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Abstract—Computational Fluid Dynamics is an important
area in scientific computing. The weak scaling of codes is well
understood with about two decades of experiences using MPI.
As a result, the per-node performance has become very crucial
to the overall machine performance. However, despite the use
of multi-threading, obtaining good performance at each core is
still extremely challenging. The challenges are primarily due to
memory bandwidth limitations and difficulties in using the short
SIMD engines effectively. This work is about the techniques,
and a tool, to improve the in-core performance. Fundamental to
the strategy is a hierarchical data layout made of small cubical
structures of the problem states that can fit well in the cache
hierarchy. The difficulties in computing the spatial derivatives
(also called near-neighbor computation in the literature) in a
hierarchical data layout are well known, hence, such a data
layout has rarely been used in finite difference codes. This work
discusses how to program relatively easily for such a hierarchical
data layout, the inefficiencies in this programming strategy, and
how to overcome its inefficiencies.

The key technique to eliminate the overheads is called pipeline-
for-reuse. It is followed by a storage optimization called max-
imal array contraction. Both pipeline-for-reuse and maximal
array contraction are highly tedious and error-prone. Therefore,
we built a source-to-source translator called CFD Builder to
automate the transformations using directives. The directive-
based approach leverages domain experts’ knowledge about
the code, and eliminates the need for complex analysis before
program transformations. We demonstrated the effectiveness of
this approach using three different applications on two different
architectures and two different compilers. We see up to 6.92x
performance improvement using such an approach. We believe
such an approach could enable library and application writers
to build efficient CFD libraries.

Index Terms—source-to-source; high performance; CFD

I. INTRODUCTION

Computational fluid dynamics (CFD) is an important area of
scientific computing used extensively in a variety of fields,
including climate modeling, weather prediction, geophysics,
aeronautics, astronomy, energy, and defense applications. CFD
codes take up much of the computing time on many super-
computers. Speeding them up can improve the utilization of
large machines, and can also enable solving more challenging
problems.

In CFD, weak scaling (Gustafson’s law) across nodes with
MPI is common practice. However, achieving good per-node
performance has become very challenging with the increasing
number of cores on a CPU. The performance gains at the
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node level can linearly improve the performance of the su-
percomputer, as long as MPI and the interconnect can handle
the increased communication needs [1]. This paper addresses
how to improve the per-node performance, and in particular
the in-core performance. The other important performance
factors such as threading and node level parallelism are already
assumed to be programmed.

Techniques to improve the finite-difference methods have
been extensively studied under the name of stencil compu-
tation. In a stencil computation, the value at a point is the
weighted sum of its neighbors. The computation is performed
by applying this computational stencil to all the points in a
grid. Although the finite-difference codes can be thought of
as stencil computation, complex finite difference methods are
implemented in a sophisticated fashion by computing partial
results. Hence, they no longer have simple computational
stencils [2]. This is the primary reason why many of the
techniques for stencil computation are not applicable to the
finite difference codes discussed in this work.

Researchers have worked on the loop transformations such
as loop tiling, loop interchange, loop fusion, and array contrac-
tion, for the two most critical factors of in-core performance—
data locality and vectorization—for decades (see [3], [4]).
The primary objectives of the past research in this area were
about the safety (legality) and profitability of a transformation,
or a collection of transformations. Examples of profitability
analysis for loop tiling include automatically selecting the
candidate loops to tile and the optimal tile sizes to use. Finding
the most profitable transformation is often NP-complete [4].
Therefore greedy algorithms, heuristics, and runtime search,
are primarily employed to find an acceptable solution. The
state-of-the-art polyhedral compiler tools such as PoCC [5]
employ a brute-force search within a bounded domain to find
the best transformations from a very limited set of transforma-
tions such as tiling and fusion. However, such approaches are
often not scalable to large application codes, and may result in
a slow down because the generated code may break the short
SIMD vectorization [6]. To take additional transformations
such as better SIMD vectorization into consideration will
further exacerbate the search time and complexity.

In [2], the efficacy of the above mentioned canonical
loop transformations themselves, rather than the profitability
algorithms or compiler frameworks implementing them, was



evaluated. It finds that even the data reuse from loop fusion
does not suffice. The performance improvements occur only
with array contraction, in which memory space is reused, as
opposed to simply reusing the data. However, all the preceding
transformations are necessary to perform array contraction. It
is only the combination of all of the above transformations,
in conjunction with vectorization, when applied across all
the loop nests in the computational region that improves the
performance.

Data locality can also be improved by using good data
layouts, such as data blocking that conforms to the cache
hierarchy, in the application itself. The explicit rearrangement
of data into small tiles or blocks will be referred to as data
blocking in this work. However, data blocking is not common
in Computational Fluid Dynamics (CFD) due to programming
complexity. Dynamic data re-layout at a procedure call inter-
face is very effective for linear algebra, but not applicable to
CFD. For example in the BLAS implementations, the original
matrix in a caller routine is not tiled, but it is copied back and
forth to a tiled representation internally in a BLAS routine
to improve performance. This approach works when one can
perform O(n®) computations on O(n?) data, such as those
in BLAS, to offset significant copying overhead. It doesn’t
work in CFD because the amount of computation is directly
proportional to the data size. The data transfers become too
costly [2], and consequently the CFD codes require a blocked
data layout throughout the entire program to be efficient. The
enhanced locality from such a blocked data layout facilitates
effective vectorization on modern short SIMD engines by
making the data assembly required for vectorization very
efficient.

Our experience with the Cell processor (see [7]-[9]) forced
us to use short aligned vectors for performance, resulting in a
new hierarchical data layout and associated code transforma-
tions for computation which work exceptionally well on all
CPUs. All the three CFD applications evaluated in this paper
achieve >20% of the single-precision peak on Intel’s Nehalem
CPU. Two of the three application codes achieve up to 20%
of the single-precision peak on Intel’s Sandy Bridge CPU.

Although the resulting code expressions are in a high-
level language like Fortran or C, they are very difficult to
generate, test, debug, and maintain, because of the nature of
the transformations. The transformations need to be performed
over the entire computationally intensive region which usually
spans multiple procedures. We built a tool called CFD builder
to perform the code transformations for CFD library writers
and code developers taking advantage of the hierarchical
data layout. CFD Builder sidesteps the complex, and often
incomplete, program analysis by relying on domain experts’
knowledge about their code, and using program directives
to direct all of its transformations in a predetermined order.
The computationally intensive portion of one of the examples,
which is transformed by CFD Builder, consists of 6,082
Fortran lines, across 26 subroutines, after all comments are
removed.

The programming complexity of a hierarchical data layout
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Fig. 1. Overview

is eased by adopting the strategy explained in Section II.
The ease of programming comes at the expense of redundant
computations. However, CFD Builder completely eliminates
the inefficiencies through transformations we call pipelining-
for-reuse. This strategy built around blocked data and CFD
Builder are evaluated against the four canonical transforma-
tions mentioned above, i.e. loop tiling, loop interchange, loop
fusion, and array contraction. They outperform even the best
combination of canonical transformations, for data locality and
vectorization, applied manually by up to 93 percent [2].

Fig. 1 gives an overview of the concepts in this paper. The
rest of the paper is organized as follows. Section II provides
an overview of the hierarchical data layout. Section III dis-
cusses the pipeline-for-reuse transformation, and Section IV
discusses how CFD Builder automates pipelining-for-reuse.
Section V explains the storage optimization, maximal array
contraction, performed by CFD Builder, and Section VI briefly
describes the structure of CFD Builder. Section VII describes
the evaluation code and experimental setup, and Section VIII
discusses the results. Section IX discusses the related work,
and Section X contains the concluding remarks.

IT. BRIQUETTE: A DATA LAYOUT FOR DATA LOCALITY
AND VECTORIZATION

The primary motivation for the briquettes was to read and
write efficiently to the main memory. The problem state of the
mesh usually contains many fields. In the Cell processor, the
main memory could only be accessed through explicit Direct
Memory Access (DMA) calls, and it is more efficient to make
fewer calls. The solution was to pack the fields together so
that they can be read or written at once. At the same time,
the data must be small enough to fit in the on-chip memory.
The constraints naturally lead to a data structure where small
amounts of data of different fields are packed together. The
data structure is called a briquette, and it is defined as the
problem state for a tiny cubical region stored contiguously in
memory.

The briquette represents the problem state for a small
cubical physical region. The individual physical quantities
(fields) of the problem state are stored one after the other
in a briquette. The briquette is a structure of multidimensional
arrays, and can be defined in Fortran as,

dimension bg(nsugar*nsugar ,nsugar ,nvars)

where nsugar corresponds to the number of cells on a
side and nwvars corresponds to the number of fields in the
problem state. The current industrial compilers appear to only
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vectorize the inner loop. Therefore the first two dimensions of
a briquette are fused in the evaluation codes to maximize the
number of iterations in the inner SIMD loop.

Other data structures such as sub-domains and domains
are built out of briquettes in a hierarchical fashion. A brick
(sub-grid) is a 3-dimensional array of briquettes. In order to
overlap communication with computation, each MPI process
can update multiple bricks at a time. Woodward et al. update
8 bricks at each process, and they call the collection of eight
such bricks as an octo-brick [1]. The bricks and octo-bricks
can be defined in Fortran as,

dimension brick (nsugarsnsugar ,nsugar ,nvars,

nbgx, nbqy, nbqz)
dimension octobrick (nsugar*nsugar ,nsugar,nvars,
nbgx ,nbqy,nbqz, 8)

Fig. 2, similar to a figure by Culler et al. [10], illustrates the
higher dimensionality of briquettes when compared to tiling.
The briquettes are assumed to be squares instead of cubes
for illustration. The figure shows how the cache lines are
contiguous within each briquette, and not contiguous in a tile.

The benefits of briquette such as coalesced reads and writes,
smaller working set, packed operands for SIMD vectorization,
efficient data assembly for SIMDization, and support for
thread-level parallelism are documented in [2]

Programming with briquettes

Spatial derivatives: Simulating physical phenomena in-
volves solving partial differential equations (PDE). The equa-
tions involve quantities which change with respect to time
and/or space. Computing how a quantity changes in space is
called the spatial derivative of a quantity. Spatial derivatives
are essential in CFD where the problem space is discretized
into small spatial regions called cells. A spatial derivative
at a given point is computed from a set of adjacent cells.
Expressing the computation for a domain with briquettes is
extremely difficult because the adjacent cells more often will
belong to different briquettes making the array indexing very
complicated.

Domain decomposition: In a large parallel computation, the
problem domain is divided spatially into smaller subdomains
to be operated by individual nodes in the system, and this
process is called domain decomposition. The neighbor for
a cell may be in another sub-domain. The code for spatial
derivatives would have been extremely complicated, but the
problem is solved by padding each sub-domain with the
required neighboring cells from the other subdomains. The
padded region is called the ghost region or the boundary
region. It is indistinguishable from the real cells for the
computation, thereby simplifying programming.

Miniaturization of domain decomposition: The program-
ming complexity of computing spatial derivatives across bri-
quettes can likewise be simplified by padding a briquette with
ghost cells. This technique is essentially a miniaturization of
the domain decomposition strategy taken to the granularity
of briquettes. There are a few differences between the two
strategies, though, which are explained here. In domain de-
composition, each process typically works a single subdomain.
Since the subdomains typically belong to different address
spaces, redundant storage must be allocated for the boundary
cells in different subdomains. In the miniaturization, each
thread of computation works on many briquettes. Since the
briquettes for a subdomain belong to a single address space,
we can avoid creating redundant storage for all the briquettes.
The savings are very crucial for briquettes due to the large
ratio of ghost cells to real cells in a briquette. The number
of ghost cells on each side of a briquette in a mini-domain
is the same as the number of ghost cells on each side of a
subdomain.

The briquettes are padded in a separate set of temporary
arrays just before their update. In the process, the individual
fields of a briquette are copied into separate temporaries to
simplify referencing later. This process is called “unpacking.”
The storage for the temporaries is reused by all the briquette
updates performed by a thread. However, the computations
performed in the ghost regions of a briquette are not reused.
CFD Builder has been built to eliminate the redundant com-
putations and copies in the ghost regions between briquettes
by reusing the computation.

The workspace per thread with briquettes becomes ex-
tremely small. It is only 16.59 KB and 19.2 KB per thread
for Runge-Kutta advection and PPM advection, respectively.
The miniaturized domain decomposition performs 65.61% and
137.31% redundant computations and redundant copies for
RK-adv and PPM-adv respectively at a grid resolution of 512-
cubed cells II. The redundancy in computation is measured
using our Cray-1 style FLOP metric, as described in Section
VIII. However, this code with briquettes performs up to 4x
faster than the baseline codes without briquettes. In contrast,
the linear algebra algorithms do not suffer from any redundant
operations or redundant copies due to data blocking.

Below is a list of the sequence of operations to update a
briquette:

i Unpack the briquette and all the necessary neighboring
briquettes into temporary arrays for the individual fields
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as shown in Fig. 3.

ii Perform the update for the current briquette

iii Pack the results into a briquette and write it back into a
new array.

We need a double buffer to hold the old and new values
of the problem state. The new results of one pass become
the old values for the next pass. The buffers switch roles
between passes. However we can eliminate one of the buffers
through code transformations as we will see in Section III.
The code variant with briquettes and miniaturized domain
decomposition will be referred to as WB, an abbreviation for
with briquettes. The code variant without briquettes will be
referred to as NB, an abbreviation for no briquettes

Transposing the problem state improves SIMDization in
dimensionally split codes by packing the operands. Here trans-
posing is performed efficiently by transposing the briquettes
individually. The briquettes in conjunction with the program-
ming strategy deliver up to 4x improvement in performance.
The programming strategy, although built around briquettes,
works for data blocking too.

III. PIPELINE-FOR-REUSE

Despite the advantages, the WB code expression has inef-
ficiencies which are more pronounced for smaller briquette
sizes. The inefficiencies can be eliminated through program
transformations referred to in this paper as pipelining-for-
reuse. This chapter presents an automated mechanism to
perform the transformations from source-to-source. The results
show up to 2x improvement from pipelining-for-reuse on two
different architectures and two different compilers.

The redundant computations in WB can be eliminated by
piping the partial results between the briquettes (see III-B
for an example of partial results). However, it is desirable
to avoid the communication costs for piping the results.
Therefore a single processor core is assigned to compute
a line of briquettes in the sweep direction. Since the same
processor core computes the adjacent briquettes it does not
have to communicate with another core for piping the partial
results. The results do not actually “flow” from one memory
location to another. This pipelining is meant to reuse the
partial results of computations and it is not aimed at increasing
the amount of parallelism. Therefore this pipelining is called
as pipelining-for-reuse. Fig. 4 is an illustration of pipeline-
for-reuse in action. This section presents pipelining-for-reuse,
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the transformations to eliminate redundant computations and
copies in the WB code expression.

A. Eliminating redundant copies

Let rho(nsugar * nsugar,1 — nbdy : nsugar + nbdy) be
a Fortran temporary which holds the unpacked density field
in WB where nbdy represents the length of the difference
stencil in either direction and nsugar represents the number
of planes in a briquette. Each briquette needs to be copied
and unpacked only once to eliminate redundant copies. This
change will overwrite nsugar planes of rho when a newly
read briquette is unpacked. It is desirable to overwrite only
the spent-up planes which can be accomplished by making
rho into a revolving buffer using indirect indices to access
them.

Fig. 5 shows how the storage of rho can be reused as the
computations proceeds along a pencil of briquettes. Here, nbdy
is assumed to be nsugar for the ease of illustration. The abbre-
viation “bq.” stands for briquette in the picture. On updating
briquette 1, the first nsugar planes of rho corresponding to
the briquette O are stale. They can be overwritten by nsugar
planes of rho from briquette 3 when we update briquette 2.
This process is repeated for the subsequent briquettes. The
planes from briquette n + 1 are logically to the right of the
planes from briquette n in any given mini-domain. However as



we see in Fig. 5(b) and 5(c), the planes from briquettes 3 and
4 do end up physically to the left of planes from briquette
2 in the array rho. Therefore we create a map from the
logical planes in a mini-domain for a briquette to the physical
planes in the array rho using indirect indexes. The indices
are initialized at the beginning of the pencil update. As the
computation proceeds, we need to make space for the planes
from the new briquettes. Therefore the indices are rotated such
that the physical planes to be overwritten are now logically the
rightmost planes in the current mini-domain. The rho values
from the new briquette can now be unpacked into the freed
up space. The computational loops follow the unpacking, as
the mini-domain is ready for update.

B. Eliminating redundant computation

The redundant copies to construct rho have been avoided,
but the above code expression still performs redundant com-
putations. The partial results computed in the halo region
of one mini-domain correspond to the computation in the
real regions of other mini-domains. For example, Code 1
shows a simplified computation to be performed at each
briquette, in which r¢tmp is a partial result. rtmp(:,4) for
one briquette is same as rtmp(:, 0) for the next briquette, and
the computation can be reused. The computational loops in
WB for a mini-domain have iterations ranging from nsugar
to nsugar + 2 x nbdy. In other words, at each briquette in
a pencil the computational loops perform nsugar and more
iterations. Any computational loop which performs more than
nsugar iterations is performing redundant computations. The
only way to avoid the redundant computations is to make each
computational loop perform not more than nsugar iterations
for each briquette in a pencil.

Code 1. Partial results

do i=0,nsugar
do jk=1,nsugarxnsugar

rtmp (jk,i) = sqrt(0.6xp(jk,i)*xrho(jk,1))
enddo

enddo
do i = 1,nsugar
do jk=1,nsugarxnsugar

rhonu(jk,i) = 0.5%x(rtmp (jk,i—1D)+rtmp (jk,i))
enddo
enddo

The partial results generated by a computational loop at
a given plane are consumed by the subsequent computational
loops for the same plane or subsequent planes. As an example,
rtmp generated by the first loop nest in Code 1 is consumed
by the next loop nest. The partial results need to be buffered till
they are consumed by the later loops for the same briquette,
or the subsequent briquettes. In contrast, the partial results
are never buffered between the mini-domains in WB. The
values generated by a later loop are never consumed by a
former loop in the computation. The computational loops have
a topological order with respect to true dependences. The loops
can be grouped into stages of a computational pipeline such
that the buffering of partial results mentioned above occurs

between the stages. The partial results between two stages
remain buffered till the latter stage reaches the appropriate
briquette when the results can be consumed. By consuming
the results at the earliest possible time, the buffers can be
constructed to have the minimal size. The results can be
consumed at the earliest only when every computational loop
performs as much computation as possible with the briquettes
seen so far. It can be achieved by aligning the loops such that
the dependence distances between the loops are made as small
as possible while preserving the dependences.

The strategy for eliminating the redundant computations in
pipeline-for-reuse involves the two steps outlined below:

i Perform loop alignment such that the dependence dis-
tances of edges between the computational loops are
made as small as possible while still preserving the de-
pendences. Loop alignment is performed to minimize the
data buffering between the stages in the computational
pipeline.

ii Transform the aligned computational loops to perform
at most only nsugar iterations per briquette. i f state-
ments are used to prevent iterations which must not be
executed. The ifs could have been replaced by loop
peeling, but peeling would result in massive code bloat
(2].

For a computational loop with an extent from {1 —

nbdy..nsugar + 2 x nbdy}, pipelining-for-reuse will eliminate
2 x nbdy redundant iterations for every briquette computed.

IV. AUTOMATION OF PIPELINING-FOR-REUSE

The transformations to eliminate redundant copies and compu-
tation are highly error-prone and difficult to implement manu-
ally. CFD Builder was built to perform the transformations at
the source level automatically with the help of directives listed
in Table L. It is built using ANTLR [11] and Java. It reuses
the space for the partial results at a very fine granularity of
individual planes. CFD Builder also performs double-buffering
as part of the pipelining transformation.

The code to update a briquette in WB consists of four major
parts: unpack, compute, repack, and write-back. The unpack
region constructs the mini-domain to update the briquette. It
reads in all the briquettes required to update the current bri-
quette, and copies the individual briquette fields into separate
arrays for the ease of programming.

The unpacked arrays are consumed by the compute region
which performs the actual computations. The generated results
must be repacked into briquettes for the next pass. The repack
region performs all the necessary packing and transposing. The
write-back region copies the packed briquettes back into the
grid to be consumed by the next pass.

A. Eliminate redundant copies

Let icube be the induction variable of loop to update a pencil
where each iteration updates a mini-domain. Let icget be the
induction variable of a loop inside the icube loop where the
required briquettes are read-in to construct a mini-domain. In
order to not perform any redundant copies, each iteration of
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icube must read in just a single briquette. It is accomplished by
eliminating the icget loop. However, a few briquettes will be
left unprocessed by this elimination. Therefore in place of the
icget loop, the iteration space of the icube loop is expanded
to cover the entire pencil. The iteration space now becomes
{1—nghostcubes..nbqr +nghostcubes}. All the occurrences
of tcube inside the loop are replaced with icube—nghostcubes
where nghostcubes corresponds to the number of ghost cubes.
CFD Builder identifies the icube loop and icget loop with
the help of cPPM$ PIPELINE and cPPM$ ELIMINATE
REDUNDANT ITERATIONS directives, respectively.

B. Double-buffering

We need double buffering to support prefetching data from the
global arrays in the main memory to the stack variables in the
on-chip memory. In order to double-buffer the briquette reads,
the computation must lag behind the prefetch by one briquette.
The prefetch has loop carried dependences, of distance one,
with the rest of the icube loop body. A prologue region for
the first prefetch is avoided by instead delaying the rest of
the loop body by one iteration. The icube loop is extended
by one more iteration, and the appropriate i f conditionals are
generated for this loop shifting. The double-buffering provides
a place-holder to insert architecture specific prefetching in-
structions, either hints or commands. CFD Builder identifies
the variable names to be double-buffered from the cPPM$
DOUBLEBUFFER directive. Likewise the prefetch region is
identified with the help of the cPPM$ PREFETCH BEGIN
and cPPM$ PREFETCH END directives placed around the
region.

C. Eliminate redundant computations

Inlining: In order to eliminate the redundant computations,
all the loops in the computational region need to be merged.
However, it is expected to be thousands of lines long as in
the ePPM application described in Section VII, and is usually
spread across many procedures. Therefore it is necessary
to inline the procedures before loop merging. CFD Builder
recursively inlines all the procedures in the region. The cPPM$
INLINE directive needs to be placed in front of all the
procedure calls in this region to facilitate the inliner. The need
for the inline directive can be eliminated if desired.

Alignment: As a first step for pipelining, the loops in
the pipeline region—unpack, compute, repack, and write-back
loops—must be merged to preserve the data dependencies.
However, the loops have fusion-preventing edges between
them. The forward differencing and centered differencing
equations in CFD codes cause backward dependencies be-
tween the loop nests. The dependencies can be eliminated
by loop alignment. The algorithms to align loops require the
information on alignment thresholds. The alignment threshold
for an edge is nothing but the negative of its dependence
distance [4]. CFD Builder implements a linear time algorithm
for loop alignment by making the three assumptions stated
below.

Assumptions:

1) Let ¢ be the induction variable of the loop level to be
fused in a loop nest L. After simplification, a subscript
of £ with ¢ can only be a simple affine expression i or
1+ n where n is a positive integer. The subscript cannot
have any non-linearity, any other loop index variable,
and any scaling.

2) There must be at least one subscript ¢ or ¢ — n in L.

3) The loops have a step size of one.

The finite differencing equations typically do not need
anything more complicated than the simple expression of the
first assumption, for their subscripts of i.

Loop merging and pipelining: The loops pipelined have
mismatching ranges i.e. they have a differing number of
trip counts. For example, the loops in ePPM belong to 9
mismatching ranges. The text region is estimated to be too
large to fit in a typical 256 KB L2 cache alongside the working
set. Therefore, CFD Builder generates a single merged loop
with appropriate i f conditionals instead of index-set splitting
or loop peeling [4] [3] to avoid code explosion. It must be
noted that CFD Builder assumes that all the loop nests can be
merged. Any scalar statement in between the loop nests will
become part of the fused loop, and therefore the statement
must not alter the program behavior after fusion.

After alignment, CFD Builder adjusts the iterations spaces
of some loops so that utmost nsugar iterations of the fused
loop are performed per briquette. These transformations de-
scribed in this paragraph are specific to pipelining WB, and is
not part of loop fusion. Pipelining-for-reuse requires indirect
indices to access the partial results, and the indices are



Directive Identifies the

PIPELINE loop to update a pencil
DOUBLEBUFFER arrays to be double-buffered
ELIMINATE REDUNDANT  loop to construct the mini-domains

ITERATIONS
PREFETCH BEGIN
PREFETCH END
INLINE
LONGITUDINAL LOOP
REPACK LOOP

beginning of the prefetch region
end of the prefetch region
subroutine call sites to be inlined
loops to be merged
loops which assemble the computational
results into briquettes
TABLET
LIST OF DIRECTIVES

Flops/cell
WB-PFR WB Redundancy(%)
RK-adv 162.92 379.89 133.18
PPM-adv 276.31 454.60 64.53
ePPM 3218.67 5195.77 61.43
TABLE 1

REDUNDANT FLOPS/CELL

identical to the ones generated to eliminate redundant copies.
The complexity of both the algorithms presented is O(n),
where n is the number of statements, since all the statements
are visited not more than once or twice.

Repack and Write-back: The results of the computation are
assembled into briquettes. The data assembly loops, also called
repack loops, will be pipelined along with the compute loops.
When nbdy is not an integer multiple of nsugar, the briquettes
are only partially constructed at the end of an iteration of
the icube loop. In such cases, the output needs to be double-
buffered since we do not write back partial briquettes. Double-
buffering the output briquette takes more space since one or
more planes will be furloughed at any given point in time.
Double-buffering the output is avoided here by delaying the
briquette construction. The results of the computation are
instead held longer in the pipelined temporaries who do not
have any idle storage.

The assembled results of the computation like the problem
state and the visualization output are written back to the main
memory in briquettes. In a steady state condition, a briquette
is fully constructed only once every iteration of the loop over
briquettes, and not for every loop iteration over the planes.
CFD Builder performs code motion and generates appropriate
conditional statements to ensure that the briquettes are write-
back when they are fully constructed.

V. MEMORY REDUCTION THROUGH MAXIMAL ARRAY
CONTRACTION

Storage optimizations are becoming increasingly more essen-
tial for performance. Array contraction is a storage optimiza-
tion which reduces array size while preserving the program
semantics. It is referred to as maximal array contraction when
the arrays are reduced to the smallest possible size for a
given schedule. We have implemented a linear algorithm for
maximal array contraction in one dimension under certain as-
sumptions. The contraction in a single dimension is sufficient
for finite difference codes in pencilTemps format or WB after

pipeline-for-reuse. It is meant not to contract the dimensions
corresponding to the inner SIMD loops. The algorithm for
array contraction can be extended to multiple dimensions if
necessary.

Maximal array contraction takes advantage of the property
that the partial results of computations have short lives. For
example after pipeline-for-reuse, most of the partial results do
not live beyond a few pipeline stages. It means that the circular
buffers for the partial results do not have to be as long as the
total number of pipeline stages. They can now be made even
smaller. Maximal array contraction constructs the smallest
possible circular buffer for each partial result. No further
memory reduction can be performed on the circular buffers.
The reduced workspace may now fit in the on-chip memory,
as is the case with all the three example applications on the
current Intel architectures. Maximal array contraction results
in up to 21% speedup over just pipeline-for-reuse for ePPM
when the workspace fits in the L2 cache after contraction.

VI. THE STRUCTURE OF CFD BUILDER

CFD Builder is comprised of two parts: the frontend and
backend. The front end is geared towards improving the
computational intensity. The backend generates platform spe-
cific SIMD and DMA instructions. The back end provides
performance portability across the different architectures by
generating the appropriate SIMD and DMA instructions where
applicable. The precompiler heavily relies on directives to
perform the code transformations. We built both the front end
and the back end using ANTLR [13].

A. Front end

The front end performs four main operations: inlining,
pipelining-for-reuse, maximal array contraction, and prefetc-
ing, as shown in Fig. 6. The pipelining transformation in-
terleaves the computation from the different stages of a bri-
quette update. Most often, the computations are spread across
multiple procedures in the input code. Inlining is essential to
bring them together before we can perform pipelining. We
simplify the liveness analysis for maximal array contraction by
retaining the call site names for variables in the inlined code.
Although the output from the translator is ugly we try to make
it readable by retaining variable names during inlining and
not creating new temporary variables for the circular buffers
during maximal array contraction. Currently, the front-end
only supports Fortran 77, because we have not built parsers
for other languages. It should be noted that the intensifying
precompiler only transforms the computation region which is
relatively smaller than the rest of the code. Rewriting just the
computation region in Fortran 77 may be unpleasant, but not
impossible. We are considering migrating to other platforms
to have access to robust C, C++, and Fortran parsers.

B. Back end

Since utilizing the SIMD engines is key to performance, we
built a back end to generate the SIMD instructions for the
different architectures. It can generate SSE, AVX, and SPU
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Fig. 6. CFD Builder and Front-End transformations

intrinsics for IBMs Cell. It provides performance portability
across the different architectures and native compilers [9].
The back end also generates the DMA instructions for the
Cell architecture. It relies on directives to guide the code
generation.

The input to CFD Builder is currently WB written in
Fortran-77 with a few additional syntactic restrictions. The
transformations are invoked through directives in the input
code. The use of directives, together with the assumptions
made allows CFD Builder to not perform any data dependence
analysis. Currently, the incorrect use of the directives or
noncompliant input may not be flagged as an error, and may
produce incorrect results. For example, it is necessary to
merge all the computational loops for pipelining-for-reuse. The
statements in between the loop nests will be part of the merged
loop as well. Such statements must not alter the behavior of
the fused loop, or alter the behavior of the pipelined code.
For example if an increment operation occurs in between the
loop nests, pipelining-for-reuse will alter its behavior. CFD
Builder does not perform strict conformance checks for all
the cases currently. However, enhancement of the analysis to
report more errors is planned for future work.

VII. EXPERIMENTS
A. Applications

CFD Builder addresses codes based upon numerical algo-
rithms that use grids which cover a 3-D domain in physi-
cal space. CFD codes use grids that are logically uniform
or unstructured. Many unstructured grids have very regular
local structure. We believe that these codes can still use the
techniques that our code translation tool addresses. This can be
accomplished by taking each cell of such a grid and chopping
it up into, say, 4> cells to produce a tiny region of grid logical
uniformity.

This study restricts the attention to uniform Cartesian grids
in order to show the benefits of our approach in a simpler con-
text. Three codes were used for the demonstration. From our
teams own Piecewise Parabolic Method (PPM) gas dynamics

codes, we have extracted a code module called PPM advection
(it is described in [12]), PPM-adv. The interpolation algorithm
in PPM-adv is quite complex, and it involves a wide difference
stencil. In this respect, this algorithm is similar to many
others that are in general use in the CFD community. This
algorithm gives a good illustration of our code transformations
while involving relatively little code. From the Cloud Model
1 (CM1) weather code (described in [13]), we have extracted
a code module called Runge-Kutte advection (RK-adv) [14].

Both the code modules have been built into full applications
by placing them into a code framework similar to our full CFD
code for testing. The algorithms are dimensionally split which
means that the problem state is updated individually in each
of the component directions. The computation is carried out in
a sequence of six 1-D passes in a repeated pattern of xyzzyx.

The third application called ePPM is a multifluid gas dy-
namics code. This multifluid PPM code of Woodward and his
collaborators is based upon the original Piecewise-Parabolic
Method [15] and PPB advection scheme [16] with various
later modifications described in [12] and [17]. It is set up
to solve an inertial confinement fusion (ICF) test problem
described in [1]. This is a fully functional simulation code,
which has scaled on NCSAs new Blue Waters machine to
over 730,000 threads running on over 24,000 nodes [1]. After
CFD Builder transforms ePPM, the computationally intensive
portion consists of just one subroutine with 6121 lines of
Fortran (with no comments).

B. Experimental Setup

Since this study is about intra-node performance, the execution
times were measured for only the computational regions using
CPU_TIME. All other aspects of high-performance computing
such as the internode communication and file operations,
which are nevertheless important, are not relevant for this
study. For this reason, the codes were benchmarked at a single
node, but running on all the cores in a node using OpenMP.

The code variants were run on a dual-socket node with
quadcore Intel Xeon x5570 (Nehalem) processors @ 2.93
GHz, and on a dual-socket node with eight core Intel Xeon
E5-2670 (Sandy Bridge) processors @ 2.6 GHz. Intel Fortran
v13 (ifort) and GCC 4.7.1 (GCC) compilers were used on both
the architectures. For ifort, the codes were compiled with -O3
and -xSSE4.2 options for Nehalem, and with -O3 and -xAVX
compiler options for Sandy Bridge. Similarly for GCC, -O3
and -msse4.2 compiler options were used for Nehalem, and
-O3 and -mavx were used for Sandy Bridge.

Simultaneous multi-threading (SMT) was experimented by
assigning one OpenMP thread to each virtual processor core,
i.e. 16 threads on a Nehalem node and 32 threads on a Sandy
Bridge node. It must be noted that even when the cores were
not oversubscribed through OpenMP, the hardware SMT was
never disabled in the operating system or in the Basic Input
Output System (BIOS). For convenience, having one thread
per virtual core will be referred to as the SMT mode, and
having one thread per core will be referred to as the non-SMT
mode. For ifort, the threads were explicitly pinned to cores



using the OpenMP environment variable KMP_AFFINITY.
However for GCC, better performance was noticed by not
pinning the threads to cores, especially for the non-SMT mode.
Therefore, the thread pinning was disabled in GCC for all
cases. The page size is 4 KB. Both the codes were set up
to solve a cubical problem of 512-cubed cells. The execution
times reported are averages of 320 values which represent all
the computational time steps between two epochs of physical
time.

WB was evaluated here using all the three applications:
PPM-adv, RK-adv, and ePPM. ePPM is set up to solve a
cubical problem of 224-cubed cells, and the execution times
reported for ePPM are averages of 256 values. Since this
work is about in-core performance, no scaling studies were
performed here with multiple MPI ranks, and MPI capability
in the framework has been disabled.

VIII. RESULTS
A. Briquette

The workspace per thread of WB is relatively small for all
the three codes. The workspace for the advection codes is
comparable to the z-pass of NB-circularTemps which has the
smallest workspace among all the vectorized passes of the
NB code variants. Even for a large code such as ePPM the
workspace of WB is only 208.28 KB.

Although not listed here, GCC generated binaries are two
to almost four times slower than the ifort generated binaries
because GCC does not vectorize most of the computational
loops. ifort vectorizes all the computational loops which are
critical for performance. Henceforth, all the execution time and
performance data in this section will be referring to the ifort
results. Please refer to the work by Lin for achieving SIMD
performance portability across different compilers [6]. The
SMT mode runs almost twice as fast as the non-SMT mode.
Although not listed, better performance is seen by not pinning
the threads for the non-SMT mode. However, the overall best
performance is seen with thread pinning in the SMT mode.

B. Pipeline-for-reuse

1) Improvement over WB: The codes after pipeline-for-
reuse, referred to as WB-PFR-1b2ub, consistently perform
better than WB for all cases, as seen in Tab. III. The increase
in speed for ifort compiled binaries roughly equals the per-
centage of redundant flops, listed in Tab. reftable:red-flops,
eliminated by pipeline-for-reuse. This implies that pipeline-
for-reuse works as expected. The performance improvement
from GCC is only about 50% or lower for reasons not clearly
understood. GCC also runs slower than ifort in all the cases
because GCC doesnt vectorize the loops as much as ifort. Like
before, the SMT mode improves the performance for all the
instances.

Tab. 1II lists the percentage of redundant computations in
WB compared to WB-PFR-Ib2ub. The flops are measured
Cray 1 style: adds and multiply, reciprocal, sqrts, and exp,
count as 1, 3, 5, and 14 flops, respectively. Tab. IV lists
the size of the workspace, and Tab. V percentage of peak

Speed-up from
pipelining-for-

WB Both
reuse
Nehalem 4.08x 1.56x 6.35x
PPM-adv Sandy Bridge | 3.84x T.80x 6.92x
RK-adv Nehalem 2.20x 2.03x 4.47x
Sandy Bridge 2.48x 2.08x 5.16x
TABLE IIT
PERFORMANCE IMPROVEMENTS
Workspace / thread (KB)
NB WB maxArrCtrn
RK-adv  3.26 x 10° 16.59 5.81
PPM-adv  9.59 x 106 19.20 6.16
ePPM 229.53 66.29
TABLE IV

WORKSPACE REDUCTION

performance for WB-FPR-1b2nsugar. The size of workspace
is same between WB and WB-FPR-Ib2ub except for a few
arrays which are not double-buffered in WB. The ifort results
for the SMT mode are reported here. As seen in Tab. V, the
codes run at a high percentage of single-precision floating
point peak after pipelining-for-reuse. PPM-adv and RK-adv
achieve more than 20% of peak on both the architectures.
Even the larger application, ePPM, runs above 10.5% of peak.
Pipelining-for-reuse is followed by maximal array contraction
in CFD Builder. It must be noted that the performance for
ePPM improves further on both Nehalem and Sandy Bridge
to 19.81% and 13.45% respectively through the maximal array
contraction.

2) Improvement over NB: The previous section shows the
improvements from pipelining-for-reuse over WB. However,
WB by itself performs significantly better than NB as seen
in Tab. III. Therefore the improvement from applying both
the transformations in conjunction is put together in Tab. III.
Performance improvement of up to 6.92x over NB is seen
when the two transformations are combined. The WB-FPR-
Ib2nsugar code variant is treated as the combination of WB
and pipelining-for-reuse. The ifort results in the SMT mode
were used for comparison since ifort and SMT mode produce
the best results across all the code variants.

We see between 60% and 92% improvement for RK-adv
and PPM-adv after pipelining-for-reuse over NB with GCC.
The improvements are not as impressive as in Tab. III because
GCC vectorizes poorly. However, the results still demonstrate
that WB and pipeline-for-reuse are significantly better than
NB for both the compilers evaluated here. The briquettes
were specifically designed for efficient transposing to aid
vectorization. The approach with briquettes and pipelining-for-
reuse performs better any combination of the four canonical
code transformations mentioned in Introduction.

C. Maximal array contraction

Tab. IV gives the workspace per thread. It must be noted that
the workspace per thread includes even the double-buffered
arrays involved in prefetch, unpack, and write back operations.
Among the three applications, the workspaces of RK-adv and



Percentage SP peak
WB pipelined maxArrCtrn
Nehalem  Sandy Bridge Nehalem  Sandy Bridge
RK-adv 26.22 20.68 24.40 17.95
PPM-adv 25.15 19.13 26.58 18.29
ePPM 16.49 11.38 19.81 13.45
TABLE V

PERFORMANCE AS A PERCENTAGE OF PEAK

PPM-adv after pipeline-for-reuse are already small enough to
fit in the L1 cache that they do not see any benefit from
maximal array contraction in 1-D. The performance for the two
codes decreases with maximal array contraction most likely
because of the increase in the number of indirect indices to
address the circular buffers storing partial results which in turn
increases the register pressure.

Maximal array contraction in 1-D makes a big difference
for ePPM when the workspace is reduced from 229.53 KB,
in WB PFR 1b2ub, to 66.29 KB per thread. The workspace
can now fit in the L2 cache along with the text segment, and
up to 21% improvement in performance is seen over WB-
PFR-1b2ub even when the number of indirect indices required
to index the contract-ed arrays increases. As seen in Tab. V,
ePPM now achieves 19.81% and 13.45% of single precision
peak on Nehalem and Sandy Bridge respectively. A prefetch
buffer in ePPM was purposefully made large to not fit in the
L3 cache in order to have a fair comparison between WB and
its code variants. However, ePPM can be made even faster
by dimensioning the buffer to fit in the L3 cache, and by
inserting explicit prefetch intrinsics, mm_prefetch, to read the
briquettes. With the enhancements, ePPM was able to achieve
about 24% of peak on Nehalem and 17% of peak on Sandy
Bridge.

IX. RELATED WORK

A. Data locality

Numerous works have tried to improve the data locality of
stencil computation through tiling [3], [4], [18]-[21]. Tiling
improves temporal locality by altering the order of computa-
tion. One class of tiling techniques improve the poor cache
utilization of 3-D PDE solvers by updating a cache resident
sub-block fully, and even repeatedly in time [20], before
updating another sub-block [18], [19], [21]. They suffer from
redundant computations in the ghost region which is more pro-
nounced for smaller sub-blocks. All the other techniques tile
the computation without performing redundant computations.
However, there is no improvement seen from tiling alone in
the dimensionally split codes evaluated in this work [2].
Dimensionally split algorithms by themselves largely ame-
liorate the strided data accesses in 3-D algorithms when there
is sufficient computation performed in each of the 1-D passes.
The stencil kernels such as Jacobi and Gauss-Seidel usually
studied in the compiler literature do not have enough compu-
tation at each grid point. Therefore the techniques developed
to address the computations with very low computational

intensity are not always best suited for the more complex real
applications.

The benefits of data blocking, explicit rearrangement of
data, to improve spatial locality are well known [10]. While
data blocking is commonly used in linear algebra [22], [23],
it is uncommon in CFD. Array indexing to compute spatial
derivatives is extremely complicated to program. In compar-
ison, the linear algebra algorithms, such as matrix multipli-
cation and LU decomposition, do not perform near neighbor
computation, and hence data blocking is more straightforward
in linear algebra.

Array Programming Languages such as Chapel [24] are not
hierarchical enough to support cache blocking. The overlapped
tiling from HTA library [25] is expensive when applied to
smaller blocks, and the redundant operations resulting from
computing the spatial derivatives between tiles cannot be
eliminated.

Except for the work by Woodward et al. [1], [7]-[9], none of
the other works have addressed explicit data blocking at a very
small granularity for the finite difference methods. Although
the expression of our data layout (briquettes-in-a-brick) in
FORTRAN or C is not easy, our programming strategy is
designed to simplify the adoption of the data layout as much as
we can. The resulting inefficiencies in the form of redundant
computations are eliminated by CFD Builder.

B. Frameworks for optimizing libraries

Numerous works have been performed in building and opti-
mizing numerical libraries. They comprise a whole spectrum
of tool support for library building. At one end, library
generators such as FFTW [26], and SPIRAL [27], custom
generate the necessary library routines automatically. At the
other end, the library writers can wield the source-to-source
transformation infrastructures to optimize their libraries.

Library generators are extremely successful for linear trans-
forms and Basic Linear Algebra Subroutines (BLAS) where
a divide-and-conquer (recursion) strategy is very effective.
However, the success is not replicated beyond linear algebra.
CFD Builder does not provide a library of non-linear operators.
Instead, it allows the users to write their own operators i.e.
subroutines.

Broadway [28] and Telescoping languages [29] optimize
library routines with the help of annotations. However, they
miss domain-specific optimization opportunities which cannot
be expressed through their annotations, and trade off perfor-
mance for generality. More recently, works such as CUDA-
CHILL [30] attempt to open up the compiler to library writers.
However, our key transformations like pipelining-for-reuse
and maximal array contraction cannot be composed in their
polyhedral framework.

CFD Builder sidesteps the analysis with the help of direc-
tives and by exploiting the structure of WB. A directive based
approach is not uncommon. Directives are widely used for
parallelization (eg: OpenMP) in high performance computing,
and vector directives have been around for a long time. More



recently, annotations, directives, and scripting interfaces, have
been used to invoke many more transformations [30], [31].

The source-to-source transformation infrastructures like
ROSE, CETUS, and POET, allow for building custom com-
piler transformations [31]-[33]. CFD Builder has been built
using ANTLR, but it can also be implemented in the above
compiler infrastructures.

X. CONCLUSION

This paper is about improving the in-core performance of finite
differencing methods. The combination of the briquette data
layout, pipelining-for-reuse and maximal array contraction,
increase the computational intensity of CFD algorithms. Since
the briquette is a modification of data blocking for improved
coalesced memory accesses, it is one of the best strategies
for spatial locality. The briquette, by design, supports data
alignment and SIMD vectorization. Pipelining-for-reuse ex-
ploits temporal locality. The approach with briquettes, WB,
and pipelining-for-reuse, appears to be a more comprehensive
solution for performance than the existing solutions. How-
ever, the code expression necessitated by this combination of
techniques is highly unreadable and unmaintainable. We have
built a developmental source-to-source precompiler to perform
the tedious code transformations. We have demonstrated its
utility by achieving a high percentage of processor peak on
three different applications. We intend CFD Builder to be a
productivity tool for building efficient libraries in CFD.
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