SAND2013-9061C

Predicting Coordinated and Uncoordinated Checkpoint/Restart
Protocol Performance at Extreme Scales

Kurt B. Ferreira
Scalable System Software
Sandia National Laboratories
Albuquerque, NM
kbferre @ sandia.gov

Abstract—Fault-tolerance has been identified as a major
challenge for future Exascale-class systems. While many stud-
ies investigate this issue, few consider systems at the scales
expected for future systems. Furthermore, most are performed
on platforms with dramatically different architectural fea-
tures (for example, network and persistent storage devices)
than we expect on Exascale-class systems. Applying lessons
learned from such studies to potential future systems can be
difficult and even misleading. To address the lack good of
analytical models for many emerging resilience techniques like
hierarchical checkpointing, uncoordinated checkpointing, we
have developed a simulation framework to evaluate check-
point/restart techniques on large-scale systems. In this paper,
we present our simulation framework, discuss how it accurately
models the performance impacts of faults and fault-tolerance
mechanisms on extreme-scale systems, validate its predictive
abilities in a failure-prone environment and demonstrate the
importance of this framework by gaining insights on the impact
an application’s computation pattern has on the performance
of uncoordinated checkpointing, specifically a slowdown due
to MPI_Allreduce (), and the performance impact of node
failures on uncoordinated checkpointing.

Keywords-Fault Tolerance; Rollback/Recovery; Exascale;
Simulation;

I. INTRODUCTION

We observe a steady growth in high-performance com-
puting (HPC) system size over the last 20 years. The
number of CPU cores or execution elements continues on an
exponential growth trajectory that determines the complexity
of the overall system. The vast number of parts (millions to
billions) that are used in large-scale systems to solve a single
computational problem requires us to consider failure as
part of a normal execution. Indeed, once failure is accepted,
one can consider trading additional reliability for lower
cost systems. The projected mean time between failures of
hours or minutes [1]] for these large scale systems means
that many HPC will be affected by failing components
multiple times during each execution. This, in combination

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly-owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

Scott Levy, Bryan Topp and Dorian Arnold
Department of Computer Science
University of New Mexico
Albuquerque, NM
{slevy, betopp, darnold} @ cs.unm.edu

Torsten Hoefler
Computer Science Department
ETH Ziirich
Switzerland
htor@inf.ethz.ch

with growing scales and fault-tolerance protocol overheads,
inevitably leads to exploding costs for fault tolerance.

The study of decreasing fault tolerance overheads is an
active research area and a vast and growing collection
of literature currently exists. The community has found
no single silver bullet solution — the tradeoffs of existing
systems depend on detailed characteristics of the application,
the execution environment and the system architecture.

Two general fault tolerance schemes exist in the literature:
(1) coordinated checkpoint/restart (CR), where processes
checkpoint synchronously after quiescing the network and
(2) uncoordinated CR, where processes checkpoint at dif-
ferent times to avoid the need to drain the whole network
and to decrease filesystem contentions. When a single failure
occurs in coordinated CR, all processes have to redo all
of the work since their last checkpoints. In uncoordinated
CR, processes can continue unless and until they depend
on the failed process. When a surviving process encounters
a dependency on a failed process it waits until the failed
process catches up. Therefore, an uncoordinated checkpoint
taken at one process could delay other processes on its
critical path, leading to overall performance losses. The
tradeoffs between the two protocol families are non-trivial.

Accurate analytic models for coordinated checkpointing
exist [2]], [3]. However, we lack such tools for predicting
the performance impact of many other fault tolerance mech-
anisms (for example, message-logging [4]], communication-
induced checkpointing [5] and hierarchical checkpoint-
ing [6[]). This leads to contradicting studies and results. For
example, while several researchers claim that CR protocols
may not be scalable in general [7]-[9]], there has been a great
effort in the research community to optimize such protocols
to ensure they remain viable [4], [8], [1O]-[13].

One major problem for comparing various studies, proto-
cols and systems is the lack of a common and reproducible
testbed. Most fault-tolerance techniques are designed for
large-scale systems. Evaluating these techniques or repro-
ducing previous results requires access to the largest systems
available. In most cases, access to systems of these scales
is difficult or impossible.

kbferre@sandia.gov
{slevy, betopp, darnold}@cs.unm.edu
htor@inf.ethz.ch

In this work, we define a methodology and offer an
implementation to serve as a research vehicle for analyzing
the overheads of various fault tolerance protocols at large-
scale. In general, simulation is a viable tool if interactions
become too complex to be captured by an analytic model
and direct execution is not feasible. However, cycle-accurate
simulators may provide a level of detail that be unnecessary
or prohibitively expensive. Thus, a good simulation model is
tuned for a specific problem domain and allows researchers
to focus specifically on relevant system properties. This
allows researchers to strike a balance between accuracy
and cost for the problem at hand. We propose a simulation
model that is tailored to large-scale resilience research. We
explain which parts of applications and systems need to be
considered for this simulation to be accurate for modeling
resilience while still providing an answer in a tractable
amount of time.

Our work is based on the idea that, like system noise [[14],
checkpoint protocols can be modeled as CPU detours [15].
In this paper, we extend this initial work and design and
verify that simulation of failure, recovery and rework in
large-scale parallel applications can also be accurately mod-
eled as CPU detours. We begin by describing our simulation
infrastructure to present a self-contained holistic picture of
our proposed approach for large-scale resiliency research.
We then provide evaluate our framework by validating its
output and quantifying its performance capabilities. Finally,
we present a case study that demonstrates how this infras-
tructure can be used to gain insights into the impact of scale
on common checkpointing protocols and how node failure
can impact performance.

Specific contributions of this work include:

e« A complete simulation tool-chain for resilience re-
search based on LogGOPSim [16]. Our extensions
to LogGOPSim allow the accurate simulation of CR
mechanisms on large-scale systems with several million
CPUs and days of application runtime.

¢ An evaluation of our simulator’s ability to predict the
impact of node failures on application performance.
Using a standard model for coordinated checkpoint-
ing [2], we show that our simulator can accurately
predict application execution time;

o A case study using this framework to study how asyn-
chronous checkpoint/restart impacts the performance of
important HPC applications;

o An examination of the relationship between the perfor-
mance impact of uncoordinated checkpointing and the
target application’s communication pattern, specifically
showing the impact of MPI_Allreduce (); and

e The performance impact of node failure rates with
uncoordinated checkpointing.

II. OUR SIMULATION FRAMEWORK

In Levy et al. [15]], we introduced the key applica-
tion, hardware and resilience mechanism characteristics that
are necessary to accurately simulate resilience on next-
generation systems. First, we observed the cross-cutting need
for simulation capabilities that can model large spatial and
temporal scales. Large spatial scales allow us to simulate the
behavior of future generation systems expected to comprise
hundreds of thousands of nodes and millions of processors.
Large temporal scales allow us to simulate the behavior of
long running applications, particularly those whose behavior
varies over time. Table [] summarizes the key parameters
that are necessary to simulate coordinated and uncoordinated
checkpoint/restart mechanisms as well as failures.

A. Simulating Application Characteristics

Our current implementation is based on the freely

available discrete-event simulator LogGOPSim [16].
LogGOPSim 1is an application simulator based on
LogP [17]. LogGOPSim consists of three major

components: (1) liballprof: a trace collector that
records the actual MPI communication of the target
application; (2) SchedGen: a schedule generator that
inputs the MPI traces and generates a schedule that captures
the application’s control and data flow, preserving event
happens-before relationships; and (3) a discrete-event
simulator that reads the generated schedule, performs a full
LogGOPS simulation and reports each process’ completion
time.

LogGOPSim can extrapolate traces collected on smaller
scale systems to simulate the same communication charac-
teristics at larger scales. This framework has been used to
evaluate the performance of collective communications [/18]]
and the impact of OS noise [[14] on large-scale applications.

B. Simulating Hardware Characteristics

LogGOPSim allows us to model the impact of emerging
interconnect technologies. Working within the LogGOPS
model, we can simulate the impact of many changes in
network behavior on checkpoint/restart techniques by mod-
ifying the model’s parameters. In addition, as we discuss
more fully below, our model of resilience mechanisms
allows us to evaluate how improvements to persistent storage
systems (for example, the widespread availability of local
SSDs) will affect the application performance.

C. Simulating Failures and Resilience

In [15], we observed that resilience mechanisms (like
writing checkpoints, restarting after a failure and redoing lost
work) can be modeled as CPU detours, a number of CPU cy-
cles that are used for something other than the application’s
computation, similar to OS noise [[14]], [19]. A key difference
between OS noise and resilience detours is that resilience
“noise” events may need to be replayed synchronously with

Required to Model Parameter Name

Parameter Description

All COORDINATION TIME | time for processes to coordinate the taking of a checkpoint
.. CHECKPOINT COMPUTATION | time to compute a checkpoint
Checkpointing . . .
CHECKPOINT COMMIT TIME | time to write a checkpoint to stable storage
CHECKPOINT INTERVAL | time between consecutive checkpoints
WORK TIME | time-to-solution without failures or resilience mechanisms
. COMMUNICATION GRAPH | details of inter-process communication
Uncoordinated . . .
Checkpointing COMPUTATION EVENTS | failure-free computation pattern of the application
DEPENDENCIES | partial ordering of communication and computation events
Fail FAILURE CHARACTERIZATION | rate and distribution of failures
Oal ure RESTART TIME | time to read a checkpoint from stable storage after a failure
ceurrences RECOVERY MODEL | a model of the time required before forward progress can resume

Table 1
SUMMARY OF THE PARAMETERS NEEDED FOR ACCURATE SIMULATION OF HPC APPLICATIONS IN A FAILURE-PRONE SYSTEM.

the application’s communication/computation pattern rather
than asynchronously, as is typical for OS noise.

We developed a new library, 1ibsolipsis, to generate
CPU detours based on a specified resilience mechanism
and the application’s communication pattern. Similar to
liballprof, the library links to the application using
the MPI profiling interface, intercepting all MPI calls. The
output of this library is a per-process detour file that can be
provided as input to LogGOPSim. The detour file contains
the timestamp and the duration of each of the resilience
detours, Tietour, computed as follows:

Tdetour = Tcoord + Tckpt + Tcommit

where

Teoord = time to coordinate the taking of a checkpoint
Terpt = time to compute a checkpoint

Teommit = time to commit the checkpoint to stable storage

Our detours also capture the impact of node failures and
optimistic message logging. For failures, Tjct0y,» includes
both restart and rework time: rework time is calculated as
the simulated time that has elapsed since the previous check-
point. For optimistic message logging, 1ibsolipsis cal-
culates the time required to write the message to the log
given a bandwidth to stable storage.

Coordinated checkpoint/restart: For coordinated
checkpoint/restart, we generate a detour file that contains
the timestamp and the duration of each checkpoint taken
by the application. We assume bulk-synchronous parallel
(BSP) applications. Because BSP applications are largely
self-synchronizing, we set T.,,rq = 0. For simplicity, we
currently also assume that T¢y,; = 0. When the simulation
is run, we configure LogGOPSim to co-scheduled detour
files on all processors, thereby simulating coordinated
checkpoint/restart. We also force each process to start at

the beginning of the detour file to ensure proper timing of
checkpoints.

Uncoordinated checkpoint/restart with message log-
ging: For uncoordinated checkpointing with message log-
ging, we generate detour files that contain the timestamps
and the durations of the local checkpoints. Because no
coordination is required, T,o0r¢ = 0. Again for simplicity,
we assume that Tiy,; = 0. For pessimistic message log-
ging [20], we modify the CPU overhead parameter (o in the
LogGOPS model) for send operations (os) to account for
the log write to stable storage. LogGOPSim uses a single
detour file to simulate the local checkpoints in the system;
to model the asynchronous nature of these checkpoints, each
process starts at a different location in the file.

Failures: To simulate failures, we generate failure times
for each node from a random distribution based on a per-
node mean time between failure (MTBF). When a failure
is generated, the library adds a detour event that includes
the the time required to restart from the last checkpoint and
the time required for rework (that is, the time since the last
checkpoint). LogGOP Sim ensures that all communication in
the trace file that depends on the failed node will be delayed
until the node has “recovered”.

D. Simulating Large Spatial and Temporal Scales

For a single collective operation, LogGOPSim can sim-
ulate up to 10,000,000 processes, and for more general
workloads, it is capable of simulating more than 64,000 pro-
cesses [14]. With some relatively minor modifications [[15]],
primarily to optimize memory consumption, LogGOPSim is
also capable of simulating long time scales. In Section
we quantify LogGOPSim’s capability to execute simulations
of large systems for long times in a tractable and efficient
way.

III. EVALUATING OUR RESILIENCE SIMULATOR

In this section, we demonstrate that: (1) our simulator
framework produces valid and accurate output for new
resilience simulation capabilities, and (2) the framework
offers unprecedented performance capabilities for simulating
large space and time scales. We now describe the sets of
experiments we used to demonstrate these capabilities and
the results from these studies. In these studies, we used
three principle workloads: LAMMPS, CTH and HPCCG.
LAMMPS (Large-scale Atomic/Molecular Massively Paral-
lel Simulator) [21]] is a classical molecular dynamics code
developed at Sandia National Laboratories. In this paper,
we use a Lennard-Jones potential and a SNAP potential
as inputs to LAMMPS. CTH is a multi-material, large
deformation, strong shock wave, solid mechanics code [22].
CTH is an important U.S. DOE production application.
HPCCG is a conjugate gradient benchmark code that is
part of the Mantevo [23] suite of mini-apps. In general, our
instances of these applications execute in about five to seven
minutes of real time.

A. Validating the Simulation Output

One of the first questions that need to be addressed is
whether the our trace extrapolation techniques accurately
model an application’s communication behavior as the sys-
tem size increases. While we believe our extrapolation likely
does not model strong-scaling behavior well, we believe it
accurately captures weak-scaling behavior. [16] shows this
approach accurately models SWEEP3D. We also verified
that for LAMMPS, CTH and HPCCG both the number
of MPI operations and the simulated runtime are accurate
when compared to weak scaling runs on native hardware.
In general, our knowledge of how these applications work
suggest that our extrapolation method is very appropriate for
weak-scaling of our tested workloads.

1) Validating Failure-Free Simulation: In [15], we vali-
dated the accuracy of our simulation for failure-free opera-
tion using LAMMPS and CTH and compared our frame-
work’s output against empirical observations from small-
scale (128 nodes) tests using 1 ibhashckpt [10], a library
that supports coordinated and uncoordinated checkpointing
on real hardware. We also validated our simulator against
a prominent analytical model [2] for larger scales (up to
32,768 nodes). The simulation’s predicted execution times
were within 1-3% of those from the analytical model and
5-20% of those observed empirically. On the whole, our
tests show the simulator is able to accurately model the
impact of coordinated and uncoordinated checkpointing in
a failure-free environment. More validation details can be
found in [[15].

2) Validating Simulations with Node Failures: As we
described in Section [lI, we enhanced our framework with
the capability to simulate scenarios that include failures and

70000 - 100 %

model
simulation —a—
60000 simulation % error -----
- 80%
50000 5
2 s
[} i o 2
E 40000 0% E
g 1 2
3 30000 8
= -40% £
© =
= 2
20000 £
S 20%
10000
s 0%
% * 2 O 2 27 2
°)
Nodes T * * *
Figure 1. A comparison between efficiency of LAMMPS predicted by

the simulator and by a validated analytical model [2] in the presence of
failures. The simulator data for each system size represents the range of
values produced over 16 runs of the simulator. This simulation models a 10
hour run of LAMMPS using a node restart time of 10 minutes, a checkpoint
commit time of 1 second, and a node MTBF of 5 years. Checkpoints are
taken every 68 seconds based on the optimal checkpoint interval described
in [2].

failure recovery. As with failure-free simulations, we vali-
date the simulator’s ability to model the impact of failures by
comparing against the same validated analytical model [2].
Figure[T|plots the results for simulated and modeled ten hour
executions of LAMMPS using a ten minute node restart
time, a one second checkpoint commit time and five year
node MTBF. We use the optimal checkpoint frequency, 68
seconds, computed using the method in [2]]. These results
show that our simulator produces highly accurate output
compared to the predictions of the analytical model.

B. Evaluating Spatial and Temporal Scaling

To evaluate the performance capabilities of our simulation
framework, we first demonstrate the simulator’s raw perfor-
mance, then we put this performance in context by showing
simulator performance in terms of the speedup or slowdown
when comparing the simulator’s run time to the simulated
execution time of the application at hand.

1) Memory Usage: Figure [2] shows the quantity of mem-
ory required to simulate up to 128K (131,072) nodes for each
of the three applications. We extrapolate these results to 2M
(2,097,152) nodes. These results suggest that for LAMMPS
and HPCCG, we could simulate 2M nodes with less than
20 GB of memory. Simulating 2M nodes for CTH would
require approximately 100 GB of memory. It is important
to note that a system with a relatively modest 10 GB of
memory could simulate up to 256K nodes of any of these
applications.

As shown in [15]], the memory requirements of the simula-
tor are independent of trace length. The simulator requires no
additional memory as the temporal scale of the application
increases. In other words, for each of the experiments
depicted in Figure 2] the same amount of memory would

100

HPCCG —a—
LAMMPS —e—
CTH —o—
10
[1
i<
@
8
=
>
s 0.1
()
=
0.01
1 Swim Swim
Lane 1 Lane 2
0.001
%% % h T F e B % Ry Y
Nodes T r r

Figure 2. Memory consumption required to simulate a system running

one of three applications using our modified version of LogGOPSim. This
figure is annotated with Swim Lanes 1 and 2 [24] to illustrate the range of
system sizes that are currently projected for the first exascale system.

be required to simulate a minute, hour, day, week or month
of application execution time!

2) Simulation Performance: Figure [3] shows the perfor-
mance of the simulator in terms of the number of events
processed per second. We see that for CTH the simulator
processes between 200 and 350 thousand events per second.
For LAMMPS, the simulator can process between 500 and
800 events per second. Lastly for HPCCG, the simulator can
process between 600,000 and 1.3 million events per second.
The exact event rate depends on the detailed workload (e.g.,
mix of collective operations and point-to-point messages as
well as the types of collective operations. We examine each
applications communication pattern in Section [IV). This
achieved performance lies well in the range of other highly-
tuned simulators like Mambo [25] and gemS5 [26].

Figure [4] shows the wall clock time required to simulate
three different application instances as a function of system
size. In each case, there is a linear relationship between
the simulator runtime and the size of the system being

1400 LAMMPS —e—

HPCCG —v—
1200 CTH —a—

1000
800
600
400

200

Simulator Performance (thousands of events/seconc

R R L CTE T Y

Nodes

Figure 3. Simulator performance, measured in events/second, when
simulating a system running LAMMPS, CTH, and HPCCG.

1e+07

HPCCG —a—
LAMMPS —e—
1e+06 CTH —o—
100000 e
3 LA
]
g 10000 /’
e
[0
£ 1000
Z
&
100
10 4
4 Swim Swim
Lane 1 Lane 2
1
B % T Sk F F % Sy R %y T Y
Nodes T St
Figure 4. Simulator runtime, measured in seconds (lower is better),

for simulating systems running three different applications. This figure is
annotated with Swim Lanes 1 and 2 [24] to illustrate the range of system
sizes that are currently projected for the first Exascale system.

simulated. To put this figure in context, consider the largest
simulator run time shown: simulating HPCCG on 128K
nodes. Simulating HPCCG at this scale required approx-
imately 30,000 seconds. In this simulation, the simulator
modeled 7 minutes of application time on 128K nodes.
As a result, the simulator required approximately 30,000
seconds to model approximately 55 million node-seconds
of simulated execution time.

Finally, Figure [5] shows the performance of the simulator
in term of speedup: the ratio of simulated application time to
simulator time. This figure demonstrates that the simulator
can achieve speedups as large as nearly five orders of
magnitude. Moreover, even in the worse case, the simulator
achieves speedups of two orders of magnitude. These results
corroborate our initial position [15] that coarse-grained sim-
ulation can be an effective method for accurately simulating
applications on extreme-scale systems.

100000
L.
T e e S S S O D G

1000

——

100

Simulator Speedup

LAMMPS —e—

HPCCG —v—

CTH —a—
% % % O F %y By B R
Nodes T

Figure 5. Simulator speedup defined as native application run time in
node hours divided by simulation run time for that workload in node hours.

1004 LAMMPS —e—
HPCCG ——
80 CTH ——
S
5,60
c
()
S 40
w
20
0/6’6‘76’76’706‘1
% % B R % gy Yy %
Nodes T

(a) Coordinated

100

LAMMPS —=—
HPCCG
CTH ——

» [o2] [or]
o o o

Efficiency (%)

n
o

0
7y 2 S /3RS /7)) 7, [C 7
B e T odbs 7% SR % Y,

(b) Uncoordinated

Figure 6. Coordinated and Uncoordinated checkpointing efficiency (the percent of time spent performing work for the application and and not the resilience
mechanism) using the simulator for CTH and LAMMPS. For both we assume a 120 second checkpoint interval. For uncoordinated checkpointing, we
assume each node has a checkpoint commit duration of 1 second, checkpoint times generated independently on each node and the message-logging protocol
used to keep all checkpoints consistent is assumed to impose no overhead [13]. For Coordinated checkpointing we assume 2GB of checkpoint data per

node and a 256GB/sec aggregate checkpoint bandwidth

IV. CASE STUDY: PERFORMANCE IMPACT OF
CHECKPOINT/RESTART AT SCALE

We now demonstrate the usefulness of our simulation
framework by using it to study the impact of failures and
resilience on large scale application performance.

A. Coordinated versus Uncoordinated Checkpointing

Although coordinated checkpointing is currently a most
widely used resilience approach, several studies have shown
that this approach may not be viable for the next generation
of extreme-scale systems [7]-[9]. As a result, researchers
have devoted significant effort to identifying alternative
approaches. One prominent approach being considered is
uncoordinated checkpointing [4], [13]. By eliminating co-
ordination between the processes of an application, this ap-
proach reduces contention for persistent storage and reduces
the amount of time required to commit a checkpoint.

To demonstrate the capabilities of the modified simulator,
we examine the performance of two applications, CTH and
LAMMPS, using both of these checkpoint/restart techniques.
Figure [6(a)] shows the performance impact of coordinated
checkpointing. In this figure, we express application perfor-
mance in terms of efficiency: the percent of total execution
time that is used for computation by the application. These
results are consistent with results published elsewhere; as
the scale of the system increases, more and more time is
consumed by writing checkpoints and less and less time is
available for the application’s computation. By the time the
system has grown to 32,768 (32k) nodes, more than half of
the execution time is consumed by checkpointing activities.

Figure [6(b)] shows results of the same simulations for
uncoordinated checkpointing. The first observation is that in
one case (LAMMPS) uncoordinated checkpointing generally
performs better and in the other cases, coordinated check-
pointing does. However, the most striking feature of this

figure is the disparity in the performance impact on the two
applications. For LAMMPS, its efficiency decreases slowly
with scale. For systems larger than 32,768 (32k) nodes, un-
coordinated checkpointing outperforms coordinated check-
pointing. The response of CTH is significantly different.
The fraction of the total run time used for the application’s
computation decreases rapidly plateauing below 10%. Even
at modest scales, uncoordinated checkpointing activities
consume a majority of the total execution time for CTH.

B. Application Analysis

Given the starkly different performance impacts of un-
coordinated checkpointing on LAMMPS and on CTH and
HPCCG, we try to rationalize the disparity. We first consider
the time each application spends in communication — as
with OS noise, communication events propagate perturba-
tions caused by checkpointing activity disruptions. Figure
shows the ratio of each applications communication time
computation time as scale increases. LAMMPS spends
less than 3% of its time in communication resulting in
fewer opportunities for perturbations due to checkpointing
activities to propagate. This result is consistent with the
trend shown in Figure the performance impact of
uncoordinated checkpointing is relatively constant even as
the system grows significantly in size. In contrast, even
at relatively small scales, CTH spends more than 40%
of its total execution time communicating. This behavior
leads to increased propagation of checkpointing activity
disruptions. HPCCG is more complicated. Given its ratio
of computation to communication, we would expect it to
behave like LAMMPS. However, as Figure [6(b)| shows, the
impact of uncoordinated checkpointing on its performance
is much more similar to CTH.

Although differences in the communication-to-
computation ratio help explain the differences between
the impact of uncoordinated checkpointing on CTH and

LAMMPS, it does not entirely explain the decrease in
application efficiency for CTH shown in Figure [6(b)] Nor
does it explain the behavior of HPCCG. This suggest
that, in addition to the total execution time consumed by
communication events, the nature of the communication
also matters. For example, checkpointing activities
that disrupt a point-to-point communication event may
have a smaller total impact on application performance
than activities that disrupt collective communications:
generally, point-to-point communication events affect
a smaller fraction of the processes in the system than
collective communication events do. In Figure [§] we
examine the communication time for CTH, LAMMPS and
HPCCG broken down by communication operation. For
LAMMPS, the vast majority of the communication time is
consumed by two point-to-point operations: MPI_Send ()
and MPI_wait (). In contrast, CTH devotes more than
30% of its communication time to two collectives:
MPI_Allreduce() and MPI_Bcast (). For HPCCG, a
significant majority of its communication is devoted to
MPI_Allreduce (). Based on this data, our hypothesis
is that large numbers of calls to MPI_Allreduce()
account for the significant negative impact of uncoordinated
checkpointing on the efficiency of LAMMPS and HPCCG.

In Figure O] we test this hypothesis that the slowdown
is due to MPI_Allreduce(). To do so we use a mi-
crobenchmark to measure the performance impact of the
various collective operations found in these applications
as well as a 3-D stencil communication pattern similar to
what is found in CTH. In the figure, we use the same
uncoordinated checkpointing pattern as in Figure[6] From the
figure we see that MPI_Allreduce () and MPI_Barrier ()
see the greatest slowdowns. This is due to the tree-based
dependencies that are created in these two collectives. This
result combined with the prevalence of MPI_Allreduce ()
in CTH and HPCCG shown previously, indeed point to
Allreduce as the source of slowdown.

These results show the power of our simulator. In Fig-
ure [6| we simulated the performance impact of a simple
uncoordinated checkpointing scheme on three important
applications running on very large systems. By examining
the communication characteristics of these applications, we
were able to develop a hypothesis about the source of
the performance impact disparity between LAMMPS and
the other two applications: CTH and HPCCG. With a
microbenchmark, we then used the simulator to confirm
the performance impact of MPI_Allreduce () on uncoor-
dinated checkpointing performance.

C. Impact of Failures on Uncoordinated Checkpointing

Thus far, we have examined application performance with
two rollback/recovery techniques in a failure free environ-
ment. Now we consider the impact with failures. Note, in
this section we will only be considering the performance im-

100 - > +

80
< T
= 60 Bcast ——
g 3D Stencil —+—
@ Allreduce ——
S 40 Barrier ——
i
20
0 LR) 2 X . & 2, :? [7
2% % F F S R G Ry
Nodes T
Figure 9. Microbenchmark performance with uncoordinated checkpoint-

ing. Similar to Figure [B] a checkpoint is taken every 120 seconds and
each checkpoint takes 1 second to complete. Each checkpoint is taken
independently and the message logging protocol used to keep checkpoints
consistent is assumed to be free. Collective functions see significantly
higher slowdowns than the 3-D point-to-point stencil pattern. Note, the
Allreduce and Barrier lines are sitting on top of each other in the figure

pact with uncoordinated checkpointing. Recall from Figure/I]
that an analytical model exists for coordinated and so we will
not be considering that here. Also recall from Figure [f] that
CTH and HPCCG showed significant slowdowns with un-
coordinated checkpointing without failures. Adding failures
into this scenario will only further slowdown performance.
Therefore, for this study will only be considering LAMMPS
uncoordinated performance with failures.

Figure [6] demonstrates that the impact of uncoordinated
checkpointing on the performance of LAMMPS is relatively
low due to the fact that a small fraction of its execution
time is spent in communication. Given this result, our
next inquiry was to determine the impact of node failure
on its performance. Answering this question required an
application trace of LAMMPS that simulated a significant
amount of time such that, for a reasonable probability of
node failure, failures were likely to occur. Therefore, we
used a different LAMMPS potential (SNAP) then we used
before in this paper (Lennard-Jones). The SNAP potential is
computationally intensive and uses the same kernel as the
GAP potential [28]]. For the data presented here, we used a
configuration that ran for 10.1 hours naively. Finally, because
this potential is significantly more computationally intensive
than the LJ potential, it has significantly higher efficiency
than LJ with uncoordinated checkpointing without failures.
This increase is due to the fact that it spends very little of
its execution time communicating between nodes.

Figure |10| shows the efficiency of the SNAP potential on
65,536 nodes for a range of node failures rates between one
and ten years [29], [30]. Similar to Figure E] failure times
are generated from an exponential distribution and the restart
and rework times are modeled as OS noise by the simulator.
The restart time for a failed node is again set to 10 minutes
and rework is the time since the last local checkpoint.
Because we are modeling uncoordinated checkpointing in

=]
o
=
8
|
|
|
|
|
|
|

|
=]
8
|
|
|
|
|
|
|
|
|

=3 Computation [om Computation =] Computation
© I Communication g [Communication aE> I Communication
E 80 £ 80 £ 80
s 8 s
E 3 7
S 60 € 60 2 60
< =1 =1
2 E E
£ £ £
g S S
S a0 8 40 8 40
5 s s
H §]
8 20 g 20 8 20
5 o S
L a a
0 0
0 C TG e R G R R A)
C T 0 R %% Nodes © © © % Nodes © O © %
(a) CTH (b) HPCCG (c) LAMMPS
Figure 7. Communication/Computation ratios for CTH, HPCCG, and LAMMPS. Data gathered using a Cray XE6 and the mpiP profiling library [27].
100 #9% Local OPS 100 = MPI_Wait 10 == l 9% Local OPS
@ [MP1_Wait @ =3 MPI_Send © mm MP|_Sendrecv
E s =1 MPI_Send E e = MPL_lrecv E s = MPI_Wait
s B MPI_Recv s I MPI_Allreduce s =3 MPI_Send
= B MPI_Isend = = [MPI_Irecv
£ 60 == MPI_Irecv € 60 £ 60 == MPI|_Scan
g B MP|_Bcast 2 2 222 MPI_Barrier
g m MPI_Allreduce £ E B MP|_Bcast
O 40 O 40 O 40 I MPI_Allreduce
5 5 5
z g £
8 20 8 20 8 20
(o) (o3 j°3
o o o
0 0 0
TR Y 2 B oA
Nodes © © © % Nodes © % Nodes © ¢ © %
(a) CTH (b) HPCCG (c) LAMMPS
Figure 8. Percentage of communication time spent in each MPI function for CTH, HPCCG, and LAMMPS. Data gathered using a Cray XE6 and the

mpiP profiling library [27].

this case, a failure on one node only causes the failed node to
restart. The surviving nodes continue making progress unless
and until they encounter a dependency on communication
with the failed node. The simulator properly handles this
communication dependency and will delay nodes until the
failed node has met the dependency.

The top (green) line in the figure is the application
efficiency while taking checkpoint but with no failures. The
lower (brown) line is with failures with the specified node
MTBF. From this figure we note a number of important
points. First, even for very high failure rates (e.g., a one year
node MTBEF, much higher than has been observed on most
current systems) LAMMPS sees relatively high efficiencies
on average. As expected, the average efficiency increases
as the system’s failure rate decreases. Most importantly,
we observe that, independent of failure rate, when failures
occur they significantly decrease the efficiency of LAMMPS,
as noted by the error bars. This suggests that even in the
presence of failures, the average efficiency of LAMMPS is
quite good. Nonetheless, if high average efficiency is not
sufficient, additional mechanisms will be required to avoid
occasional low-efficiency runs.

V. RELATED WORK

Though HPC fault tolerance research is a very active area,
few tools exist that allow us to project behavior beyond
small-scale systems. Such tools need an appropriate level
of detail about the communication of the target application.

100

80

60

s
2
2
L
o 4
20
with failures —a—
0 w/o failures —e—
7 N Q@ 7 s 6 - 4 9 0
Node MTBF (years)
Figure 10. The impact of failures on uncoordinated checkpointing for

LAMMPS as a function of Node MTBF. The simulator data for each
system size represents the range of values produced over 16 runs of the
simulator. This simulation models a 10 hour run of LAMMPS using the
SNAP potential, a node restart time of 10 minutes and a checkpoint commit
time of 1 second. Checkpoints are taken every 68 seconds based on the
optimal checkpoint interval described in [2].

Without sufficient representation of application communi-
cation, we cannot accurately simulate some fault tolerance
approaches, like uncoordinated checkpoint/restart. Too much
details reduce simulator performance with no benefit. Ex-
isting application simulators tend to fall to either extreme;
either they are not communication-accurate or they simulate
communication in greater detail than appears to be necessary
and are thus limited in their simulation capabilities.

In [31]], Riesen et al. present a simulator that can model
the impact of node failure on application performance in
the context of traditional coordinated checkpoint/restart.

This simulator can also account for process replication.
Tikotekar et al. take a similar approach in [32]. They present
a simulator that models coordinated checkpoint and can
also simulate fault prediction and process migration. While
these tools have been shown to be effective for their stated
purposes, they are not communication-accurate. As a result,
they cannot account for fault tolerance techniques for which
communication patterns influence performance.

At the other extreme is xSim [33]]. xSim uses the MPI
profiling interface and interposes itself between the applica-
tion and the MPI library and run unmodified applications.
Scaling is achieved by oversubscribing the nodes of the
system used for validation. While this provides us with a lot
of application performance detail, it imposes a significant
cost. Limits on degree of oversubscription necessitate large-
scale systems to simulate systems that approach extreme-
scale. Moreover, as the size of the simulated system grows
and the degree of oversubscription therefore increases, the
time required to simulate the system grows dramatically.
Lastly, this oversubscription could place significant limits
simulated problem sizes as the memory for each simulated
node must exist in the memory of one physical node. In
contrast, our approach allows us to simulate fault tolerance
mechanisms for systems comprised of tens or hundreds of
thousands of nodes on very modest hardware (for example,
a single node). In some cases, this simulation completes in
less time than it would take to run the application itself, but
with the less computation details.

Boteanu et al. present a fault tolerance extension to an
existing simulator in [34]]. However, they target a datacenter
environment where each job is a discrete unit that is assigned
to a single processing element. As a result, their simulator
does not map well to HPC workloads.

Finally, SST/macro [35], [36] is a coarse-grained,
lightweight simulator designed to simulate the performance
of existing and future large-scale systems. By collecting
traces of application execution, SST/macro is able to simu-
late the application’s computation and computation patterns
at scales and on hardware that does not yet exist. However,
SST/macro does not currently account for the impact CPU
detours (OS noise). As a result, because the foundation of
our approach is based on the observation that resilience can
be modeled as CPU detours, we concluded that SST/macro
was not a suitable starting point for our investigation.

VI. CONCLUSION & FUTURE WORK

In this paper, we presented three primary contributions in
the area of large scale application simulation in the presence
of failures: (1) we validated the functionality of a simula-
tor that allows us to study coordinated and uncoordinated
checkpoint/restart protocols with very high accuracy; (2)
we demonstrated that our simulation framework allows us
unprecedented capabilities for simulating large time scales
(10 hours of simulated time) and large space scales (millions

of processes) in a very tractable manner; and (3) we used
some case studies to demonstrate the usefulness of our
simulation framework and the types of insights it enables.
The design space for evaluating resilience methods in
large-scale HPC applications is young and still evolving.
While our simulation framework has expanded that space
in new and useful ways, several areas for future work
remain. Among these, we intend to investigate mechanisms
to integrate both coarse- and fine-grained simulation for
failures. This will allow us to use coarse-grained simulation
in areas where failures do not occur, and fine-grained sim-
ulation when failures or other interesting events do occur.
We also plan to address support for additional resilience
mechanisms such as hierarchical checkpointing, replication-
based approaches, process migration and cloning, as well as
integration with ongoing standards efforts like the current
fault tolerance proposal put forth in the MPI forum [37].
Finally, we plan to investigate additional improvements to
our framework, including the benefits of parallelization.

REFERENCES

[1] K. Bergman et al., “Exascale computing study: Technology
challenges in achieving exascale systems,” Defense Advanced
Research Projects Agency Information Processing Techniques
Office (DARPA IPTO), Tech. Rep., Sep. 2008.

[2] J. T. Daly, “A higher order estimate of the optimum check-
point interval for restart dumps,” Future Gener. Comput. Syst.,
vol. 22, no. 3, pp. 303-312, 2006.

[3] M.-S. Bouguerra, T. Gautier, D. Trystram, and J.-M. Vincent,
“A flexible checkpoint/restart model in distributed systems,”
in Parallel Processing and Applied Mathematics. Springer,
2010, pp. 206-215.

[4] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and F. Cap-
pello, “Uncoordinated checkpointing without domino effect
for send-deterministic MPI applications,” in International
Parallel Distributed Processing Symposium (IPDPS), May
2011, pp. 989-1000.

[5] L. Alvisi, E. Elnozahy, S. Rao, S. Husain, and A. de Mel, “An
analysis of communication induced checkpointing,” in Fault-
Tolerant Computing, 1999. Digest of Papers. Twenty-Ninth
Annual International Symposium on, 1999, pp. 242-249.

[6] S. Monnet, C. Morin, and R. Badrinath, “A hierarchical
checkpointing protocol for parallel applications in cluster fed-
erations,” in Parallel and Distributed Processing Symposium,
2004. Proceedings. 18th International. 1EEE, 2004, p. 211.

[71 R. A. Oldfield, S. Arunagiri, P. J. Teller, S. Seelam, M. R.
Varela, R. Riesen, and P. C. Roth, “Modeling the impact
of checkpoints on next-generation systems,” in 24th IEEE
Conference on Mass Storage Systems and Technologies, Sep.
2007, pp. 30-46.

[8] K. Ferreira, R. Riesen, P. Bridges, D. Arnold, J. Stearley,
J. H. L. III, R. Oldfield, K. Pedretti, and R. Brightwell,
“Evaluating the viability of process replication reliability for
exascale systems,” in Conference on High Performance Com-
puting Networking, Storage and Analysis, SC 2011, Seattle,
WA, USA, November 12-18, 2011, Nov. 2011.

[9] B. Schroeder and G. A. Gibson, “A large-scale study of
failures in high-performance computing systems,” in Inter-

(10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

national Conference on Dependable Systems and Networks
(DSN), Jun. 2006.

K. B. Ferreira, R. Riesen, R. Brightwell, P. G. Bridges,
and D. Arnold, “Libhashckpt: Hash-based incremental check-
pointing using GPUs,” in Proceedings of the 18th EuroMPI
Conference, Santorini, Greece, September 2011 [to appear].
A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski,
“Design, modeling, and evaluation of a scalable multi-level
checkpointing system,” in ACM/IEEE International Confer-
ence for High Performance Computing, Networking, Storage
and Analysis (SC ’10), 2010, pp. 1-11.

D. Ibtesham, D. Arnold, P. G. Bridges, K. B. Ferreira, and
R. Brightwell, “On the viability of compression for reducing
the overheads of checkpoint/restart-based fault tolerance,”
2012 41st International Conference on Parallel Processing,
vol. 0, pp. 148-157, 2012.

A. Guermouche, T. Ropars, M. Snir, and F. Cappello,
“HydEE: Failure containment without event logging for large
scale send-deterministic mpi applications,” in /PDPS. 1EEE
Computer Society, 2012, pp. 1216-1227.

T. Hoefler, T. Schneider, and A. Lumsdaine, “Characteriz-
ing the Influence of System Noise on Large-Scale Applica-
tions by Simulation,” in International Conference for High
Performance Computing, Networking, Storage and Analysis
(SC’10), Nov. 2010.

S. Levy, B. Topp, K. B. Ferreira, D. Arnold, T. Hoefler,
and P. Widener, “Using simulation to evaluate the perfor-
mance of resilience strategies at scale,” in High Performance
Computing, Networking, Storage and Analysis (SCC), 2013
SC Companion:. IEEE, 2013, to appear. Available at
www.cs.unm.edu/"darnold/Levy2013UsingSimulation.pdf.

T. Hoefler, T. Schneider, and A. Lumsdaine, “LogGOP-
Sim - Simulating Large-Scale Applications in the LogGOPS
Model,” in Proceedings of the 19th ACM International Sym-
posium on High Performance Distributed Computing. ACM,
Jun. 2010, pp. 597-604.

D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, and T. von Eicken, “Logp:
towards a realistic model of parallel computation,” SIGPLAN
Not., vol. 28, no. 7, pp. 1-12, Jul. 1993.

T. Hoefler, C. Siebert, and A. Lumsdaine, “Group Operation
Assembly Language - A Flexible Way to Express Collective
Communication,” in ICPP-2009 - The 38th International
Conference on Parallel Processing. IEEE, Sep. 2009.

K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing
application sensitivity to os interference using kernel-level
noise injection,” in Proceedings of the 2008 ACM/IEEE
conference on Supercomputing. 1EEE Press, 2008, p. 19.
E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson,
“A survey of rollback-recovery protocols in message-passing
systems,” ACM Comput. Surv., vol. 34, no. 3, p. 375, 2002.
S. J. Plimpton, “Fast parallel algorithms for short-range
molecular dynamics,” Journal Computation Physics, vol. 117,
pp. 1-19, 1995.

J. E. S. Hertel, R. L. Bell, M. G. Elrick, A. V. Farnsworth,
G. L. Kerley, J. M. McGlaun, S. V. PetneY, S. A. Silling,
P. A. Taylor, and L. Yarrington, “CTH: A software family for
multi-dimensional shock physics analysis,” in Proceedings of
the 19th Intl. Symp. on Shock Waves, Jul. 1993, pp. 377-382.
M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willen-
bring, H. C. Edwards, A. Williams, M. Rajan, E. R. Keiter,

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

[37]

H. K. Thornquist, and R. W. Numrich, “Improving perfor-
mance via mini-applications,” Sandia National Laboratory,
Tech. Rep. SAND2009-5574, 2009.

S. Ahern, A. Shoshani, K.-L. Ma, A. Choudhary, T. Critchlow,
S. Klasky, V. Pascucci, J. Ahrens, W. Bethel, H. Childs
et al., “Scientific discovery at the exascale: report from the
DOE ASCR 2011 workshop on exascale data management,
analysis, and visualization,” 2011.

P. Bohrer, J. Peterson, M. Elnozahy, R. Rajamony, A. Gheith,
R. Rockhold, C. Lefurgy, H. Shafi, T. Nakra, R. Simpson,
E. Speight, K. Sudeep, E. Van Hensbergen, and L. Zhang,
“Mambo: a full system simulator for the powerpc architec-
ture,” SIGMETRICS Perform. Eval. Rev., vol. 31, no. 4, pp.
8-12, Mar. 2004.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.
Wood, “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1-7, Aug. 2011.

J. Vetter and C. Chambreau, “mpip: Lightweight, scalable mpi
profiling,” URL: http://www. llnl. gov/CASC/mpiP, 2005.

A. Barték, M. Payne, R. Kondor, and G. Csanyi, “Gaussian
approximation potentials: the accuracy of quantum mechan-
ics, without the electrons,” Physical review letters, vol. 104,
no. 13, p. 136403, 2010.

B. Schroeder and G. A. Gibson, “Understanding failures in
petascale computers,” Journal of Physics: Conference Series,
vol. 78, no. 1, p. 012022, 2007.

G. Gibson, B. Schroeder, and J. Digney, “Failure tolerance in
petascale computers,” CTWatch Quarterly, vol. 3, 2007.

R. Riesen, K. Ferreira, J. Stearley, R. Oldfield, J. H. Laros III,
K. Pedretti, R. Brightwell et al., “Redundant computing for
exascale systems,” Technical report SAND2010-8709, Sandia
National Laboratories, Tech. Rep., 2010.

A. Tikotekar, G. Vallée, T. Naughton, S. L. Scott, and
C. Leangsuksun, “Evaluation of fault-tolerant policies using
simulation,” in Cluster Computing, 2007 IEEE International
Conference on. 1EEE, 2007, pp. 303-311.

S. Bohm and C. Engelmann, “xSim: The extreme-scale
simulator,” in High Performance Computing and Simulation
(HPCS), 2011 International Conference on. 1EEE, 2011, pp.
280-286.

A. Boteanu, C. Dobre, F. Pop, and V. Cristea, “Simulator
for fault tolerance in large scale distributed systems,” in
Intelligent Computer Communication and Processing (ICCP).
IEEE, 2010, pp. 443-450.

C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny,
A. Pinar, D. A. Evensky, and J. Mayo, “A simulator for large-
scale parallel computer architectures,” International Journal
of Distributed Systems and Technologies (IJDST), vol. 1,
no. 2, pp. 57-73, 2010.

“Sst: The structural simulation toolkit,” http://sst.sandia.gov/
about_sstmacro.html, 2011.

W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and
J. J. Dongarra, “An evaluation of user-level failure mitigation
support in mpi,” in Recent Advances in the Message Passing
Interface, ser. Lecture Notes in Computer Science, J. L.
Triff, S. Benkner, and J. J. Dongarra, Eds. Springer Berlin
Heidelberg, 2012, vol. 7490, pp. 193-203.

http://sst.sandia.gov/about_sstmacro.html
http://sst.sandia.gov/about_sstmacro.html

	Introduction
	Our Simulation Framework
	Simulating Application Characteristics
	Simulating Hardware Characteristics
	Simulating Failures and Resilience
	Simulating Large Spatial and Temporal Scales

	Evaluating our Resilience Simulator
	Validating the Simulation Output
	Validating Failure-Free Simulation
	Validating Simulations with Node Failures

	Evaluating Spatial and Temporal Scaling
	Memory Usage
	Simulation Performance

	Case Study: Performance Impact of Checkpoint/Restart at Scale
	Coordinated versus Uncoordinated Checkpointing
	Application Analysis
	Impact of Failures on Uncoordinated Checkpointing

	Related Work
	Conclusion & Future Work
	References

