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Abstract. We present a fast and scalable lock algorithm for shared-
memory multiprocessors addressing the resource allocation problem, which
is also known as the h-out-of-k mutual exclusion problem. In this prob-
lem, threads compete for k shared resources where a thread may request
an arbitrary number 1 ≤ h ≤ k of resources at the same time. The chal-
lenge is for each thread to acquire exclusive access to desired resources
while preventing deadlock or starvation. Many existing approaches solve
this problem in a distributed system, but the explicit message passing
paradigm they adopt is not optimal for shared-memory. Other applicable
methods, like two-phase locking and resource hierarchy, suffer from per-
formance degradation under heavy contention, while lacking a desirable
fairness guarantee. This work describes the first multi-resource lock al-
gorithm that guarantees the strongest first-in, first-out (FIFO) fairness.
Our methodology is based on a non-blocking queue where competing
threads spin on previous conflicting resource requests. In our experimen-
tal evaluation we compared the overhead and scalability of our lock to
the best available alternative approaches using a micro-benchmark. As
contention increases, our multi-resource lock obtains an average of ten
times speedup over the alternatives including GNU C++’s lock method
and Boost’s lock function. Additionally, the timings of the multi-resource
lock are most consistent in contrast to the existing approaches.

1 Introduction

Improving the scalability of resource allocation algorithms on shared-memory
multiprocessors is of practical importance due to the trend of developing many-
core chips [7]. The performance of parallel applications on a shared-memory
multiprocessor is often limited by contention for shared resources, creating the
need for efficient synchronization methods. In particular, the limitations of the
synchronization techniques used in existing database systems leads to poor scala-
bility and reduced throughput on modern multicore machines [22]. For example,
when running on a machine with 32 hardware threads, Berkeley DB spends over
80% of the execution time in its Test-and-Test-and-Set lock [22].
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Mutual exclusion locks eliminate race conditions by limiting concurrency
and enforcing sequential access to shared resources. Comparing to more intri-
cate approaches like lock-free synchronization [16] and software transactional
memory [20], mutual exclusion locks introduce sequential ordering that eases
the reasoning about correctness. Despite the popular use of mutual exclusion
locks, one requires extreme caution when using multiple mutual exclusion locks
together. In a system with several shared resources, threads often need more
than just one resource to complete certain tasks, and assigning one mutual ex-
clusion lock to one resource is common practice. Without coordination between
locks this can produce undesirable effects such as deadlock, livelock and decrease
in performance.

Consider two clerks, Joe and Doe, transferring money between two bank ac-
counts C1 and C2, where the accounts are exclusive shared resources and the
clerks are two contending threads. To prevent conflicting access, a lock is as-
sociated with each bank account. The clerks need to acquire both locks before
transferring the money. The problem is that mutual exclusion locks cannot be
composed, meaning that acquiring multiple locks inappropriately may lead to
deadlock. For example, when Joe locks the account C1 then he attempts to
lock C2. In the meantime, Doe has acquired the lock on C2 and waits for the
lock on C1. In general, one seeks to allocate multiple resources among contending
threads that guarantees forward system progress, which is known as the resource
allocation problem [15]. Two pervasive solutions, namely resource hierarchy [11]
and two-phase locking [13], prevent the occurrence of deadlocks but do not re-
spect the fairness among threads and their performance degrades as the level of
contention increases. Nevertheless, both the GNU C++ library1 and the Boost
library2 adopt the two-phase locking mechanism as a means to avoid deadlocks.

In this paper, we propose the first first-in, first-out (FIFO) multi-resource
lock algorithm for solving the resource allocation problem on shared-memory
multiprocessors. Given k resources, instead of having k separate locks for each
one, we employ a non-blocking queue as the centralized manager. Each element
in the queue is a resource request bitset3 of length k with each bit representing
the state of one resource. The manager accepts the resource requests in a first-
come, first-served fashion: new requests are enqueued to the tail, and then they
progress through the queue in a way that no two conflicting requests can reach
the head of the queue at the same time. Using the bitset, we detect resource
conflict by matching the correspondent bits. The key algorithmic advantages of
our approach include:

1. The FIFO nature of the manager guarantees fair acquisition of locks, while
implying starvation-freedom and deadlock-freedom

2. The lock manager has low access overhead and is scalable with the cost of
enqueue and dequeue being only a single compare and swap operation

1 http://gcc.gnu.org
2 http://www.boost.org
3 A bitset is a data structure that contains an array of bits.



3. The maximum concurrency is preserved as a thread is blocked only when
there are outstanding conflicting resource requests

4. Using a bitset allows an arbitrary number of resources to be tracked with
low memory overhead, and does not require atomic access

We evaluate the overhead and scalability of our lock algorithm using a micro-
benchmark. We compare our work to the state-of-the-art approaches in the field,
which include resource hierarchy locking combined with Intel TBB4 queue mu-
tex, two-phase locking, such as std::lock and boost::lock, and an extended Test-
and-Test-and-Set (TATAS) lock. At low levels of contention, our lock sacrifices
performance for fairness resulting in a worst case slowdown of 2 times. As con-
tention increases, it outperforms the two-phase locking methods by a factor of
10 with a worst case speedup of 1.5 to 2 times against the resource hierarchy
lock and the extended TATAS lock. Moreover, the timings of our multi-resource
lock are significantly more consistent and regular throughout all test scenarios
when compared to other approaches.

The rest of the paper is organized as follows. Section 2 formalizes the resource
allocation problem and provides a brief summary on lock-free data structures.
Section 4 details the design and implementation of the proposed multi-resource
lock algorithm. Section 5 reasons about the safety and progress properties of
our algorithm. Section 6 reviews some related works. In section 7 we present the
experimental evaluation of our approach. Section 8 concludes with a summary
of results and perspectives on future work.

2 Background

In this section, we briefly review the mutual exclusion problem and its variations,
with emphasis on the resource allocation problem and the desirable properties
for a solution. We also provide a summary on the lock-free data structures and
the atomic primitives used in our algorithm.

2.1 Mutual Exclusion and Resource Allocation

Mutual exclusion algorithms are widely used to construct synchronization primi-
tives like locks, semaphores and monitors. Designing efficient and scalable mutual
exclusion algorithms has been extensively studied (Raynal [29] and Anderson [1]
provide excellent surveys on this topic). In the classic form of the problem, com-
peting threads are required to enter the critical section one at a time. In the
k-mutual exclusion problem [15], k units of an identical shared resource exist
so that up to k threads are able to acquire the shared resource at once. Fur-
ther generalization of k-mutual exclusion gives the h-out-of-k mutual exclusion
problem [28], in which a set of k identical resources are shared among threads.
Each thread may request any number 1 ≤ h ≤ k of the resources, and the thread
remains blocked until all the required resources become available.

4 http://www.threadingbuildingblocks.org



We address the resource allocation problem [24] on shared-memory multi-
processors, which extends the h-out-of-k mutual exclusion problem in the sense
that the resources are not necessarily identical. The resource allocation problem
can also be seen as a generalization to the prominent Dining Philosophers Prob-
lem (DPP) originally formulated by Dijkstra [12]. It drops the static resource
configuration used in the DPP and allows an arbitrary number of resources to
be requested from a pool of k resources. The minimal safety and liveness prop-
erties for any solution include mutual exclusion and deadlock-freedom [1]. Mu-
tual exclusion means a resource must not be accessed by more than one thread
at the same time, while deadlock-freedom guarantees system wide progress.
Starvation-freedom, a stronger liveness property than deadlock-freedom, ensures
every thread eventually gets the requested resources. In the strongest FIFO or-
dering, the threads are served in the order they arrive. It is preferable for ensur-
ing starvation-freedom because it enforces strict fairness between contenders [26].
Another desirable property “local spin” [2] is crucial to the scalability of locks.
Local spin algorithms are cache aware so that threads do not make remote mem-
ory reference in the spin (busy-wait) loop.

2.2 Atomic Primitives and Synchronization

Atomic primitives are the cornerstones of any synchronization algorithm. com-

pare and swap(address, expectedValue, newValue)5, or CAS for short, always
returns the original value at the specified address but only writes newValue

to address if the original value matches expectedValue. CAS is preferred for
two reasons: first, it is a universal atomic operation (infinite consensus num-
ber) [19], thus can be used to construct any other atomic operations; second, it
is now widely supported in most systems after first appearing in the IBM 370.
A slightly different version compare and set returns a Boolean value indicat-
ing whether the comparison succeeded. In C++ memory model [6], the use of
an atomic operation is usually accompanied by std::memory order, which spec-
ify how regular memory accesses made by different threads should be ordered
around the atomic operation. More specifically, a pair of std::memory order ac-

quire and std::memory order release requires that when a thread does a atomic
load operation with acquire order, prior writes made to other memory locations
by the thread that did the release become visible to it. std::memory order re-

laxed, on the hand, poses no ordering constraints.
Given the atomic CAS instruction, it is straightforward to develop simple spin

locks. In Algorithm 1 we present a extended TATAS lock that solves the resource
allocation problem for a small number of resources. The basic TATAS lock [30]
is a spin lock that allows threads to busy-wait on the initial test instruction to
reduce bus traffic. The key change we made is to treat the lock integer value
as a bit array instead of a Boolean flag. A thread needs to specify the resource
requests through a bitset mask when acquiring and releasing the lock. With each
bit representing a resource, the bits associated with the desired resources are set

5 Also known as compare exchange



Algorithm 1 TATAS lock for resource allocation

1 typedef uint64 bitset; // use 64 b i t
i n t e g e r as b i t s e t

2
3 // i npu t l : the add r e s s o f the l o c k
4 // i npu t r : the r e s o u r c e r e q u e s t b i t

mask
5 void tatas_lock(bitset* l, bitset r

){
6 bitset b;
7 do{
8 b = *l; // read b i t s v a l u e
9 if(b & r) // check f o r

c o n f l i c t i o n

10 continue; // s p i n w i th r e ad s
11 }while(! compare_and_set(l, b, b |

r));
12 }
13
14 void tatas_unlock(bitset* l, bitset

r){
15 bitset b;
16 do{
17 b = *l;
18 }while(! compare_and_set(l, b, b &

~r));
19 }

to 1 while others remain 0. The request updates the relevant bits in the lock bitset
if there is no conflict, otherwise the thread spins. One drawback is that the total
number of resources is limited by the size of integer type because a bitset capable
of representing arbitrary number of resources may span across multiple memory
words. Updating multiple words atomically is not possible without resorting to
multi-word CAS [17], which is not readily available on all platforms.

Non-blocking synchronization [16], eliminates the use of locks completely. A
concurrent object is lock-free if at least one thread makes forward progress in a
finite number of steps [18]. It is wait-free if all threads make forward progresses in
a finite number of steps. Compared to their blocking counterparts, non-blocking
objects promise greater scalability and robustness. One common way to con-
struct a non-blocking object is to use CAS: each contending thread speculates
by applying a set of writes on a local copy of the shared data and attempts to
CAS the shared object with the updated copy [9]. In this work, we take advan-
tage of a non-blocking queue to increase the scalability and throughput of our
lock mechanism.

¡¡¡¡¡¡¡ local

3 Related Work

As noted in section 2.1, a substantial body of work addresses the mutual exclu-
sion problem and the generalized resource allocation problem. In this section,
we summarize the solutions to the resource allocation problem that are ap-
plicable to shared-memory multiprocessors. We skip the study of the resource
allocation problem in distributed environments [4,?,?]. These solutions do not
transfer to shared-memory systems because of the drastically different communi-
cation characteristics. In distributed environments processes communicate with
each other by message passing, while in shared-memory systems communication
is done through shared memory objects. We also omit early mutual exclusion
algorithms that use more primitive atomic read and write registers [29,1]. As
we show in section 2.2, the powerful CAS operation on modern multiprocessors
greatly reduces the complexity of mutual exclusion algorithms.



3.1 Resource Allocation Solutions

Assuming each resource is guarded by a mutual exclusion lock, lock acquiring
protocols can effectively prevent deadlocks. Resource hierarchy is one protocol
given by Dijkstra [11] based on total ordering of the resources. Every thread
locks resources in an increasing order of enumeration; if a needed resource is not
available the thread holds the acquired locks and waits. Deadlock is not possible
because there is no cycle in the resource dependency graph. Lynch [24] proposes
a similar solution based on a partial ordering of the resources. Resource hier-
archy is simple and efficient, and has been widely used in practice. However,
total ordering requires prior knowledge of all system resources, and dynamically
incorporating new resources is difficult. Two-phase locking [13] was originally
proposed to address concurrency control in databases. At first, threads are al-
lowed to acquire locks but not release them, and in the second phase threads
are allowed to release locks without acquisition. For example, a thread tries to
lock all needed resources one at a time; if anyone is not available the thread
releases all the acquired locks and start over again. When applied to shared-
memory systems, it requires a ”try lock” method that returns immediately in-
stead of blocking the thread when the lock is not available. The performance
of two-phase locking degrades drastically under contention, because its release-
and-wait protocol is vulnerable to failure and retry. Time stamp ordering [5]
prevents deadlock by selecting an ordering among the threads. Whenever there
is a conflict the thread with smaller time stamp wins. Usually a unique time
stamp is assigned to the thread before it starts to lock the resources.

3.2 Queue-Based Algorithms

Fischer et al. [14] describes a simple FIFO queue algorithm for the k-mutual
exclusion problem. Awerbuch and Saks [3] proposed the first queuing solution
to the resource allocation problem. They treat it as a dynamic job scheduling
problem, where each job encapsulates all the resources requested by one pro-
cess. Newly enqueued jobs progress through the queue if no conflict is detected.
Their solution is based on a distributed environment in which the enqueue and
dequeue operation are done via message communication. Due to this limitation,
they need to assume no two jobs are submitted concurrently. Spin locks such
as the TATAS lock shown in Algorithm 1 induce significant contention on large
machines, leading to irregular timings. Queue-based spin locks eliminate these
problems by making sure that each thread spins on a different memory loca-
tion [31]. Note that queue-based spin locks do not solve the resource allocation
problem directly, but we take inspiration from them when designing our queue-
base multi-resource locks. Anderson [2] embeds the queue in a Boolean array.
The size of the array equals the number of threads. Each thread determines
its unique spin position by drawing a ticket. When relinquishing the lock, the
thread resets the Boolean flag on the next slot to notify the waiting thread. The
MCS lock [26] designed by Scott et al., employs a linked list with pointers from
each thread to its successor. The CLH lock by Craig et al. [8,25] also employs



a linked list but with pointers from each thread to its predecessor. The most
notable features of the queue locks are the FIFO ordering of lock acquisitions
and the local spin property. =======

4 Algorithms

We implement a queue-based multi-resource lock that manages an arbitrary
number of exclusive resources on shared-memory architectures. Our highly scal-
able algorithm controls resource request conflicts by holding all requests in a
FIFO queue and allocating resources to the threads that reach the top of the
queue. We achieve scalable behavior by representing resource requests as a bit-
set and employing a non-blocking queue that grants fair acquisition of the locks.
¿¿¿¿¿¿¿ other

Algorithm 2 Multi-Resource Lock Data Structures

1 #include <bitset.h>
2 #include <atomic >
3 using namespace std;
4
5 struct cell{
6 atomic <uint32 > seq; // sequnce

number
7 bitset bits; // r e s o u r c e

r e q u e s t b i t s
8 }
9 struct mrlock{

10 cell* buffer; // r i n g
b u f f e r o f c e l l s

11 uint32 mask; //mask f o r
f a s t modu la t ion

12 atomic <uint32 > head; // head
p o s i t i o n

13 atomic <uint32 > tail; // t a i l
p o s i t i o n

14 }
15
16 // i npu t l : r e f e r e n c e to the l o c k

i n s t a n c e

17 // i npu t s i z : r e q u i r e d b u f f e r s i z e (
power o f 2)

18 void init(mrlock& l, uint32 siz){
19 l.buffer = new cell[siz];
20 l.mask = siz - 1;
21 l.head.store(0,

memory_order_relaxed);
22 l.tail.store(0,

memory_order_relaxed);
23 // i n i t i a l i z e b i t s to a l l 1 s and

seq to c e l l i n d e x
24 for (uint32 i = 0; i < siz; i++)

{
25 l.buffer[i].bits.set();
26 l.buffer[i].seq.store(i,

memory_order_relaxed);
27 }
28 }
29
30 void uninit(mrlock& l){
31 delete [] l.buffer;
32 }

4.1 Bounded Non-Blocking FIFO Queue

Our conflict management approach is built on an array-based bounded lock-free
FIFO queue [21]. The lock-free property is desirable as our lock manager must
guarantee deadlock freedom. The FIFO property of the data structure allows
for serving threads in their arriving order, implying starvation-freedom for all
enqueued requests. We favor an array-based queue over other high performance
non-blocking queues because it does not require dynamic memory management.
Link-list based queues involve dynamic memory allocation for new nodes, which
could lead to significant performance overhead and the ABA problem [27]. With



a pre-allocated continuous buffer, our lock algorithm is not prone to the ABA
problem and has low runtime overhead by using a single CAS for both enqueue
and dequeue operations.

Algorithm 2 defines the lock manager’s classes. The cell structure defines
one element in the queue buffer, it consists of a bitset that represents a resource
request and an atomic sequence number that coordinates concurrent access. The
mrlock structure contains a cell buffer pointer, the size mask, and the queue
head and tail. We use the size mask to apply fast index modulus. In our imple-
mentation, the head and tail increase monotonically; we use an index modulus
to map them to the correct array position. Expensive modulo operations can be
replaced by bitwise and if the buffer size is chosen to be a power of two. We
discuss the choice of buffer size in Section 5.2, and explain the initialization of
the sequence number and the bitset in following section.

4.2 Acquiring Locks

Given a set of resources, each bit in a request bitset is uniquely mapped to one
resource. A thread encapsulates a request of multiple resources in one bitset with
the correspondent bit of the requested resources set to 1. The multi-resource
lock handles requests atomically meaning that a request is fulfilled only if all
requested resources are made available, otherwise the thread waits in the queue.
This all-or-nothing atomic acquisition allows the maximum number of threads,
without conflicting requests, to use the shared resources. The length of the bitset
is unlimited and can be set either at runtime as in boost::dynamic bitset, or
at compile time as in std::bitset. Using variable length bitset is also possible
to accommodate growing number of total resources at runtime, as long as the
resource mapping is maintained.

Figure 3 demonstrates this approach. A newly enqueued request is placed
at the tail. Starting from the queue head, it compares the bitset value with
each request. In the absence of conflict, it moves on to the next one until it
reaches itself. Here, the request is actually conflicting with the fourth request.
This causes the tail thread to spin locally on request four until the fourth request
is complete. We list the code for acquire lock function in Algorithm 3, which
consists of two steps: enqueue and spin.

In Algorithm 3, the code from line 7 to line 16 outlines a CAS-based loop,
with threads competing to update the queue tail on line 13. If the CAS attempt
succeeds the thread is granted access to the cell at the tail position, and the tail
is advanced by one. The thread then stores its resource request, which is passed
to acquire lock as the variable r, in the cell along with a sequence number. The
sequence number serves as a sentinel in our implementation. During the enqueue
operation the thread assigns a sequence number to its cell as it enters the queue
as seen on line 18. The nature of a bounded queue allows the head and tail
pointers to move through a circular array. Dequeue attempts to increment the
head pointer towards the current tail, while a successful call to enqueue will
increment the tail pointer pulling it away from head. The sequence numbers are



Algorithm 3 Multi-Resource Lock Acquire

1 // i npu t l : r e f e r e n c to mr lock
s t r u c t u r e

2 // i npu t r : r e s o u r c e r e q u e s t
3 // output : the l o c k hand l e
4 uint32 acquire_lock(mrlock& l,

bitset r){
5 cell* c;
6 uint32 pos;
7 for (;;){ // cas loop , t r y to

i n c r e a s e t a i l
8 pos = l.tail.load(

memory_order_relaxed);
9 c = &l.buffer[pos & l.mask];

10 uint32 seq = c->seq.load(
memory_order_acquire);

11 int32 dif = (int32)seq - (int32
)pos;

12 if(dif == 0){
13 if(l.tail.

compare_exchange_weak(pos

, pos + 1,
memory_order_relaxed))

14 break;
15 }
16 }
17 c->bits = r; // update the c e l l

c on t en t
18 c->seq.store(pos + 1,

memory_order_release);
19 uint32 spin = l.head;
20 while(spin != pos){
21 if(pos - l.buffer[spin & l.mask

].seq > l.mask || !(l.
buffer[spin & l.mask].bits
& r))

22 spin ++;
23 }
24 return pos;
25 }

initialized on line 26 in Algorithm 2. It is also used by the release lock function
in Algorithm 4.

Once a thread successfully enqueues its request, it spins in the while loop
on line 20 to 23. It traverses the queue beginning at the head. When there is
a conflict of resources indicated by the bitset, the thread will spin locally on
the conflicting request. Line 21 displays two conditions that allow the thread to
advance: 1) the cell the thread is spinning on is free and recycled, meaning the
cell is no longer in front of this thread. This condition is detected by the use
of sequence numbers; 2) The request in the cell has no conflict, which is tested
by bitwise and of the two requests. Once the thread reaches its position in the
queue, it is safe to assume the thread has acquired the requested resources. The
position of the enqueued request is returned as a handle, which is required when
releasing the locks.

4.3 Releasing Locks

The release lock function releases the locks on the requested resources by setting
the bitset fields to zero using the lock handle, on line 4 of Algorithm 4. This allows
threads waiting for this position to continue traversing the queue. The removal
of the request from the queue is delayed until the request in the head cell is
cleared (line 6). If a thread is releasing the lock on the head cell, the releasing
operation will perform dequeue and recycle the cell. The thread will also examine
and dequeue the cells at the top of the queue until a nonzero bitset is found. The
code between lines 6 and 17 outlines a CAS loop that is similar to the enqueue
function. The difference is that here threads assist each other with the work of
advancing the head pointer. With this release mechanism, threads which finish
before becoming the head of the queue do not block the other threads.



Algorithm 4 Multi-Resource Lock Release

1 // i npu t l : r e f e r e n c e to mr lock
i n s t a n c e

2 // i npu t h : the l o c k hand l e
3 void release_lock(mrlock& l, uint32

h){
4 l.buffer[h & l.mask].bits.reset()

;
5 uint32 pos = l.head.load(

memory_order_relaxed);
6 while(l.buffer[pos & l.mask].bits

== 0){
7 cell* c = &l.buffer[pos & l.

mask];
8 uint32 seq = c->seq.load(

memory_order_acquire);
9 int32 dif = (int32)seq - (int32

)(pos + 1);

10 if(dif == 0){
11 if(l.head.

compare_exchange_weak(pos
, pos + 1,
memory_order_relaxed)){

12 c->bits.set();
13 c->seq.store(pos + l.mask

+ 1,
memory_order_release)
;

14 }
15 }
16 pos = l.head.load(

memory_order_relaxed);
17 }
18 }

5 Correctness

In this section we reason about the safety and liveness of our algorithm. Our
lock manager is safe because it maintains the desired semantics under concur-
rent acquire and release: all requests to acquire locks are served in FIFO order
and a thread must wait until its resource request is not in conflict with previ-
ous requests. The underlying lock-free queue guarantees starvation-freedom for
threads within the queue and deadlock-freedom for all contending threads.

5.1 Safety

By using the sequence number as a sentinel the following properties of our al-
gorithm are guaranteed: 1) The head always precedes the tail, i.e., Hpos ≤ Tpos

where Hpos and Tpos denote the value of head and tail as defined on line 12 and
13 in Algorithm 2. The head advances only if the sequence number of the cell is
equal to Hpos + 1 (line 9 and 10 of Algorithm 4). This occurs when a previous
enqueue operation sets the sequence number to Tpos +1 (line 18 of Algorithm 3).
2) The tail is at most siz away from the head, i.e., Tpos −Hpos ≤ siz where siz
denotes the size of the ring buffer. In other words, the tail cannot overtake the
head. The tail advances when the sequence number of the cell is equal to Tpos

(line 11 and 12 of Algorithm 3). When the tail wraps around the buffer trying to
overtake the head, the sequence number of the cell could be either Tpos − siz or
Tpos−siz +1 depending on whether previous enqueue has updated the sequence
number. This enqueue will wait until the head advances. Therefore, the cells
between head and tail are always valid and store outstanding requests in FIFO
order.

The queuing nature of our multi-resource lock allocates a cell exclusively for
each contending thread, which drops the limitation of atomic bitset access re-
quired by the extended TATAS lock (Algorithm 1). In our algorithm, each bitset
is set to 1 for all the bits during initialization (line 25 of Algorithm 2) and then
alternates between 0s, 1s (lines 4 and 12 of Algorithm 4), and desired lock values



(line 17 of Algorithm 3). A bitset can have maximum one writer because each
cell is allocated to one thread. Regardless the duration of the writing, the bitset
maintains its “locking capability” throughout the whole procedure. Since occu-
pied resources are denoted by 1, a bitset of all 1s denotes the set of all resources
and any other values denotes a subset of it. Consider updating a bitset from all 1s
to any specific request value, it’s essentially removing unwanted resources from
the set by filling in 0s, thus the intermediate values always represent some super-
sets of the requested resources. Therefore, it is not possible for any overlapping
reading thread to bypass with conflicting request. Similarly, when the bitset is
set to all 0s during lock release, the intermediate values always represents some
subsets of the requested resources. This prevents the unlocking operation from
blocking threads with no conflicting resource request.

5.2 Liveness

Our lock algorithm is deadlock-free for all threads because the concurrent queue
we use for our implementation guarantees lock-free progress when it has not
reached its capacity. This means that in a scenario of contending threads, at least
one thread succeeds when attempting to acquire or release its desired resources.
In Algorithm 3 a thread retries its enqueue operation when the CAS update fails
(line 13) or the sequence number mismatches (line 12). After loading the most
recent value of the tail (line 8), the CAS fails when the tail has been updated
by an intervening thread. The sequence number check fails if either the queue
is full (dif < 0) or the cell has been taken by an intervening thread (dif > 0).
When an enqueue attempt fails while the queue is not full, this is an indication
that another thread must have succeeded in completing an enqueue operation.
Therefore, lock-free property is satisfied among all contending threads while
starvation-freedom is provided to the threads within the queue. If a wait-free
queue is used in place of the lock-free queue, our lock algorithm will provide
starvation-freedom for all threads. Such an implementation is possible based on
the method proposed by Kogan [23].

If the queue is full, any new enqueue operation waits to insert its request
in the queue until some thread relinquishes its locks. For threads with already
enqueued requests, a full queue does not impair the correct execution of lock
acquisition/release in FIFO order. For threads that is waiting to insert new re-
quests, this may cause performance degeneration and loss of the FIFO fairness
guarantee. In practice, we can easily avoid this situation by allocating a suffi-
ciently large buffer. If the number of threads is know beforehand, then a buffer
size equal to the thread count will suffice because a thread can only file one
request at a time.

6 Related Work

As noted in section 2.1, a substantial body of work addresses the mutual ex-
clusion problem and the generalized resource allocation problem. In this sec-
tion, we summarize the solutions to the resource allocation problem and related



queue-based algorithms. We skip the approaches targeting distributed environ-
ments [4,28]. These solutions do not transfer to shared-memory systems because
of the drastically different communication characteristics. In distributed envi-
ronments processes communicate with each other by message passing, while in
shared-memory systems communication is done through shared memory objects.
We also omit early mutual exclusion algorithms that use more primitive atomic
read and write registers [29,1]. As we show in section 2.2, the powerful CAS
operation on modern multiprocessors greatly reduces the complexity of mutual
exclusion algorithms.

6.1 Resource Allocation Solutions

Assuming each resource is guarded by a mutual exclusion lock, lock acquiring
protocols can effectively prevent deadlocks. Resource hierarchy is one protocol
given by Dijkstra [11] based on total ordering of the resources. Every thread
locks resources in an increasing order of enumeration; if a needed resource is not
available the thread holds the acquired locks and waits. Deadlock is not possible
because there is no cycle in the resource dependency graph. Lynch [24] proposes a
similar solution based on a partial ordering of the resources. Resource hierarchy
is simple to implement, and when combined with queue mutex it is the most
efficient existing approach. However, total ordering requires prior knowledge of
all system resources, and dynamically incorporating new resources is difficult.
Besides, FIFO fairness is not guaranteed because the final acquisition of the
resources is always determined by the acquisition last lock in this hold-and-wait
scheme. Two-phase locking [13] was originally proposed to address concurrency
control in databases. At first, threads are allowed to acquire locks but not release
them, and in the second phase threads are allowed to release locks without
acquisition. For example, a thread tries to lock all needed resources one at a
time; if anyone is not available the thread releases all the acquired locks and
start over again. When applied to shared-memory systems, it requires a try lock

method that returns immediately instead of blocking the thread when the lock
is not available. Two-phase locking is flexible requiring no prior knowledge on
resources other than the desired ones, but its performance degrades drastically
under contention, because the release-and-wait protocol is vulnerable to failure
and retry. Time stamp ordering [5] prevents deadlock by selecting an ordering
among the threads. Usually a unique time stamp is assigned to the thread before
it starts to lock the resources. Whenever there is a conflict the thread with
smaller time stamp wins.

6.2 Queue-Based Algorithms

Fischer et al. [14] describes a simple FIFO queue algorithm for the k-mutual
exclusion problem. Awerbuch and Saks [3] proposed the first queuing solution
to the resource allocation problem. They treat it as a dynamic job scheduling
problem, where each job encapsulates all the resources requested by one process.
Newly enqueued jobs progress through the queue if no conflict is detected. Their



solution is based on a distributed environment in which the enqueue and dequeue
operation are done via message communication. Due to this limitation, they need
to assume no two jobs are submitted concurrently. Spin locks such as the TATAS
lock shown in Algorithm 1 induce significant contention on large machines, lead-
ing to irregular timings. Queue-based spin locks eliminate these problems by
making sure that each thread spins on a different memory location [31]. Ander-
son [2] embeds the queue in a Boolean array, the size of which equals the number
of threads. Each thread determines its unique spin position by drawing a ticket.
When relinquishing the lock, the thread resets the Boolean flag on the next
slot to notify the waiting thread. The MCS lock [26] designed by Scott et al.,
employs a linked list with pointers from each thread to its successor. The CLH
lock by Craig et al. [8] also employs a linked list but with pointers from each
thread to its predecessor. A Recent queue lock based on flat-combining synchro-
nization [10] exhibits superior scalability on NUMA architecture than the above
classic methods. The flat-combining technique reduce contention by aggregating
lock acquisitions in batch and processing them with a combiner thread. A key
difference between this technique and our multi-resource lock is that our method
aggregates lock acquisition requests for multiple resources from one thread, while
the flat-combining lock gathers requests from multiple threads for one resource.
Although the above queue-based locks could not solve the resource allocation
problem on their own, they share the same inspiration with our method: using
queue to reduce contention and provide FIFO fairness.

7 Performance Evaluation

In this section, we assess the overhead, scalability and performance consistency
of our multi-resource lock (MRLock) and compare it with the std::lock func-
tion from GCC 4.7 (STDLock), the boost::lock function from Boost library
1.49 (BSTLock), the resource hierarchy scheme combined with both std::mutex

(RHSTD) and tbb::queue mutex from Intel TBB library 4.1 (RHQueue), and
the extended TATAS lock (ETATAS) mentioned in Algorithm 1. Both std::lock

and boost::lock implement a two-phase locking scheme to acquire multiple locks
at the same time without deadlock, but they have slightly different require-
ments for input parameters: the boost version accepts a range of lock iterators;
the standard library version, which takes advantage of the C++ 11 variadic
templates, accepts a variable number of locks as function arguments. We use
std::mutex as the underlying lockable object for std::lock, and use boost::mutex

for boost::lock. For resource hierarchy scheme, we choose std::mutex as a base-
line, and choose tbb::queue mutex as the representative queue lock implemen-
tation because it is highly optimized for x86 architecture and readily available.

The evaluation experiments employ a micro-benchmark to simulate the re-
source allocation problem. It consists of a tight loop that acquires and releases
a predetermined number of locks. The loop increments a set of counters, which
are simply integers representing the resources. The counters are not atomic, so



without locking their value will be incorrect due to data races. We check the
counter against data races to verify the correctness of our lock implementations.

Algorithm 5 lists the benchmark function and related parameters.

Algorithm 5 Micro-Benchmark
1: function Main()
2: threads = CreateThreads(TestLock, n)
3: WaitForBarrier()
4: BeginTimer()
5: WaitForThreads(threads)
6: EndTimer()

7: function TestLock(lock, resource, contention, iteration)
8: requested = Random(resources, contention)
9: WaitForBarrier()

10: for 1→ iteration do
11: lock.Acquire(requested)
12: requested.IncreaseCount()
13: lock.Release(requested)

All tests are conducted on a 64-core ThinkMate RAX QS5-4410 server run-
ning Ubuntu 12.04 LTS. It is a NUMA system with four AMD Opteron 6272
CPUs (16 cores per chip @2.1 GHz) and 64 GB of shared memory (16 × 4GB
PC3-12800 DIMM). Both the micro-benchmark and the lock implementations
are compiled with GCC 4.7 (with the options -std=c++0x to enable C++ 11
support).

When evaluating classic mutual exclusion locks, one may increase the number
of concurrent threads to investigate their scalability. Since all threads contend
for a single critical section, the contention level scales linearly with the number
of threads. However, the amount of contention in the resource allocation problem
can be raised by either increasing the number of threads or the size of resource
request per thread. Given k total resources with each thread requesting h of
them, we denote the resource contention by the fraction h/k or its quotient in
percentage. This notation reveals that resource contention may be comparable
even though the total number of resources is different. For example, 8/64 or
12.5% means each request needs 8 resources out of 64, which produces about the
same amount of contention as 4/32. We show more results in Section 7.2. The
product of the thread number p and resource contention level roughly represents
the overall contention level.

To fully understand the efficiency and scalability in these two dimensions,
we test the locks in a wide range of parameter combinations: for thread number
2 ≤ p ≤ 64 and for resource number 4 ≤ k ≤ 64 each thread requests the same
number of resources 2 ≤ h ≤ k. We set the loop iteration in the micro-benchmark
to 10,000 and get the average time out of 10 runs for each configuration.



7.1 Single-thread Overhead

To measure the lock overhead in the absence of contention, we run the micro-
benchmark with a single thread requesting two resources and subtract the loop
overhead from the results. Table 1 shows the total timing for the completion of
a pair of lock and unlock operations. In this scenario MRLock is slightly slower
than ETATAS because of the extra queue traversing operation. The other four
methods take about twice the time of MRLock. Each other method takes at
a minimum two lock operations, to be considered a solution to the resource
allocation problem. As a baseline performance metric we compare against a
single std::mutex as shown in Table 1.

Table 1. Lock overhead obtained without contention

Lock Mechanism Overhead

MRLock 42ns
STDLock 95ns
BSTLock 105ns
RHLock 88ns
RHQueue 90ns
ETATAS 34ns

std::mutex * 35ns

boost::mutex * 35ns

* overhead of std::mutex and boost::mutex is provided for reference only since
it does not solve resource allocation problem.

7.2 Resource Scalability

Our performance evaluation exploring the scalability of the tested approaches
when increasing the level of resource contention is shown in Figures 4, 5 and 6.
The y axis represents the total time needed to complete the micro-benchmark
in a logarithmic scale, where a smaller value indicates better performance. The
x axis represents levels of resource contention. For example, the section between
32 and 64 has a total of 32 resources, while the section to the right of 64 has
64 resources. Within each section, the level of contention increases from 1% to
100%. We observe a saw pattern because the resource contention level alternates
as we move along the x axis. In addition, we observe that the timing pattern is
similar among different sections, supporting our argument that the contention
is proportional to the quotient of the request size divided by total number of
resources. We also show a zoomed-in view of a single section in Figure 7, which
illustrates the timings of 16 threads contending for 64 resources.

When increasing the number of requested resources per thread, the proba-
bility of threads requesting the same resources increases. This poses scalability



challenges for both two-phase locks and the RHLock because they rely on a
certain protocol to acquire the requested locks one by one. As the request size
scales up, the acquiring protocol is prolonged thus prone to failure and retry.
Especially in the case of 64 threads (Figure 6), std::lock is more than 50 times
slower when the level contention exceeds 75%. Boost::lock exhibits the same
problem, it closely resembles std::lock. Unlike the above two methods, RHLock
acquires locks in a fixed order, and it does not release current locks if a re-
quired resource is not available. This hold-and-wait paradigm helps to stabilize
the timings and to reduce the overall contention. RHLock resembles the perfor-
mance of std::lock in the two thread scenario (Figure 4), but it outperforms both
boost::lock and std::lock by about three times under 50% resource contention on
16 threads (Figure 7).

While the time of all the other methods show linear growth with respect
to resource contention, MRLock remains constant through out all scenarios. In
the case of 64 threads and the request size of 32, MRLock achieves a 20 times
speed up over the std::lock, 10 times over the boost::lock and 2.5 times over
the RHLock. The fact that MRLock provides a centralized manager to respond
the lock requests from threads in one CAS contributes to this high degree of
scalability. TATAS lock also adopts the same all-or-nothing scheme, it could be
seen as a MRLock algorithm with a queue size of one. It outperforms MRLock
on two threads by about 40% (Figure 4), and almost ties with MRLock on 32
threads. However, MRLock is 1.7 time faster on 64 threads, because the queuing
mechanism relieves the contention of the CAS loop.

In Figure 7, we see that under low contention levels (less than 10% or 7/64),
MRLock and TATAS lock no longer hold an advantage over the RHLock, and the
two-phase locks. For example the std::lock only takes 0.003s under contention
2/64 on 64 threads, while MRLock takes 0.016s. When the resource contention
level is low, locking protocols are not likely to encounter any conflicts. Since
the locks are distributed, the lock acquiring overhead is close to a single thread
scenario. This is not the case for MRLock. In the presence of the lock manager,
every thread has to enqueue its requests. The queue becomes a single point of
contention.

7.3 Thread Scalability

Figures 9, 10 and 11 show the benchmark time of threads under the contention
level of 4/64, 8/64 and 32/64 respectively. In these graphs, the contention level
is fixed and we investigate the performance scaling characteristics by increasing
the number threads. We cluster five approaches on the x axis by the number of
threads, while the y axis represents the benchmark time.

When the level of contention is low, MRLock and TATAS lock do not have
performance advantages other the other approaches. This is shown in Figure 9.
The worst case slowdown happens on 32 threads, where MRLock is 3.7 times
slower than std::lock. The difference decreases to about 2 times on 64 threads,
which implies that our approach has a smaller scaling factor. We also observe bet-
ter scalability against TATAS lock, when moving from 32 threads to 64 threads



the performance of TATAS lock degrades three folds resulting a 2 times slow
down compared to MRLock.

The contention level that is a turning point for our algorithm’s performance is
about 12.5% as shown in Figure 10. MRLock ties with RHLock and outperforms
all the others. It is 4 times faster than std::lock and twice as fast as TATAS on
64 threads, and also exhibits better scalability. The time of TATAS, boost::lock
and std::lock almost tripled when the number of threads is increased from 32 to
64, while the time of MRLock only increases by 100%

In Figure 11, we use a logarithmic scale on the y axis because std::lock
takes more than 20 times longer than MRLock, dwarfing the other methods in
a linear scale. MRLock outperforms all other methods on all scales except for
the TATAS lock. While the TATAS lock has a slight advantage on small thread
counts, MRLock catches up by 16 threads, and finally overtakes TATAS on 32
threads. We also observe similar results in Figures 12.

Overall, MRLock exhibits good scalability on all levels of contention, it out-
performs std::lock and boost::lock by 10 to 20 times in regions of high contention
levels. It is also faster than the RHLock by a factor of 1.5 to 2.5. Even though
it does not hold an advantage against the TATAS lock when thread counts are
low, it outperforms the TATAS lock by at least 2 times on 64 threads.

7.4 Performance Consistency

It is often desirable that an algorithm produces predicable execution times, espe-
cially in real time systems. We demonstrate in Section 7.2 that our multi-resource
lock obtains reliable run times regardless the level of resource contention. We
illustrate further that our lock implementation achieves more consistent timings
among different runs than competing implementations.

Figures 14 and 15 display the standard deviation of execution times from
10 different runs. We generate randomized resource requests at the beginning of
each test run (Algorithm 5), so the actual resource conflicts might be different
for each run. We show the absolute value of the standard deviation on the y
axis, and the number of threads on the x axis (Both are in logarithm scale).
Overall, the deviation of all approaches grows slightly as the number of threads
increases. This is expected because in regions of high parallelism, the operating
system itself contributes a large part of this noise. By looking at the absolute
values, MRLock achieves the lowest variation, which means it also outperforms
TATAS in terms of consistency. This indicates that the incorporation of a FIFO
queue stabilized our lock algorithm. Notably, the deviation of std::lock grows
linearly. We also include the percentage deviation in Figures 17 and 16. The y
axis gives the percentage error normalized by the average time, the variation of
MRLock is within 2% or its executing time.

8 Conclusion and Future Work

Our multi-resource lock algorithm (MRLock) provides a robust solution to the
resource allocation problem on shared-memory multiprocessors. The MRLock



algorithm is lightweight and scalable so the overhead of our algorithm has a
minimal increase over other practical solutions. Other solutions might be prac-
tical in systems with low contention. As shown in the 7 section our solutions
reliability and scalability should be preferred in systems with high contention
or when system scalability is desired. At all levels of contention our algorithm
provides a fairness guarantee that could be desirable in certain use cases even
under minimal contention.

Possible extension for this algorithm includes creating an adaptive method
to choose from several locking algorithms based on the level of contention in a
system. This would further increase the scalability of the algorithm as it would
guarantee the best performance from contention levels of zero to one hundred
percent.
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Fig. 2. Release of cell 3. Cell 6 spins on cell 4

Fig. 3. Atomic lock acquisition process
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Fig. 4. 2 threads
0.5

 0.01

 0.1

 1

 10

 100

4 8 16 32 64

T
im

e
 (

s
e

c
o

n
d

s
)

Resource Contention

MRLock
STDLock

BSTLock
RHLock

RHQueue
ETATAS

Fig. 5. 32 threads
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Fig. 6. 64 threads
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Fig. 7. 64 threads with up to 1024 resources

Fig. 8. Performance scaling when increasing resource contention
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Fig. 9. resource contention 4/64
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Fig. 10. resource contention 8/64
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Fig. 11. resource contention 32/64
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Fig. 12. resource contention 512/1024

Fig. 13. Performance scaling when increase the number of threads
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Fig. 15. Resource contention 32/64
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Fig. 16. Resource contention 32/64
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Fig. 17. Resource contention 32/64

Fig. 18. Standard deviation (14, 15) and relative error (14, 15) out of 10 runs


