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Abstract—Sensor fusion algorithms allow the combination of
many heterogeneous data types to make sophisticated decisions.
In many situations, these algorithms give increased performance
such as better detectability and/or reduced false alarm rates.
To achieve these benefits, typically some system or signal model
is given. This work focuses on the situation where the event
signal is unknown and a false alarm criterion must be met.
Specifically, the case where data from multiple passive infrared
(PIR) sensors are processed to detect intrusion into a room
while satisfying a false alarm constraint is analyzed. The central
challenge is the space of intrusion signals is unknown and we
want to quantify analytically the probability of false alarm.
It is shown that this quantification is possible by estimating
the background noise statistics and computing the Mahalanobis
distance in the frequency domain. Using the Mahalanobis distance
as the decision metric, a threshold is computed to satisfy the false
alarm constraint.

I. EXTENDED ABSTRACT
A. The Problem

The central problem addressed by this contribution is to
develop a sensor fusion algorithm to combine and process
signals from multiple PIR sensors to detect intrusion into a
room under the constraint that the probability of false alarm
not exceed some design parameter. This work only considers
a “normal” operating environment, i.e. false alarms caused by
abnormal environments such as rapid heating or cooling due
to HVAC operations are not considered. The probability of
false alarm constraint will be denoted α. An example of such
a constraint could be the probability of a single false alarm in
a single year is 0.01, or stated another way the algorithm does
not have a single false alarm in a year with probability 0.99.
In systems where false alarms are prohibitively expensive, a
premium is spent on being able to characterize and meet a
false alarm constraint at the possible expense of detectability.

False alarm constraints can be achieved in many signal
processing applications where the signal model is known.
For example, in the canonical detection theory problem of
finding a sinusoid of known frequency, phase, and magnitude
in an additive white Gaussian noise (AWGN) environment, a
threshold placed after a matched filter traces out a theoretically
computable receiver operating characteristic (ROC) curve. In
this example, the threshold is selected to meet the false alarm
constraint (with a few extra steps to account for the constraint
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Fig. 1. Intruder Event as Observed By Two Different Sensors.

having a temporal aspect, i.e. false alarms per unit time).
The signal model is unknown in the situations analyzed

in this work. Figure 1 shows an example of data collected
on a testbed from two PIR sensors as someone walked into
the room being monitored (data collection will be covered
in Section I-B). There are several things to notice from
these time series. First, the response of the sensors can
take on many forms. Looking specifically at sensor 5, the
signal from 10 to 20 seconds looks very different from the
signal between 25 and 30 seconds, and 30 to 42 seconds.
This is an example of what is meant by not knowing the
signal model. Secondly, comparing the signals from sensor
5 and 6, sensor 6 only observers the intrusion event from
30 to 42 seconds. One could use a threshold and logic
architecture to detect the events, e.g. whenever any sensor’s
voltage deviates from the DC offset by more than 0.5 volts,
declare an intrusion event. This could theoretically solve the
problem if the background noise statistics are known, but
this leads to the third observation, to be discussed later, that
the background noise is non-independent and non-Gaussian.
Thus using a voltage threshold and combinatorial logic, while
possibly successful for detecting intrusions, cannot provide the
required false alarm guarantees.

In this work we develop a sensor fusion algorithm that is
able to quickly detect intrusions yet satisfy the false alarm
constraints. To our knowledge, very little work has been
done to create detection algorithms merging multiple sensors
where the signal model is unknown while still meeting a false
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Fig. 2. Top: Sensor Module with PIR sensor, photodetector and three-axis
accelerometer. Bottom: Sensor Modules placed along wall of room via CAN
bus.

alarm requirement. A brief description of our approach to this
problem is now given. Because the signal model is unknown,
the ability to quantify and meet a false alarm constraint rests
in being able to characterize the background noise. Along
these lines, days worth of background data were collected.
Unfortunately, this data reveals that the background noise
behaves poorly as it is non-Gaussian and non-independent. To
combat this, the data is transformed into the frequency domain,
where it is observed that nearly all the (real and imaginary)
frequency components are marginally Gaussian distributed,
but the joint distribution over all the frequency coefficients
is not jointly Gaussian. By selecting a small enough subset of
the frequency components, the joint distribution looks nearly
Gaussian. The subset of frequency components is selected
using principal component analysis (PCA). Once the subset
of coefficients is selected, taking the Mahalanobis distance of
the PCA coefficients yields a chi-squared background noise
distribution. The Mahalanobis distance has a history of use
in outlier detection [1], [2] and classification [3]. Having
established a metric with known distribution on the background
data set, a threshold can be computed on the Mahalanobis
distance that achieves the false alarm constraint. It is then
shown that applying this threshold to intrusion data yields a
decision algorithm that has very good performance.

B. Data Collection
The testbed used to collect data consisted of a shielded

room with eight custom designed sensor modules mounted
along the walls. The sensor module is shown in the top
photograph of Figure 2. Each module contains a Kionix
KXRB5-2050 tri-axis accelerometer, a Marktech 5052TD
photo diode and a Panasonic AMN24112 PIR sensor. In this
work, we focus only on the PIR sensor. The eight sensor
modules are mounted around the shielded room, as illustrated
in the bottom photograph of Figure 2. The sensor modules
are connected via a CAN bus. The PIR signal at each sensor
module has a possible range of 0 to 3.3 volts and is uniformly
scalar quantized with a 12 bit quantizer at a rate of 100 Hz.

Days worth of data were collected with the shielded
room empty and closed to gather as much background data
as possible. Simple intrusion event data were collected and
consisted of a person opening the door to the shielded room,
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Fig. 3. Top: PIR time series. Bottom: Marginal distribution of PIR sensor
data and a fitted normal distribution.

walking about the room, exiting and closing the door. The PIR
signal of such an intrusion event is illustrated in Figure 1.

C. Intrusion Detection Algorithm
1) Time Series Issues: The signal model for both the

background noise signal and possible intrusion event signals
are unknown. The background noise statistics can be estimated
accurately by collecting enough data. If the background noise
statistics can be accurately measured and modeled with a
known closed form probability distribution, then a threshold
(possibly two sided threshold) can be selected such that when
the signal exceeds the threshold, an intrusion is detected.
Because it is assumed the noise statistics are known, the
threshold can be designed to meet the false alarm constraint
by using the inverse cumulative distribution function. At this
point it should be noted that having a closed form probability
distribution that matches the noise distribution is essential in
computing the threshold. If one wanted to use the empirical
distribution to compute the threshold, data must be collected
at the time scale of the false alarm constraint, i.e. if one can
only accept one false alarm per year, a year’s worth of data
must be collected, otherwise there is no way to extrapolate
the results to meet the false alarm constraint. The collection
of this volume of data is bypassed by having confidence in a
closed form distribution for the noise. More data can provide
more confidence in the estimates of the noise statistics.

A natural place to start is to estimate the background noise
statistics in the time domain. The top plot of Figure 3 shows
background data that was collected with the testbed for a
single sensor over the course of 104 seconds. The bottom plot
of the same figure shows the marginal empirical probability
density (in blue) from the data and a normal distribution fitted
to the data using maximum likelihood estimates of the mean
and variance (in red). The empirical distribution looks fairly
Gaussian except for some values which are over-represented,
but it is imperative that we have high confidence in the fitting
of the noise statistics to a closed form distribution. Using
the Lilliefors’ goodness-of-fit test to test if the data appears
to come from an normal distribution, the test rejects the
null hypothesis (implying it does not comes from a normal
distribution) at an α-level of 0.001, i.e. the hypothesis tests is
99.9% certain that the data does not come from a Gaussian
distribution. Thus using the raw time series samples does not
provide the desired closed form noise distribution.

2) Frequency Domain Approach: Analyzing the sensor
data in the time domain did not provide a closed form
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Fig. 4. Top: Empirical density and distribution for the real part of the 2nd

FFT coefficient and the fitted normal density. Bottom: Empirical density and
distribution for the imaginary part of the 2nd FFT coefficient and the fitted
normal density.

distribution that matched the noise statistics. In this section
the noise statistics will be analyzed in the frequency domain
and the results are much more promising. To convert to the
frequency domain, the FFT was computed using a window
length of 128 with no overlap and no windowing function.
A delay is introduced into the algorithm as any decision will
have to wait for the FFT to be evaluated on the samples. In
this case 128 samples was chosen to minimize the delay yet
provide sufficient frequency resolution.

Figure 4 shows the empirical distributions of the real
and imaginary components of the 2nd FFT coefficient and
a Gaussian fit to the data. Visually, looking at the densities
(the plots on the left hand side), it may appear worse than
the time series distribution of Figure 3 from the previous
section. However, looking at the empirical distribution function
compared to the theoretical distribution (the right hand plots),
they appear nearly identical. This is important as the Lilliefors’
test is based on the supremum norm of the difference between
the distribution functions. Indeed, the null hypothesis is not
rejected even at a 99.9% confidence. This is not to say that we
are 99.9% certain of the match, as this would require switching
the role of the null and alternative hypotheses in the Lilliefors’
test, which does not exist. The α-level of 0.001 is used to be
consistent with our methodology for rejecting a distribution;
the distribution is assumed to be Gaussian because the null
hypothesis is not rejected. There is nothing special about the
2nd FFT component and these results appear representative of
most of the frequency components.

Since the Gaussian distribution matches the noise statistics
in the frequency domain, a threshold can be adopted on
the FFT coefficients to meet a false alarm constraint using
a combinatorial logic architecture, e.g. design a threshold
and declare an event when the first four FFT components
exceed the threshold. A different approach is proposed here
which combines all the FFT information in a rigorous manner.
Accepting that the real and imaginary components of the FFT
coefficients of the background signal are normally distributed,
the mean vector µ ∈ R128 and covariance matrix Σ ∈
R128×128 are estimated. The PIR signal is real, thus the 128
point FFT yields 65 unique complex coefficients, the first and
middle (65th) coefficients being purely real. Taking the real
and imaginary components and stacking them in a vector leads
to the vector in R128. After estimating the mean and covariance
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Fig. 5. Distribution of the Mahalanobis distance of the sensor fusion
algorithm.

values, the Mahalanobis distance is computed

DM (x̂) = (x̂− µ)Σ−1 (x̂− µ) (1)

where x̂ ∈ R128 are the unique FFT coefficients as previously
described. When x̂ is jointly Gaussian, the Mahalanobis
distance DM (x̂) is known to be chi-square distributed with
128 degrees of freedom. Having a known distribution, a
threshold can be chosen on the Mahalanobis distance to
meet a false alarm constraint using the inverse CDF. It is
beneficial to design the intrusion detection algorithm around
the Mahalanobis distance because it has greater sensitivity than
a logical architecture and combines all the FFT coefficient
information in a consistent and probabilistic manner (see
Figure 7 discussed later). To see this, consider any logical
architecture where thresholds are placed on individual FFT
coefficients. Now suppose that the all the FFT coefficients fall
just below the all the thresholds. The logic architecture will
not detect an intrusion, but the Mahalanobis distance of such
an event will be large as the total distance as computed by
DM (x̂) will be large. Here is a summary of a preliminary
version of the detection algorithm based on a single sensor:

Algorithm 1: Compute estimates µ and Σ on background
data (during a start of phase when conditions are controlled).
Once estimated, compute a threshold xth to meet the false
alarm constraint α using the fact that DM (x̂) is chi-square
distributed. For each new batch of 128 time series samples,
compute the FFT x̂ and then compute DM (x̂) and declare an
intrusion if DM (x̂) > xth.

Unfortunately Algorithm 1 will not work as stated. The
Mahalanobis distance is computing a weighted energy in
the frequency domain, but by Parseval’s theorem a similar
computation in the time domain should yield the same
result. In the time domain however, there is little hope of
achieving a closed form chi-squared distribution due to the
non-Gaussianity of the samples.

To address this issue, rather than using all of the FFT
coefficients to compute the Mahalanobis distance, a subset
of coefficients will be selected as it will be shown that
this leads to a distribution that very closely matches a chi-
squared distribution. This leads to the question of how to
select this subset. Experiments have shown that almost any
sufficiently small subset of FFT coefficients will work in
terms of yielding a chi-squared distribution, but detectability
of intrusion events could be compromised. A reasonable subset
selection criterion would be to select the coefficients that have
the most energy. Using this idea, principal component analysis
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Fig. 6. Top: Event time series for eight testbed sensors. Bottom: The output
metric (Mahalanobis distance) of the sensor fusion algorithm and decision
threshold.

(PCA) was used to find the subspace of FFT coefficients
that describe the most energy. The principal components that
accounted for 95% of the energy were used, which was 9
components for the sensor time series in the Figure 3. PCA can
be performed because linear transformations of the Gaussian
FFT coefficients perserves Gaussianity. PCA also conveniently
reduces the dimension of the feature space from 128 to 9 in this
case. Theoretically the Mahalanobis distance computed on the
9 principal components should be distributed as a chi-squared
random variable with 9 degrees of freedom. Using a two-sided
Kolmogorov-Smirnov test, the null hypothesis is not rejected
at an α-level of 0.001 providing additional justification.

The system can have N sensors, which are assumed to
independently observe the environment. In the testbed, there
are N = 8 sensors. The above procedure is performed on all
of the individual sensors, and the PCA components of each
sensor are added together at the central controller to yield the
final statistic which is compared to a threshold to decide if an
event has occurred. This is possible because the distribution of
the sum of the PCA components is known. Here is a summary
of the sensor fusion algorithm:

Algorithm 2: On the background data set, compute the
PCA subspace of each sensor in the frequency domain that
accounts for 95% of the variance. Let βi denote the dimension
of the PCA subspace for sensor i. On the background data,
compute µiPCA ∈ Rβi and ΣiPCA ∈ Rβi×βi , the PCA mean
and covariance, for each sensor. For each batch of 128 time
samples, compute x̂i for each sensor, project it into the PCA
domain to produce x̂iPCA and then compute DMi (x̂iPCA)
using µiPCA

and ΣiPCA
for each sensor. Sum the statistic from

each sensor DMtotal
=

∑N
i=1 DMi

and declare an intrusion
if DMtotal

> xth, where xth is compute from the the PCA
statistics (see Equation 2).

Each DMi is distributed as a chi-squared random variable
with βi degrees of freedom, so DMtotal

has a chi-squared
distribution with βtotal =

∑N
i=1 βi degrees of freedom.

Suppose we want to achieve a false alarm rate of α, e.g.
probability of a false alarm in a year is 0.001. Let N be the
number of 128 sample windows that occur in the time frame
of interest (e.g. one year) and let F be chi-squared distribution
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Fig. 7. Top: Scaled event time series. Bottom: Sensor fusion algorithm output
metric on scaled time series and decision threshold.

function with βtotal degrees of freedom. The threshold xth can
be computed with the following equation:

xth = F−1
(
α

1
N

)
(2)

where F−1 is the inverse distribution function.
Figure 6 shows the time series of all eight sensors and

the corresponding Mahalanobis distance and threshold xth for
α = 0.001 for a year. It is seen that the Mahalanobis distance
exceeds the threshold during the event, indicating an intrusion.
Figure 7 scales the sensor time series from Figure 6 so that
the maximum value does not exceed the voltage threshold
recommended by the manufacturer to declare an event. Thus,
none of the sensors would have declared an event for the time
series in Figure 7 and therefore no decision algorithm based
on a combinatorial logic architecture would have declared an
event. However, using Algorithm 2, an event is declared. This
example shows the power in coherently combining all of the
sensor time series via probabilistic models.

D. Summary
A sensor fusion algorithm is developed that meets a

false alarm requirement. The algorithm accomplishes this
by characterizing the background noise in the frequency
domain and projecting the frequency domain coefficients into
a lower dimension space via PCA. The decision metric is the
Mahalanobis distance computed on the PCA coefficients. The
decision metric has a known distribution on the background
noise, a chi-squared distribution, which allows a threshold to
be computed to achieve the false alarm requirement.
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