = U(1)poU (7)

Echodecay: yp(1)=2|Tr{(Sz +iSy)p(T)}|

 Distant pairs or pairs with similar A_: can flip-flop, but electron can’t feel it.
« Pairs with very different A : cannot flip-flop in presence of the electron.

« Pairs with (A, —A,,) ~ b,,.: flip-flopping causes electron decoherence.

« Larger A, —A,, causes faster but smaller decoherence (not full flip-flops).

Witzel, de Sousa, Das Sarma, PRB 72, 161306(R) (2005)



Cluster Expansion Calculation of

Spectral Diffusion (Spin Bath)

= Successive approximation in size of bath “cluster”.

= For nuclear-induced spectral diffusion, simply
compose solutions from pairs of nuclear spins.
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Electron spin echo envelope =
modulations
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(a) BI[001]
= Anisotropic interactions cause E
. o
modulations of the echo envelope. g
g |
= By happenstance, Si:P echo experiments 3 .\
. . : . . ool 8
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Other Nuclear-Induced Decoherence
Cases: Si:Bi in Natural Silicon
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George et al, PRL 105, 067601 (2010)

Morley et al, Nat. Mat. 12, 103 (2013)




Si:Bi and Si:As at Optimal Working Pointgg s,
(Clock Transitions) in Natural Silicon
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Other Nuclear-Induced Decoherence e
Cases: NV Centers in Diamond
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Other Nuclear-Induced Decoherence e
Cases: GaAs Quantum Dots
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FIG. 3. (Color online) Spin-echo signal for dots of Ligoy
=2.8 nm and various ry at B.,,=10 T.

Yao, Liu, Sham, PRB 74, 195301 (2006)

3

.

»

N=10", g=-0.44 :

1 i 1T 7 ‘o1 * . 2 : 7] 1k

08| N , .
06 vy Py :

ke

¢ B_,=0.045T
04— ; — B=1T O' T T N 1 T o 1
B B=05T
02 — B-03T 0 5 10 1(5 ) 20 25 30
,,,,,,,,,,,,, — B=02T 7 (us
0 L 4 L B_oiT

Cywinski, Witzel, Das Sarma, Bluhm et al, Nature Physics 7, 109 (2011)
PRL 102, 057601 (2009)




Cluster Correlation Expansion for
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Computing Echo Decay

Cluster correlation expansion:
L =(p;(t)/ps (0)) Works great for weakly
Lo — [, \With the exclusion of spins coupled baths

outside of S & ~ (perturbative orders
Ls = H Le, Ls = LS/ H L equate with cluster

CCS CCS size).

00 /o
(::3 ) (8 ‘@ @~ 8 X g Strongly coupled baths

< require more care.
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Canonical” Dipolar-only Problem W=
? ' ! ! ¢
B : ‘s L 29 .
5 , R é 0 .
¢ ! @ °
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’ ! central ! 9 )
? : ! * 3 . &> 6 ?
? @ ; 6 ¢ ? ?
] & P ?
0 . . .
? ? é ? é ?6
é
?* ? :
. &z & 1 1 — 3cos2 O
Her = ) bnmSiSn—2) bnmSiSh, bnm = —7(918)*h ;;n
n,m

Our recent PRB studies several cases in depth.
Closely related to isotopically enriched Si:P.

Central spin off resonance.
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Dipolar-only Problem @,

|II

“Canonica

1 —3cos?b0pm

Rym

Hest = Z bn,mg',;fg;l — Qan,mgf;S:% bam = —i(gp3)2h

n,m>0 n,m

Note scale invariance: concentration «— time"
The timescales of our figures are for g=2 electrons at a concentration of 10'3/cm3.




Adapting the Cluster Correlation
Expansion

Cluster correlation expansion:

L= pf=(t)/pi(0)
o — with the exclusion of spins
S = outside of S S

Ls = Hzc, ES:LS/HZC
cCs ccs

f ~ "~ ~ \

5= *e0 (0o 83
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Adapting the Cluster Correlation
Expansion

Cluster correlation expansion:

L =(oi~(t)/p~(0))

only allowing flip-flops
Ls =L witr}:in set Sg T

LS:HZ& ES:LS/HEC
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Internal Spin Averaging

(numerical instability)

CCS CCS
/ ~ ~ ~ ~ \
0s-0s e Qe
-0 e ®*(g)o* 08 n Averag
L O Interlaced Spin Averaging:
- < strategy we employ to
ey o c ~O ~ successively approximate
(::3 = @/(@ xl@/o X gg) internal spin averaging.
y

ISI<k

1T Ls.




Easier Way to Obtain Numerical iz
Stability: Additive Expansion

Ls = (p;_(t)/pj;_(O)) 1. Le=1 only allowing flip-flops

within set S
L= ZLs, Ls=Y Ie, Ls=Ls— Y Lo
CCS CCS
.
KRR

BEEEE)

(k) _ =
Loen = | Ls
ISI|<k




Spectral Diffusion with Isotopic
Enrichment

= Nuclear spins are eliminated with isotopic
enrichment of Si.

=  With few nuclear spins, other donor
electron spins dominate decoherence.
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Enriched Si:P theory/experiment ..
comparison
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Witzel et al., PRB 86, 035452 (2012) [Expt: Tyryshkin et al., Nature Materials 11, 143 (2011)



Hahn Echo for Many Spatial =
Realizations
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Calculating Correlation Functions
Using Spin-Cluster Approach

Use the additive cluster 78 ']

expansion with the e o~
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correlation function as the 1) & o
g’ 7 ‘f“‘\:‘\ ﬁ )

quantity of interest (L). 2 S ﬁ’& ............. /
\ i R \ 7

2
-

s, -

..........

.
N S

C(t) = (B.(t)B.(0)), where H = B.S. + Hp
Ls = C(t) — C(0), freezing spins outside S

~ ~ 4 . . ™
Ls=Ls+ Z Le. Contribution from cluster S

CCS LS = LS — E Lc,
\_ CCS

v,

Witzel et al., arXiv:1307.2597 (2013)
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Correlation Function: Case A

C(t) = (B.(t)B.(0)), where H = B.S, + Hp
Ls = C(t) — C(0), freezing spins outside S

Ls=1Ls+ Y Le, IJSZLS—ZEC,

CCS CCS
o Correlation function o Correlation function
----- 2-cluster v 2-cluster
- - 3-cluster - - 3-cluster
— 4-cluster — 4-cluster
g —500 1

~208 60 005 010 015 0.20 0y 0 107 10 0°
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Correlation Function: Case B

C(t) = (B.(t)B.(0)), where H = B.S, + Hp
Ls = C(t) — C(0), freezing spins outside S

Ls=1Ls+ Y Le, IJSZLS—ZEC,

CCS CCS
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Correlation Function: Case C ) .

C(t) = (B.(t)B.(0)), where H = B.S, + Hp
Ls = C(t) — C(0), freezing spins outside S

Ls=1Ls+ Y Le, IJSZLS—ZEC,

ccs CCS
o Correlation function o Correlation function
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Correlation Function: Case D

(B(t)B(0)) — (B(0)B(0)) (rad/s)’
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Correlation Function: Case E

C(t) = (B.(t)B.(0)), where H = B.S, + Hp
Ls = C(t) — C(0), freezing spins outside S

Ls=1Ls+ Y Le, IJSZLS—ZEC,

ccs CCS

Correlation function Correlation function

0 T - 0
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Correlation Function: Case F ) .

C(t) = (B.(t)B.(0)), where H = B.S, + Hp
Ls = C(t) — C(0), freezing spins outside S

Ls=1Ls+ Y Le, IJSZLS—ZEC,

CCcS CCS
o Correlation function o Correlation function
---- 2-cluster
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Calculating Echo Decay via =,
Correlation Function
In rotating frame with “classical” field: [:[(t) = B, (t)y(t)gz

Pi-pulse controls flip sign of B-field: y (t)

o0 =y (= [ [ da (BB (o))

_ %exp (— /Ot du C(U)Ft(“))

Hahn-echo

Filter Function Defined By Pulse Sequence: filter function

o [T Po—

Coherence decay can be quickly and easily calculated from the filter function
formalism, so can be easily incorporated into an optimal control loop.

K. Young and K.B. Whaley, Phys. Rev. A 86, 012314 (2012).



Echo Decay Comparison: Case B =,
(we will look at Case A later)

« Using correlation and filter functions:
ort) = oo (= [ an [t (BB o)

= %exp (— /Ot du C(u)Ft(u)>
« Compared with direct “interlaced spin
averaging” approach.

Correlation function Pulse Sequence Echo Errors

0 100 e
— 2-cluster, direct
; 10-* | == fromfilter function
P
w 10-2
°
g —-10 +
- 10-3
S
q —15F o 10-*
S S
e 1T}
T -t — 10
@ 10-6
Q25
= .
o 10-7
~ || 2-cluster
—30 F
- = 3-cluster 10-%
— 4-cluster
_ I I I —0 L !
ot 10-3 10-2 10-1 100 1050 10-2 10-1 10°
time (s) time (s)
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Echo Decay Comparison: Case C M.

» Using correlation and filter functions:
(o 0) = oo (= [ dn [ dta (BB ) wityuie))

= %exp (—/0 du C(u)Ft(u)>
« Compared with direct “interlaced spin
averaging” approach.

. Correlation function " Pulse Sequence Echo Errors
— 2-cluster, direct
o0 10-* | == fromfilter function
7 102
8 —wf
- 10-3
S
Q60 O 19
5 5
R 1T}
st — 10
@ 10—6
Q100 b
::’/ 10—7
[Aq]
Zmo b 2-cluster : |
- = 3-cluster : 10-% F
— 4-cluster R
. L Il 1 -9 L 1 1
M= 1073 10-2 101 10° 1050 10-2 10! 10°
time (s) time (s)
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Echo Decay Comparison: Case D

» Using correlation and filter functions:
(o 0) = oo (= [ dn [ dta (BB ) wityuie))

= %exp (—/0 du C(u)Ft(u)>
« Compared with direct “interlaced spin

averaging” approach.

Pulse Sequence Echo Errors

Correlation function

0 10°
— 2-cluster, direct
10-* | == fromfilter function
~ =5F
% 10-2
o
— -} 109
S
Q Q10
S 5l O
3 ' 10—5
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|

S ) 10-°
2
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a 10
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Echo Decay Comparison: Case E

» Using correlation and filter functions:
(o 0) = oo (= [ dn [ dta (BB ) wityuie))

= %exp (—/0 du C(u)Ft(u)>
« Compared with direct “interlaced spin

averaging” approach.

Pulse Sequence Echo Errors

Correlation function

— 2-cluster, direct s
10-* F| == from filter function 7/ ¢
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—~ 2L .
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=S

= 4t
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Echo Decay Comparison: Case F

» Using correlation and filter functions:
(o 0) = oo (= [ dn [ dta (BB ) wityuie))

= %exp (—/0 du C(u)Ft(u)>
« Compared with direct “interlaced spin
averaging” approach.

Correlation function Pulse Sequence Echo Errors

0 10°
— 2-cluster, direct

—50 10-* | == fromfilter function
P
% —100 10-2
©
=
150 10-3
S
B a0 Q 10-+
5 5
S 1|
~ —250 | ' 10-®
I ~
S 300} 106
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5 ¥
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Echo Decay Comparison: Case A =
(an odd case)

Laboratories
» Using correlation and filter functions:
1 t t
(o 0) = oo (= [ dn [ dta (BB ) wityuie))

= %exp (—/0 du C(u)Ft(u))
« Compared with direct “interlaced spin
averaging” approach.

Correlation function

----- 2-cluster — 2-cluster, direct
- - 3-cluster 10-* | == from filter function
— 4-cluster |

—500 F

—1000 |

o
S S
) Y
I —1500 | -
S
Qq
=
8 2000

—2.‘)0{]074 103 10-2 10-1 10° 10°

time (s)




Optimizing Pulse Sequences L

« Each spin state calculation of a 2-cluster spin-
cluster calculation of 100 time points for a single
pulse sequence takes about 1 minute (speed-ups
are still possible).

« Computing 1000 different pulse sequences using
correlation and filter functions takes about 1.5
minutes (in Python without optimization).

* We exploit the fact that filter functions for ideal
pulses are piecewise linear.

Precompute: Now trivial:
t

= u Clu), Filw) = o)+ 5w,
Z: : ét;lu j(i(i) o= %eXp <_/0 . C(“)Ft(“))

= 5o (a(tA(1) + B(t)B(1)

Witzel et al., arXiv:1307.2597 (2013)
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Optimal 4-Pulse Sequence: Case B

4-Pulse Sequence Echo Errors

109

== direct (for 'optimal’)
10-*F| — from filter function
—— filter function optimal
102 F = = direct UDD4

1079 E Lo 4-Pulse Sequence vs Total Echo Time
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Optimal 4-Pulse Sequence: Case C M.

100 4-Pulse Sequence Echo Errors

== direct (for 'optimal’)
10-*F| — from filter function
—— filter function optimal
102 F = = direct UDD4

B 10 4-Pulse Sequence vs Total Echo Time

T
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Optimal 4-Pulse Sequence: Case D @i

4-Pulse Sequence Echo Errors

10°
== direct (for 'optimal’)
10-*F| — from filter function E
—— filter function optimal
102 F = = direct UDD4 1
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Optimal 4-Pulse Sequence: Case E M.

4-Pulse Sequence Echo Errors

10 -
== direct (for 'optimal’)
10t | — from filter function
—— filter function optimal
102 == direct UDD4 3
1079 E Lo 4-Pulse Sequence vs Total Echo Time
= optimal (for filter function)
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Optimal 4-Pulse Sequence: Case F @i

100
== direct (for 'optimal’)
10t | — from filter function E
—— filter function optimal
10 F| == direct UDD4 1
1079 E Lo 4-Pulse Sequence vs Total Echo Time
= optimal (for filter function)
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Optimal 4-Pulse Sequence: Case A M.

109

== direct (for 'optimal’)
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Summary of new findings

= Using a spin-cluster method, we’ve computed quantum
(expectation value) correlation functions directly and shown
its convergence behavior with cluster size.

" For a “canonical” all-dipolar problem, we find that the echo
decay computed by assuming classical correlation functions
matches well with direct calculations with some interesting
exceptions.

= We've demonstrated the advantage of correlation functions
for optimizing pulse sequences.




