
BFS and Coloring-based Parallel Algorithms for
Strongly Connected Components and Related Problems

George M. Slota∗, Sivasankaran Rajamanickam†, and Kamesh Madduri∗
∗Computer Science and Engineering, The Pennsylvania State University. Email: gms5016@psu.edu, madduri@cse.psu.edu

†Scalable Algorithms Department, Sandia National Laboratories, Email: srajama@sandia.gov

Abstract—Finding the strongly connected components
(SCCs) of a directed graph is a fundamental problem used in
many fields. Tarjan’s algorithm is an efficient serial algorithm
to find the SCCs, but relies on a depth-first search, which
is hard to parallelize. Several parallel algorithms have been
proposed, but show poor load balance and slow performance on
many real world graphs. We introduce the Multistep Method,
which reduces total work when compared to the well known
FW-BW algorithm and combines the advantages of several
parallel SCC finding algorithms. It performs well on real world
graphs irrespective of the properties of the graph, such as the
size of the largest SCC or the overall number of SCCs. Our
algorithm delivers up to 50× speedup over the serial Tarjan’s
algorithm, while being capable of fully decomposing a 1.5
billion edge graph in under two seconds. In comparison with
other state-of-the- artparallel codes, our algorithm delivers up
to 10× speedup. We generalize our approach to algorithms for
finding connected and weakly connected components as well
as introduce a novel algorithm for determining biconnected
components in order to demonstrate how our approaches are
applicable to a broader set of algorithms.

Keywords-strongly connected components; BFS; coloring;
multicore algorithms; performance analysis

I. INTRODUCTION

The strongly connected components (SCCs) of a directed
graph are the maximal subgraphs where every vertex within
the subgraph can reach and can be reached by every other
vertex within the subgraph. The decomposition of a directed
graph into its strongly connected components is a useful
analytic tool in many applications like social network anal-
ysis [1], compiler design, radiation transport solvers [2], and
computing the block triangular form for linear solvers and
preconditioners [3], [4].

The connected components of an undirected graph are the
maximal subgraphs where every vertex in the subgraph has a
path to every other vertex. Weakly connected components in
a directed graph are the equivalent to connected components
in undirected graphs if the direction of edges is ignored.

The biconnected components (BCCs) of a graph are the
maximal biconnected subgraphs, which are subgraphs that
will remain connected on the removal of any given vertex
in the subgraph. Determining biconnectivity of a graph is
especially important in networking and routing to determine
redudancy.

II. BACKGROUND

Determing the connected, strong connected, weakly con-
nected, and biconnected components of graphs and net-
works has been extrensively studied. Linear time serial
algorithms have been developed for each problem. However,
for strongly and biconnected components, parallelization is
not trivial. Several approaches have been proposed, but often
the performance of these approaches on real world graphs
is less than optimal.

A. Strongly Connected Components

There are several existing serial and parallel algorithms
that have been used to determine the SCCs of a graph.
This section will give a general overview of the most
widely used ones. Popular serial methods include Tarjan’s
and Kosaraju’s algorithms, while parallel methods are the
Forward-Backward algorithm and Coloring.

1) Serial Algorithms: The primary serial algorithms used
for determining strongly connected components within a
graph are Tarjan’s [5] and Kosaraju’s [6] algorithms. Tarjan’s
algorithm uses a recursive depth first search (DFS) to form a
search tree of explored vertices. The roots of the subtrees of
the search tree form roots of strongly connected components.
Kosaraju’s algorithm performs two passes of the graph. It
initially performs a DFS, placing each vertex onto a stack
after it has been fully explored. After all vertices have been
placed onto the stack, a vertex is popped from the stack and
a DFS or BFS search is performed on the transpose of the
graph. All vertices that can be reached by this vertex (that
have not already been explored a second time) form an SCC.
The runtime for both algorithms is in O(n+m) time, where
n is the number of vertices and m is the number of edges in
a graph. However, since Tarjan’s algorithm only requires a
single search as apposed to Kosaraju’s two, it is often faster
in practice.

2) Forward-Backward: The Forward-Backward (FW-
BW) algorithm [7] is given in Algorithm 1 and can be
described as follows: Given a graph G, a single pivot vertex
v is selected. This can be done either randomly or through
simple heuristics. A BFS/DFS search is conducted starting
from this vertex to determine all vertices which are reachable
(forward sweep). These vertices form the descendants set
(D). Another BFS/DFS search is performed from v but

SAND2013-9044C

on the transpose graph. This search (backward sweep) will
find the set (P) of all vertices than can reach v called the
predecessors.

Algorithm 1 Forward-Backward Algorithm

1: procedure FWBW(G)
2: if G = ∅ then
3: return ∅
4: select pivot v
5: D ← DESC(G, v)
6: P ← PRED(G, v)
7: R← (G \ (P ∪D)
8: S ← (D ∩ P)
9: FWBW (D \ S)

10: FWBW (P \ S)
11: FWBW (R)

The intersection of these two sets form an SCC (S =
D∩P) that has the pivot v in it. If we remove all vertices in
S from the graph, we can have up to three remaining distinct
sets: (D \S), (P \S), and remainder R, which is the set of
vertices that we have not explored during either search from
v. The FW-BW algorithm can then be recursively called on
each of these three sets.

Possible parallelism exists for this algorithm on two
levels. Primarily, as each of the three sets are distinct, they
can each be explored in parallel. In addition, each of the
forward and backward searches can be trivially parallelized
using a standard parallel BFS or even DFS (since we don’t
care about ordering, only reachability).

Commonly, before FW-BW is called, trimming is per-
formed. The trimming procedure was initially proposed as
an extension to FW-BW [2], to remove all trivial strongly
connected components. The procedure is quite simple: all
vertices that have an in degree or out degree of zero
(excluding self-loops) are removed. This can be performed
iteratively or recursively as well, as removing a vertex
will change the effective degrees of its neighbors. In this
paper, we call performing a single iteration of trimming
to be simple trimming and performing trimming iteratively
as complete trimming. This procedure is very effective in
improving the performance of the FW-BW algorithm, but
can be beneficial to use before running other algorithms, as
well.

3) Coloring: The coloring algorithm for SCC decompo-
sition is given in Algorithm 2. This algorithm is similar to
FW-BW in that it proceeds in forward and backwards passes.
However, the approach is also quite different, as it generates
multiple pivots, or more commonly termed, roots, during the
forward phase and only looks at a subset of G for each pivot
on the backwards phase.

Given a graph G, the algorithm starts by assigning a set
of unique numeric colors to all the vertices, most easily as

Algorithm 2 Coloring Algorithm

1: while G 6= ∅ do
2: initialize colors(vid) = vid

3: while at least one vertex has changed colors do
4: for all v ∈ G do
5: for all u ∈ N(v) do
6: if colors(v) > colors(u) then
7: colors(u)← colors(v)
8: for all unique c ∈ colors do
9: SCC(cv)← PRED(G(cv), c)

10: G← (G \ SCC(cv))

the vertex identifiers vid for all v ∈ G. These colors are
then propagated outwardly from each vertex in the graph.
If a vertex v has any neighbors u ∈ N(v), where N is
the neighbor list, with a color lower than it’s own, the
neighbors’ colors are updated to that of the vertex. This
process continues until no more vertices change their color.

We have now effectively partitioned the graph into distinct
sets with separate colors c. As we started with vid as our
colors, for each distinct c, there is a unique vertex cv with
that identifier. We consider cv as the root of a new SCC,
SCC(cv). The SCC is then all vertices that can be reached
backward from cv that are also colored with the same color
c. We remove SCC(cv) from G, find the rest of the SCCs
for all c in the current iteration, and then proceed to the next
iteration to continue until G is empty.

Parallelizing this algorithm is trivial, as both the forward
coloring step across all v and the backward SCC step across
all cv can be parallelized quite easilly.

4) Other Parallel SCC Approaches: There has been other
more recent work aimed at further improving upon the pre-
ceding algorithms, as well as developing newer algorithms
to further decompose the graph and/or improve performance
and scalability.

One example is the OBF algorithm of Barnat et al. [8],
which, like coloring, aims at every iteration to further
decompose the graph into multiple distinct partitions each
containing a single SCCs. The OBF decomposition step can
be performed much quicker than coloring, however, it does
not necessary result in as many partitions. Barnat et al. [9]
further implemented the OBF algorithm as well as FW-BW
and coloring on the Nvidia CUDA platform, demonstrating
considerable speedup over equivalent CPU implementations.

More recently, Hong et al. [10], [11] demonstrated several
improvements to the FW-BW algorithm and trimming pro-
cedure through expanding trimming to find both 1-vertex
and 2-vertex SCCs, further decomposing the graph after
the first SCC is found by partitioning based on weakly
connected components, and implementing a dual-level task-
based queue for the recursive step of FW-BW to improve
times and reduce overhead for the task-based parallelism.

B. Connected and Weakly Connected Components

The approaches towards determining connected compo-
nents and weakly connected components in graphs are simi-
lar. There are two primary parallel methods, using techniques
similar to those described in the preceeding sections. Firstly,
a parallel BFS can be used for connected components.
Any vertices reachable by the BFS traversal will be in
the same component. We continue selecting new unvisited
vertices as BFS roots until all vertices have been visited and
all connected components identified. The procedure is the
same for weakly connected components, but it is obviously
required to examine both in and out edges.

We can use a coloring approach. Each vertex is initialized
with a unique color, and the maximal colors are propogated
throughout the network. Once the colors reach a stable point,
all vertices contained in each discrete component will have
the same color.

C. Biconnected Components

The optimal linear time sequential algorithm for determin-
ing the biconnected components of a graph is based on DFS
and was originally proposed by Hopcroft and Tarjan [12].
A parallel algorithm was later developed by Tarjan and
Vishkin [13] which is based on computing a spanning tree
followed by a Eulerian tour, determining low and high values
for each vertex based on preorder numbering, which can
then be used to create an auxilliary graph. The connected
components of the auxilliary graph form the BCCs of the
original graph. Several improvements have since been made
to the original Tarjan and Vishkin parallel algorithm to
reduce work and improve parallelism [14], [15].

III. MULTISTEP METHOD FOR SCC DECOMPOSITION

We will now introduce our algorithm for graph SCC
decomposition, the Multistep method. The reason for this
name comes from the fact that it is a combination of some of
the previously described parallel algorithms stepped through
in a certain order. This section will give our justifications
for developing the algorithm in this way, as well as pro-
vide detail into our algorithm’s specifics. Additionally, we
will discribe how some of the techniques created during
development of the Multistep method can also be applied
towards determining the connected, weakly conencted, and
biconnected components of a graph.

A. Observations

The FW-BW algorithm can be quite efficient if a graph has
relatively small number of large and equally-sized SCCs, as
the leftover partitions in each step would on average result in
similar amounts of parallel work. The FW and BW searches
could also be efficiently parallelized in this instance.

However, the structure of most real world graphs is very
different. From observations, most real-world graphs have
one giant SCC containing a large fraction of the total

vertices, and many many small SCCs and often disconnected
SCCs that remain once the large SCC is removed [1].
Running a naı̈ve implementation of FW-BW would result
in a large work imbalance after the initial SCC is removed,
where the partitioning of the leftover partitions would be
heavily dominated by the remainder set. Additionally, using
a naı̈ve task-based parallelism model would add considerable
overhead as each new task might only be finding an SCC of
a few vertices in size before completing. As we will show,
even implementations that use a smarter tasking model [10],
[11] can still suffer when the graph gets large enough. In
general, the size of the recursive tree and therefore the
overall runtime of the FW-BW algorithm is dominated by
the total number of SCCs that are in the initial graph.

Conversely, the coloring algorithm is quite efficient when
the graph contains a large number of small and disconnected
components, as the runtime of each step is dominated by the
diameter of the largest connected component in the graph,
or the number of steps needed to do the full coloring. This
also leads to very poor performance on real-world graphs,
as the time for each iteration can be very large while the
largest SCCs remain, and there is no guarantee that these
SCCs will be removed in any of the first few iterations.

It is also important to note that below a certain threshold
of the number of vertices in a graph, the general parallel
overhead inherent in any implementation results in worse
performance when compared to simply using Tarjan’s or
Kosaraju’s serial algorithm.

B. Description of Method
Based on the above observations, we have developed the

Multistep method. This method aims at maximizing the
advantages and minimizing the drawbacks of trimming, FW-
BW, coloring, and a serial algorithm by applying them in
sequence to decompose large real-world graphs into their
strongly-connected components.

An overview of the algorithm is given in Algorithm 3.
here are four primary phases of the algorithm. The first
phase is trimming. We choose to do only a single iteration
of trimming, as experiments have shown that the vertices
trimmed in the second or subsequent iterations can be more
efficiently handled in the coloring or serial phases.

Algorithm 3 Multistep Algorithm

1: procedure MULTISTEP(G)
2: Trimsimple(G)
3: v = max(vdg), where vdg = din(v) ∗ dout(v)
4: FWBWSCC(G, v)
5: while NumV erts(G) > Vcutoff do
6: ColoringStep(G)
7: Tarjan(G)

In the second phase, we select an initial pivot vertex as
the vertex in the graph that has the largest product of its

in degree and out degree. This is an attempt to increase the
chances that our initial pivot is contained within the largest
SCC. Although there is no guarantee to ensure that this will
be the case, in practice with real world graphs it acts as a
very good heuristic.

With the chosen pivot we do one iteration of a modified
FW-BW algorithm. Our changes to the FW-BW iteration
avoid considerable work during this phase by not computing
the three sets D, P and R and leaving all vertices that are
not part of the one SCC we computed to the next step. Since
we do not care about explicitly partitioning the sets, we can
also avoid fully exploring the graph on the backward search.
During the backward search, if we encounter a vertex that
was not encountered on the forward search we can safely
ignore it and avoid adding it to our next level queue.

For a simple proof as to why this will work, assume by
contradiction that a predecessor vertex pi we find during
the backward phase that was not marked during the forward
phase has a predecessor pj that was marked during the
forward phase. This cannot happen as if the predecessor was
previously marked, then the original predecessor pi, being a
descendant of pj , would therefore have been marked as well.
Since we know that, in order to be in the SCC, a vertex must
be marked as both a descendant and predecessor, then we
can safely ignore all of these pi. For certain graphs, this can
result in a considerably shorted search during the backward
phase.

At the end of the FW-BW step, we simply take the
remaining vertices and pass them all off to coloring. We
run coloring until the number of vertices remaining crosses
below a certain threshold determined experimentally, and
then pass off the still remaining vertices to the final step,
which is just Tarjan’s serial algorithm.

IV. IMPLEMENTATION DETAILS

This section will provide a bit more detail into some
of the implementation specifics. All code was written in
C++ using OpenMP for shared-memory parallelization. We
achieve most of our performance by avoiding atomic or
locking operations whenever possible through thread-owned
queues and mitigation of race conditions and by utilizing
various techniques to avoid work.

A. Trim Step

We consider two different approaches for trimming. For
simple trimming, we only need to look at the degree values
as initially set when the graph was created. Therefore, we
just need to do a single pass through all vertices, retrieve
their in/out degrees, and flip their valid boolean if either is
zero.

Complete trimming is a bit more complex. To greatly
speed up processing during complete trimming, we create
current and future queues and an additional boolean array of
values to signify for each vertex if they are currently placed

in the future queue. We place all vertices in the current queue
to begin with.We then determine the effective in and out
degrees for all vertices contained in the current queue. If a
vertex has an effective in or out degree of zero, then it is
marked as no longer valid. Additionally, any valid vertices
that the removed vertex was pointing to or had pointing at
it are then placed in the future queue and marked as such.
After the current queue is empty, the queues are swapped
with the marks reset.

This process is repeated for as many iterations as neces-
sary. The queues are used to avoid having to look through
all vertices at each iteration, as it has been observed that the
long tendrils [16] of vertices in lots of real world graphs tend
to result in long tails of iterations where only a few vertices
are removed at a time. The marking is done to prevent
a vertex from being placed in the future queue multiple
times. To avoid the synchronization overhead that would be
required with a parallel queue, we maintain separate queues
for each thread and combine them into the next level queue
at the end of each step.

Although complete trimming is easily paralellizable and
can be quite fast, with the queues and marking being done
very similarly to how we will soon describe our BFS and
coloring, we find simple trimming to generally perform
better overall. It is observed that a single iteration will
remove the vast majority of vertices than can be removed,
it does not require the explicit calculation or tracking of
changing degrees at each iteration, and does not need queues
or other such structures to maintain. Simply passing off the
vertices not trimmed in the first iteration to be handled by
coloring or the serial algorithm gave us superior performance
for all tested graphs.

B. Breadth-First Search

An overview of the BFS used in our Multistep approach
is given in Algorithm 4. We will now describe some of the
optimizations and design choices we implemented.

A typical BFS optimization is to use a bitmap of length n
to signify whether or not a vertex has already been visited,
and to avoid further exploring the vertex if it has been.
A bitmap is able to fit completely in the last level cache
of modern server-grade CPUs for graphs of up to tens of
millions of vertices. It is assumed that by staying in cache,
a quick boolean check is possible and accesses to main
memory are minimized.

However, our experimentation has demonstrated that a
boolean array actually outperforms a bitmap for our test
environment. The likely reason for this is two-fold. Firstly,
in order to calculate the address for a specific bit, at least
an integer division, remainder operation, and bit shift is
required. Additionally, since the CPU on our testbed only
guarantees atomic read/writes starting at the byte level [17, s.
8.1.1], either explicit atomic operations are needed or a more
complex bit read/write function is required [18]. By using a

Algorithm 4 Multistep BFS
1: queue← p
2: do hybrid← false
3: while queue 6= ∅ do
4: if hybrid = false then
5: for all v ∈ queue do in parallel
6: for n ∈ Nout(v) do
7: if visited(n) = false then
8: visited(n)← true
9: thread queue← n

10: end for
11: else
12: for all v ∈ G do in parallel
13: if visited(v) = false then
14: for all n ∈ Nin(v) do
15: if visited(n) = true then
16: visited(v)← true
17: thread queue← v
18: break
19: end for
20: Synchronize
21: Single thread does
22: hybrid← EvaluateHybridSwitch()
23: if hybrid = false then
24: for all thread queue do
25: for all v ∈ thread queue do
26: queue← v
27: end single thread
28: Synchronize

byte-addressed boolean array and avoiding explicit locks, we
see considerably faster runtimes. Although avoiding explicit
locks might result in extra work (two threads see a vertex as
unexplored, set the same boolean to the same value, and put
the vertex in the next level queue twice), experimentation
has shown this to be of minimal concern.

As mentioned previously, we avoid additional locks and
atomic operations by giving each threads its own next level
queue. At the end of each level, the vertices from each thread
queue are collected and placed in the frontier for the next
level by a single thread. Although this can be performed in
parallel by computing offsets based on the length of each
thread’s queue, experimentation has shown it to be very
fast in serial, taking on the order of milliseconds even for
millions of nodes. This step can also be skipped when we
are going to run the hybrid bottom-up BFS, which will be
discussed next. Overall this technique greatly outperformed
a shared queue with locks.

A hybrid bottom-up approach to the BFS was recently
introduced by Beamer et al. [19]. They noted that at certain
levels of a BFS in real world graphs (small world, scale free),
it is actually more efficient to simply look in the reverse
direction. Instead of all vertices currently on the frontier
looking at all their children, all unvisited vertices simply
attempt to find their parent on the frontier. It is not even
necessary to check if the parent is explicitly on the frontier,
but only if the parent has already been marked as visited

(the child would have already been discovered if the parent’s
level is one or more previous to that of the current frontier).

Beamer et al. found that this approach will vastly de-
crease the total number of edge examinations needed dur-
ing the BFS, improving search times by over 3×. Upon
implementing their approach as described with parameters
(α = 15, β = 25), we noticed considerable speedup as
well. A different design choice we had to implement was to
maintain the thread queues while we are currently running
the bottom-up hybrid as opposed to explicitly rebuilding the
queue from scratch when we switch the hybrid off. This is
due to the fact that we do not maintain any explicit BFS tree
as we only require the visited array to determine the SCC,
so we have no ability to track BFS level on a per-vertex
basis.

A final optimization we investigated but did not include
in our final version was a per-socket graph partitioning
and exploration scheme similar to the ones described in
Agarwal et al. [20] and Chhugani et al. [18]. Although these
partitioning approaches improved parallel scaling, it was
only in a limited number of instances that actual runtimes
improved due to the additional overhead. A wide variety
of parameters and optimizations were explored, including
reverting to actual bitmaps, partitioning based on number of
vertices and number of edges, and even permuting the input
graphs to improve work balance, among others. However, no
considerable and definitive improvements were ever noted
over simply using our BFS with the bottom-up hybrid, so
these approaches was abandoned.

C. Coloring

The vertex coloring step of our coloring algorithm is im-
plemented quite similarly to our BFS and complete trimming
algorithm, and is given in Algorithm 5. Initially, all still valid
vertices are assigned a color as their vertex id vid, or index,
in our graph structure. All valid vertices are then placed into
the queue. For all vertices in parallel that are contained in
the queue, we check to see if they have a higher color than
their children. If they do, the color is passed to the child,
and both the parent and child are placed in the thread’s next
level queue, and globally marked as such for all threads to
see.

We also place the parent in the queue to, once again,
avoid explicit locks. It is possible and very likely that two
parents will have higher colors than a shared child, creating
a race condition. Both parents will once again examine
their children on the next iteration to make sure that either
the color that was given by them or a higher one has
been placed. Additionally, since only a higher color can
be assigned, we can ignore the race condition created if
a parent has their own color overwritten before they assign
their previous one to the child. It was also tried to avoid
locks instead by going bottom-up and having children look
at their parents’ and own color and take the largest, avoiding

Algorithm 5 Coloring

1: for all v ∈ G do
2: color(v)← vid
3: queue← v
4: in next queue(v)← false

5: while queue 6= ∅ do
6: for all v ∈ queue do in parallel
7: for n ∈ Nout(v) do
8: if color(v) > color(n) then
9: color(n)← color(v)

10: if in next queue(n) = false then
11: in next queue(n) = true
12: thread queue← n
13: if any n changed color then
14: if in next queue(v) = false then
15: in next queue(v) = true
16: thread queue← v
17: end for
18: Synchronize
19: Single thread does
20: for all thread queue do
21: for all v ∈ thread queue do
22: queue← v
23: in next queue(v)← false

24: end single thread
25: Synchronize

the race condition entirely. However, this is much slower in
practice, because either all vertices need to be examined
at each iteration, or the out vertices of the child need to
be examined to create the queue, effectively doubling the
amount of memory transfer needed for each iteration.

Our parallel SCC finding on the reverse step is fairly
standard, as it is a trivial algorithm to parallelize. We simply
determine the root vertices by finding all unique colors in
the graph, and then run a serial DFS on the transverse graph
from each root, only looking at vertices with the same color
as the root. We use a DFS here, since there isn’t further
room for parallelism, and experimentation has shown our
serial DFS to be faster than our serial BFS.

D. Serial Step

We implement a simple and efficient recursive Tarjan’s
for our serial algorithm. We chose Tarjan’s as our serial
algorithm over Kosaraju’s, based mainly on superior ex-
perimental runtimes. Although Kosaraju’s can benefit from
parallelization during the backwards step, the benefit when
the graph has a small number of (usually) disconnected
SCCs, is quite small if not negative.

We experimentally determined that a cutoff of about
100,000 remaining vertices is a relatively good heuristic for
switching to the serial algorithm, although this is hardware
specific. Some graphs benefit from running coloring all the
way to completion, while some others would benefit more
from switching to serial sooner. However, determining this
cutoff without prior knowledge of the graph is quite difficult

(possibly some calculation based on the number of steps
needed to fully color the graph), and the difference is usually
close to negligible.

E. Connected Components and Weakly Connected Compo-
nents

Our Multistep method can be easily implemented for
determining connected and weakly connected components,
as well. For these procedure, Multistep simply uses the mid-
dle two steps by initially determining the massive (weakly)
connected component through parallel BFS and then subse-
quently performing coloring on the vertices remaining after
the massive component has been removed.

F. Biconnected Components

We now introduce a novel algorithm for identifying artic-
ulation vertices for biconnected component decomposition
that can utilize the previously described BFS techniques.
This algorithm relies on an initial BFS traversal which
creates a BFS tree. An articulation vertex can be identified
in the BFS tree by the fact that it has at least a single child
vertex which does not have a path to any other vertex on the
same BFS level as the articulation vertex that does not pass
through the articulation vertex. This indicates that the child
vertex is in a separate biconnected component. A simple
proof is as follows: if there was some path from the child
vertex to another vertex on the same level as its parent, this
other vertex and the parent would have to share one common
ancestor at a higher level up the BFS tree, which would by
definition imply that all edges connecting these vertices are
in the same biconnected component.

Algorithm 6 BCC-BFS

1: parents, levels← BFS(G)
2: for all v ∈ G do
3: for all u ∈ N(v) where parents[u] = v do
4: max level← BFS(u, (G \ v))
5: if max level = levels[u] then
6: v ← is articulation
7: break

The new algorithm, given by 6, relies purely on multiple
BFS searches. Initially we create our BFS tree, represented
as parents and levels arrays, to track the parent and level
of each vertex. Our goal is to examine every vertex v ∈ G to
check if it is an articulation vertex. We take every child that
v has as is indicated by the BFS tree, and run a new BFS
from it on G \ v. If we are not able to identify any vertex
during that BFS search which is on the same level as v, then
we can mark v as an articulation vertex. This algorithm is
efficiently parallelized across all v ∈ G. Although the vast
number of BFS searches on the inner loops may seem like a
lot of work, it is minimized by the fact that only a minority
of vertices actually have any children in the BFS tree for
real world graphs. Additionally, ruling out a vertex which

does is quite fast in a high density graph, since a vertex with
a higher level is typically encountered after only one or two
BFS iterations.

To explicitly check whether or not a root of the BFS tree
is an articulation vertex, we need to examine whether or
not one of its children can reach all of the others. This can
be a costly procedure. However, it is also easily mitigated.
For almost all real world graphs there are vertices with a
degree of one. A vertex who is the sole neighbor one of these
vertices is then easily identified as an articulation point. All
we then need to do is begin our BFS traversal from a known
articulation point so we are not required to explicitly have
to check it. Another option is simply to rerun a new BFS
from scratch using new roots and only check our original
roots for being articulation points. Because the initial BFS
search is the fastest part of the procedure, this can be a valid
option as well.

If we wish to label the edges for each BCC, we would
want to start checking for articulation vertices at the lowest
levels of the BFS tree and work from the bottom up. We
track all unlabeled edges encountered when doing an inner
BFS, and label these edges as composing a BCC when
we find an articulation point (note that we can’t use the
hybrid-BFS technique during this inner search since it won’t
observe all edges). Since we are working from the bottom
up, there is no risk of encountering an unlabeled BCC and
marking two discrete BCCs as the same one. This also avoids
having to do additional work to determine if a BFS root is
an articulation vertex, since all remaining unlabeled edges
encountered on a BFS from any of its children will just form
the remaining BCC(s).

V. EXPERIMENTAL SETUP

Experiments were performed on a 2 socket machine
with 64GB RAM and Intel(R) Xeon(R) E5-2670 CPUs
at 2.60GHz (Sandy Bridge) each having 20MB last level
cache (Compton). Compton was running RHEL 6.1 and
compilation was done with icc version 13.1.2. The -03
optimization parameter was used with the -fopenmp flag.
Environmental variable KMP_AFFINITY was used to con-
trol thread locality when needed.

For comparison to other work, we also run SCC code pro-
vided by Hong et al. [10], [11] and CC code (Ligra) released
by Shun and Blelloch [21]. We used the same compilation
procedures and runtime environment when possible, with
the exception of using Cilk++ parallelization support with
Ligra instead of OpenMP. This was observed to be faster in
practice.

Several large real world graphs were used in the course
of this work. They are listed in Table I. These graphs
were retrieved from a number of sources, namely the SNAP
Database [22], the Koblenz Network Collection [23], the
DIMACS 10th implementation challenge [24], and the Uni-
versity of Florida Sparse Matrix Collection [25]. The R-

Network n m davg dmax Dia. # (S)CCs max (S)CC

Friendster 66M 1.8B 53 5.2K 34 70 66M
Orkut 3.1M 117M 76 33K 11 1 3.1M

Kron 21 1.5M 91M 118 213K 8 94 1.5M
Cube 2.1M 62M 56 69 157 47K 2.1M

Twitter 53MM 2.0B 37 780k 19 12M 41M
Italy Web 41M 1.2B 28 10K 830 30M 6.8M

WikiLinks 26M 0.6B 23 39K 170 6.6M 19M
GNP 1 10M 200M 20 49 7 1 10M

GNP 10 10M 200M 20 49 7 10 5.0M
LiveJournal 4.8M 69M 14 20K 18 970K 3.8M

RDF data 1.9M 130M 70 10K 7 1.9M 1
RDF linkedct 15M 34M 2.3 72K 13 15M 1

XyceTest 1.9M 8.3M 4.2 246 93 400K 1.5M
R-MAT 20 560K 8.4M 15 24K 9 210K 360K
R-MAT 22 2.1M 34M 16 60K 9 790K 1.3M
R-MAT 24 7.7M 130M 17 150K 9 3.0M 4.7M

Table I: Network sizes and parameters for all networks.

MAT [26] and G(n, p) networks were generated with the
GTGraph [27] suite using the default parameters.

The first four listed graphs are undirected while the rest
are directed. Friendster, LiveJournal, Orkut, and Twitter are
social networks [28]–[30]. Italy Web is a web crawl of the .it
domain [31]. WikiLinks is the cross-link network between
articles on Wikipedia [32]. XyceTest is a Sandia National
Labs electrical simulation network and Cube is 3D coupled
consolidation problem of a cube discretized with tetrahedral
finite elements. R-MAT 20/22/24 are R-MAT graphs of
scale 20, 22, and 24, respectively. The Kron 21 graph is
a scale 21 graph created from the Kronecker generator of
the Graph500 benchmark. Finally, G(n, p) is an Erdős-Rényi
random graph.

These graphs were selected to represent a wide mix of
graph size and structure. The number of SCCs/CCs and max
SCC/CC both play a large role in the general performance
of decomposition algorithms, while the average degree and
graph diameter can have a large effect on the BFS runtimes
that is necessarily used for these algorithms.

VI. EXPERIMENTAL RESULTS

In this section, we are going to compare our Multistep
SCC algorithm runtimes and scaling to our implementations
of baseline FW-BW and Coloring algorithms, as well as
Hong et al.’s FW-BW algorithm. Further, we will compare
our Multistep connected components algorithm to baseline
coloring and the coloring that was implemented in the Ligra
graph processing framework. We will then finally compare
our weakly connected components algorithm to our coloring
approach and our biconnected algorithm to the optimal serial
algorithm.Additionally, we are going to give justification for
the algorithmic choices we have made and their influences
on performance for different graph structures.

A. Strongly Connected Component Decomposition

Figure 1 gives a comparison for absolute runtimes of 16
cores of our Compton machine for baseline Coloring and
FW-BW with complete trimming, as well as Multistep with
simple trimming and Hong et al.ś Method 2 on several
directed graphs. Both Multistep and Hong et al. show

considerable improvements over the baseline approaches.
The performance of the baseline approaches is also most
dependent on graph structure. The algorithms with a large
proportion of the their vertices in the massive SCC, such
as the G(n, p), R-MAT, and Xyce graphs, show very poor
performance with coloring due to the long time needed to
fully propagate the colors. Further, networks with a large
absolute number of SCCs show poor performance with FW-
BW, due to the recursive and tasking overhead.

Figure 1: Comparison of Multistep with naı̈ve FW-BW
implementation, Coloring, and Hong et al.

Although Hong et al. attempts to minimize the impact of
the recursive and tasking overhead with their partitioning
step based on WCCs and smart tasking queue, on graphs
with a very high number of small but non-trivial SCCs such
as ItWeb, the overhead inherent in the FW-BW algorithm
can still dominate the runtime. It can also be noted that our
coloring step will at each iteration partition the graph into at
least as many discrete partitions that a WCC decomposition
will.

Figure 2 gives parallel scaling of both Multistep and
Hong et al. For 1, 2, 4, 8, and 16 cores relative to a
serial Tarjan’s implementation. Both Multistep and Hong
et al. demonstrates good scaling on most test instances.
As mentioned before, the Hong et al. runtime on ItWeb is
greatly affected by the number of SCCs. Additionally, on
ItWeb, there are long strings of trivial and non-trivial SCCs,
which results in a relatively long time spent in the multiple
trimming steps that are in Hong et al.’s approach, as well as
a long time in the WCC decomposition step.

Figure ?? gives the breakdown for each stage of multistep
as the proportion of total runtime. As can be observed, the
runtime proportion for the FW-BW and Coloring steps is
mostly dependent on graph structure, with coloring taking
a larger proportion when the graph is large with a high
diameter.

Figure ?? also gives further justification for our choice
of doing simple trimming versus complete trimming. In
general, the extra time spent doing iterative trimming does
not decrease the FW-BW or Coloring steps enough to
make fully trimming a graph time-effective. As is shown

●●
●

●
●

●● ● ● ● ●● ● ● ●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

GNP_1 GNP_10 ItWeb LiveJournal

R−MAT_24 Twitter WikiLinks Xyce

10
20
30
40

0.5
1.0
1.5

0
1
2
3

2.5
5.0
7.5

10.0
12.5

2.5

5.0

7.5

5
10
15
20

1
2
3
4
5

1
2
3
4

12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16

12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16
Cores

S
pe

ed
up

 v
s.

 T
ar

ja
n'

s

Algorithm ● Hong Multistep

Figure 2: Parallel scaling of Multistep and Hong et al.
relative to Tarjan’s serial algorithm.

on LiveJournal, but was noted on other graphs as well,
doing no trimming at all can end up being faster than fully
trimming the graph with our Multistep approach. While
running Multistep across a wide variety of graphs, fully
trimming the graph never improved runtimes versus only
doing a single iteration.

Figure 4 gives approximate weak scaling for three R-
MAT test graphs (R-MAT 20/22/24). The test graphs’
number of vertices, edges, number of SCCs, and
size of largest SCC all increase by approximately a
factor of 4 (n=560K/2.1M/7.7M, m=8.4M/34M/130M,
numSCCs=210K/790K/3.0M, maxSCC=360K/1.3M/4.7M).
From Figure 4, we can see that Multistep scales better than
simply FW-BW or coloring.

B. Connected and Weakly Connected Component Decompo-
sition

We next compare our approach to Ligra for the problem
of determining connected components. Ligra implements a
parallel coloring-based algorithm. We show scaling relative
to a serial DFS approach. From Figure 5, we observe that
Multistep greatly outperforms the other approaches on all
tested graphs. On the larger graphs of Friendster and Orkut,
our coloring approach outperforms Ligra as well.

Figure 6 gives the speedup of the Multistep method and
our coloring approach for determining the weakly connected
components of several graphs. We give speedup relative
to the serial DFS approach. Once again we observe good
scaling of Multistep relative to the serial code.

C. Biconnected Component Decomposition

Figure 7 gives the parallel scaling of our new BFS-
based BCC decomposition algorithm compared to the serial
Hopcroft and Tarjan DFS-based algorithm. On the three
largest non-fully biconnected graphs, we achieve up to
8× speedup good scaling across 16 cores. However, our
approach does not scale well with the fully-biconnected
Cube graph. This is likely due to its regular structure, which

0.00

0.25

0.50

0.75

1.00

G
N

P
_1

G
N

P
_10

ItW
eb

LiveJournal

R
−

M
AT

_24

Tw
itter

W
ikiLinks

X
yce

Graph

R
un

tim
e

P
ro

po
rt

io
ns

Step 1−Trim 2−FWBW 3−Coloring 4−Serial

ItWeb LiveJournal Twitter WikiLinks

0.0

0.5

1.0

1.5

2.0

0.00

0.05

0.10

0

1

2

0.0

0.5

1.0

1.5

 C N S C N S C N S C N S
Trimming Algorithm

R
un

tim
e

(s
)

Step 1−Trim 2−FWBW 3−Coloring 4−Serial

Figure 3: Proportion of time spent in each state of the Mul-
tistep algorithm as well as a comparison between trimming
procedures for WikiLinks and LiveJournal.

minimized the inner-loop BFS time to a single iteration
on most instances. Because of the lack of overall work
necessary for this graph, it outperforms the serial algorithm
algorithm on a single core while overhead dominates its
parallel runtime.

D. Breadth-First Search

We finally analyze our breadth-first search implementation
across all tested graphs. Using the standard billions of edges
traversed per second (GTEPS) metric of graph traversal
speed, we note in Figure ?? that our code achieves several
GTEPS across a number of graphs. We also note the
dependence of graph traversal speed relative to the graphs
average degree.

VII. CONCLUSION

This paper introduced the Multistep Method, a combina-
tion of previous parallel algorithm for the task of strongly

●

●

●

0.0

0.5

1.0

1.5

2.0

2.5

1 4 16
Cores

R
un

tim
e

(s
)

Algorithm ● Coloring FW−BW Hong Multistep

Figure 4: Approximate weak scaling of Multistep compared
to Coloring and naı̈ve FW-BW.

●● ●
● ●

●● ●
●

●
●● ●

●

●

●● ● ● ●

Cube Friendster Kron_21 Orkut

0

20

40

60

0.0

2.5

5.0

7.5

0

2

4

6

8

0.0

2.5

5.0

7.5

12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16
Cores

S
pe

ed
up

 v
s.

 S
er

ia
l

Algorithm ● Ligra MS−Coloring Multistep

Figure 5: Parallel scaling of CC Multistep, Coloring, and
Ligra relative to the serial DFS approach.

connected component decomposition of large graphs. We
demonstrate speedup over the current state of the art, while
showing how our techniques can be applied to a broad class
of graph-based algorithms.

ACKNOWLEDGMENT

We thank Erik Boman, Karen Devine and Bruce Hen-
drickson for encouraging us to focus on this problem.
Sandia National Laboratories is a multi-program laboratory

●● ● ● ● ●
●

●

●

●

●● ● ● ●
●● ● ● ●

●● ● ● ●
●● ● ● ●

●● ● ● ● ●● ● ● ●

GNP_1 GNP_10 ItWeb LiveJournal

RDF_Data RDF_linkedct Twitter WikiLinks

0
25
50
75

100

1

2

3

0

5

10

15

0

10

20

30

0.0
2.5
5.0
7.5

10.0

0.0
2.5
5.0
7.5

10.0

0

10

20

30

0
10
20
30
40
50

12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16

12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16
Cores

S
pe

ed
up

 v
s.

 S
er

ia
l

Algorithm ● MS−Coloring Multistep

Figure 6: Comparison of WCC Multistep with Coloring
relative to the serial DFS approach.

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

 Cube Friendster Kron_21 Orkut

0.9
1.0
1.1
1.2
1.3
1.4
1.5

1

2

2

4

6

1.0

1.5

2.0

2.5

3.0

12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16
Cores

S
pe

ed
up

 v
s.

 S
er

ia
l

Figure 7: Parallel scaling of BCC-BFS relative to the serial
Hopcroft and Tarjan algorithm.

0

1

2

3

4

C
ube

F
riendster

G
N

P
_1

G
N

P
_10

ItW
eb

K
ron_21

LiveJournal

O
rkut

R
−

M
AT

_20

R
−

M
AT

_22

R
−

M
AT

_24

Tw
itter

W
ikiLinks

X
yce

Graphs

G
T

E
P

S

●

●

●

●
●

●

●

●

●

●

●

●

●

●

1

10 100
Average Degree of Graph

G
T

E
P

S

Figure 8: Runtime GTEPS for each tested graph as well as
the relationship between GTEPS and average graph degree.

managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000. This
work was partially supported by the DOE Office of Science
through the FASTMath SciDAC Institute.

REFERENCES

[1] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee, “Measurement and analysis of online so-
cial networks,” in Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement. ACM, 2007, pp. 29–
42.

[2] W. McLendon III, B. Hendrickson, S. J. Plimpton, and
L. Rauchwerger, “Finding strongly connected components
in distributed graphs,” Journal of Parallel and Distributed
Computing, vol. 65, no. 8, pp. 901–910, 2005.

[3] A. Pothen and C.-J. Fan, “Computing the block triangular
form of a sparse matrix,” ACM Transactions on Mathematical
Software (TOMS), vol. 16, no. 4, pp. 303–324, 1990.

[4] H. K. Thornquist, E. R. Keiter, R. J. Hoekstra, D. M.
Day, and E. G. Boman, “A parallel preconditioning strategy
for efficient transistor-level circuit simulation,” in Computer-
Aided Design-Digest of Technical Papers, 2009. ICCAD 2009.
IEEE/ACM International Conference on. IEEE, 2009, pp.
410–417.

[5] R. E. Tarjan, “Depth first search and linear graph algorithms,”
SIAM Journal of Computing, vol. 1, pp. 146–160, 1972.

[6] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures
and Algorithms. Addison-Wesley, 1983.

[7] L. K. Fleischer, B. Hendrickson, and A. Pinar, “On identifying
strongly connected components in parallel,” Lecture Notes in
Computer Science, vol. 1800, pp. 505–512, 2000.

[8] J. Barnat and P. Moravec, “Parallel algorithms for finding sccs
in implicitly given graphs,” Formal Methods: Applications
and Technology, vol. 4346, pp. 316–330, 2006.

[9] J. Barnat, P. Bauch, L. Brim, and M. Cevska, “Computing
strongly connected components in parallel on cuda,” in Par-
allel and Distributed Processing Symposium (IPDPS), 2011
IEEE International. IEEE, 2011, pp. 544–555.

[10] S. Hong, N. C. Rodia, and K. Olukotun, “Technical report:
On fast parallel detection of strongly connected components
(scc) in small-world graphs,” Stanford University, Tech. Rep.,
2013.

[11] ——, “On fast parallel detection of strongly connected com-
ponents (scc) in small-world graphs,” in The International
Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2013, p. to appear.

[12] J. Hopcroft and R. Tarjan, “Efficient algorithms for graph
manipulation,” Communcations of the ACM, vol. 16, no. 6,
pp. 374–378, 1973.

[13] R. E. Tarjan and U. Vishkin, “An efficient parallel biconnec-
tivity algorithm,” SIAM Journal on Computing, vol. 14, no. 4,
pp. 862–874, 1985.

[14] G. Cong and D. A. Bader, “An experimental study of parallel
biconnected components algorithms on symmetric multipro-
cessors (smps),” in Parallel and Distributed Processing Sym-
posium, 2005. Proceedings. 19th IEEE International. IEEE,
2005, pp. 45b–45b.

[15] J. A. Edwards and U. Vishkin, “Better speedups using simpler
parallel programming for graph connectivity and biconnectiv-
ity,” in Proceedings of the 2012 International Workshop on
Programming Models and Applications for Multicores and
Manycores. ACM, 2012, pp. 103–114.

[16] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Ra-
jagopalan, R. Stata, A. Tomkins, and J. Wiener, “Graph
structure in the web,” Computer networks, vol. 33, no. 1, pp.
309–320, 2000.

[17] Intel, Intel 64 and IA-32 Architectures Software Developer’s
Manual, System Programming Guide, Part 1. Intel Press,
2011, vol. 3A.

[18] J. Chhugani, N. Satish, C. Kim, J. Sewall, and P. Dubey, “Fast
and efficient graph traversal algorithm for cpus: Maximizing
single-node efficiency,” in Supercomputing, 2012.

[19] S. Beamer, K. Asanović, and D. Patterson, “Direction-
optimizing breadth-first search,” in Supercomputing, 2012.

[20] V. Argarwal, F. P. D. Pasetto, and D. A. Bader, “Scalable
graph exploration on multicore processors,” in Supercomput-
ing, 2010.

[21] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph
processing framework for shared memory,” in Proceedings
of the 18th ACM SIGPLAN symposium on Principles and
practice of parallel programming, 2013, pp. 135–146.

[22] J. Leskovec, “SNAP: Stanford network analysis project,” http:
//snap.stanford.edu/index.html, last accessed 3 July 2013.

[23] J. Kunegis, “KONECT - the koblenz network collection,”
konect.uni-koblenz.de, last accessed 31 July 2013.

[24] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner,
“Graph partitioning and graph clustering, 10th dimacs imple-
mentation challenge workshop,” Contemporary Mathematics,
vol. 588, 2013.

[25] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Transactions on Mathematical Software,
vol. 38, no. 1, pp. 1–25, 2011.

[26] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A
recursive model for graph mining,” in SDM, 2004.

[27] K. Madduri and D. A. Bader, “GTgraph: A suite of syn-
thetic graph generators,” http://www.cse.psu.edu/∼madduri/
software/GTgraph/, last accessed 31 July 2013.

[28] J. Yang and J. Leskovec, “Defining and evaluating network
communities based on ground-truth,” in ICDM, 2012.

[29] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan,
“Group formation in large social networks: Membership,
growth, and evolution,” in KDD, 2006.

[30] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a
social network or a news media?” in WWW ’10: Proceedings
of the 19th international conference on World wide web. New
York, NY, USA: ACM, 2010, pp. 591–600.

[31] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Ubicrawler:
A scalable fully distributed web crawler,” Software: Practice
& Experience, vol. 34, no. 8, pp. 711–726, 2004.

[32] “Wikipedia links, english network dataset – KONECT,”
Oct. 2013. [Online]. Available: http://konect.uni-koblenz.de/
networks/wikipedia link en

