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ABSTRACT

As the number of compute cores on modern parallel ma-
chines increases to more than hundreds of thousands, scal-
able and consistent I/O performance is becoming hard to ob-
tain due to fluctuating file system performance. This fluctu-
ation is often caused by rebuilding RAID disk from hardware
failures or concurrent jobs competing for I/O. We present a
mechanism that stripes across a dynamically-selected sub-
set of file servers with the lightest workload to achieve the
best 1/O bandwidth available from the system. We imple-
ment this mechanism into an I/O software layer that enables
memory-to-file data layout transformation and allows trans-
parent file partitioning. File partitioning is a technique that
divides data among a set of files and manages file access,
making data appear as a single file to users. Experimen-
tal results on NERSC’s Hopper indicate that our approach
effectively isolates I/O variation on shared systems and im-
proves overall I/O performance significantly.

Categories and Subject Descriptors
B.4.3 [Input/Output and Data Communications]: In-
terconnections (Subsystems)—Parallel 1/0

General Terms
Algorithm, Experimentation, Performance

Keywords
Parallel 1/0, Collective 1/O, PnetCDF, File Partitioning

1. INTRODUCTION

Scientists and engineers are increasingly using modern paral-
lel machines in order to run their large, often data-intensive
applications, such as thermonuclear reactions, combustion,
climate modeling, and so on [9, 27, 28, 29]. Scalable parallel
I/0 libraries are one of the key components to scaling those
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applications [6, 17]. The I/O requirements of such applica-
tions can be staggering, ranging from terabytes to petabytes,
and managing such massive data sets presents a significant
bottleneck (8, 18].

In many parallel applications, the problem domain is ex-
pressed by a global data structure in a multidimensional ar-
ray form and partitioned among all processes, thereby mak-
ing each process run in parallel on sub-domains. There are
many approaches proposed to coordinate I/O requests from
multiple processes, and collective I/O in MPI-IO [26] has
been widely used to allow collaboration among participat-
ing processes and rearrange their I/O requests to achieve
high performance. There have been many optimizations
to improve collective I/O performance, including two-phase
1/0 [7, 32], disk-directed 1/O [14], server-directed I/O [30],
persistent file domain [21], active buffering [25], collabora-
tive caching [22], and adaptive file domain [20]. Even with
these improvements, however, collective I/O operations in
large-scale are facing new challenges on modern parallel ma-
chines. As the scale of parallel machines grows, various ac-
cess contentions can significantly degrade the I/O perfor-
mance, such as communication network contention because
of the high ratio of application processes to file servers, and
file locking contention among processes in a single job be-
cause of the shared-file access.

Furthermore, despite the use of state-of-the-art techniques
described above, significant challenges still exist in achiev-
ing scalable yet consistent I/O performance. The file servers
often exhibit unbalanced I/O load from various applications
sharing the storage resources, resulting in fluctuating file
system performance [5, 23, 34]. In petascale systems at
scale, the amount of I/O throughput available to any partic-
ular job can fluctuate to a large extent based on the behav-
iors of other running jobs accessing the shared file system.
Another source for this kind of fluctuation is a RAID rebuild
from a hardware failure. Since the performance of collective
I/0 is determined by the slowest participating process, it is
important to ensure no process remarkably lags behind.

The study presented in this paper supports the view of con-
ventional collective I/O, yet provides more scalable 1/O per-
formance in the presence of fluctuating file server perfor-
mance. We make the following main contributions:

e We demonstrate that collective I/O performance could



suffer from fluctuating file system behavior because of
contention on shared 1/O resources.

e We propose a dynamic bandwidth monitoring to probe
the file servers and isolate the impact of accessing slower
I/0 servers by excluding them from being used for file
striping.

e We propose a transparent file partitioning and data
layout transformation mechanism that divides the data
among files.

We have implemented the proposed scheme into a high-level
1/0 library, parallel netCDF [19], as a prototype. Our ex-
perimental evaluations on NERSC’s Hopper [3] using several
benchmarks running up to 8,192 processes have shown signif-
icant I/O performance improvements. We show that our ap-
proach effectively isolates the impact of accessing slower 1/0
nodes and reduces write I/O time significantly with less vari-
ation. Since the partition is done at high-level I/O library
layer (PnetCDF), each file partition is also a self-describing
file. Maintaining portable data representation is important
because it provides seamless access to data structures, and
layouts across all I/O software layers. Also, the richer infor-
mation available at high-level 1/O library made much flexi-
ble partitioning like per-array partitioning or use of different
dimension for partitioning. Lastly, our evaluations with real
1/0 applications demonstrate that our transparent file par-
titioning brings significant I/O performance improvement
while maintaining comparative number of partitioned files.

The remainder of this paper is organized as follows. The
next section extends the discussion on our motivation. The
design of our approach is described in Section 3. Our mod-
ification to PnetCDF to implement our idea is provided in
Section 4. Section 5 presents our experimental evaluation
results. We discuss related work in Section 6. Finally, Sec-
tion 7 summarizes the paper and discusses future work.

2. BACKGROUND
To establish the theoretical depth of the ideas in our study,
we first describe unique characteristics and features of the

1/0 architecture and software layers adapted by many leadership-

class computing systems. We then elaborate on the impli-
cations of such architecture to I/O performance.

2.1 TI/O architecture and software components
The system architecture, typically seen in modern HPC sys-
tems such as Cray XT6 or IBM BG/P systems, often have
thousands of compute nodes, each equipped with several
multi-core processors, and tens of GB memory per node,
offering peak performance of a couple of Peta-flops for the
entire machine. The I/O and inter-node communication on
the compute nodes travels on several internal networks. The
compute nodes communicate using a custom high-bandwidth,
low-latency network, for instance a 3-dimensional torus in
Intrepid [1] and Hopper [3]. Each compute node is con-
nected to other nearby nodes through a network topology.
Each network node handles not only data bound to itself,
but also data to be transferred to other nodes. At the other
end of this interconnection network are tens to hundreds of
storage servers, which are attached to storage devices. The
entire storage system typically provides some form of redun-
dancy to provide high availability.

Multiple layers of software are involved in the I/O path in
the system architecture described above. Applications use
I/0O libraries, such as HDF5 [33] or PnetCDF [19], or may
use MPI-IO or POSIX I/O calls directly. When MPI-IO
is used either by a higher-level library or the application
directly, MPI-IO optimizations such as two-phase I/O are
achieved through communications over the interconnection
network among compute nodes.

Collective I/0 is an optimization in many MPI-IO imple-
mentations that improves the I/O performance to shared
files. In ROMIO, an implementation of MPI I/O functions
adapted by many MPI implementations, the choice of aggre-
gators depends on the file systems. For most file systems,
one MPI process per compute node is picked to serve as
an aggregator. In the systems containing multi-core CPUs
in each node, this strategy avoids the intra-node resource
contention that could be caused by two or more processors
making I/O calls concurrently. For the Lustre file system,
the current implementation of ROMIO picks the number
of aggregators equal to the file striping count (or strip-
ing_factor). This design produces an one-to-one mapping
between the aggregators and the file servers in order to elim-
inate the possible lock conflicts on the servers [20, 35]. The
striping count of a file is the number of I/O servers, or Ob-
ject Storage Targets (OSTs) for Lustre, where a file is stored.
Like all parallel file systems, files are striped into fixed-length
blocks, and they are stored in the OSTs in a round-robin
fashion.

2.2 Contention on I/O Path

While collective I/O often offers huge improvements for I/O
performance on shared files, recent studies revealed that
it continues to face significant challenges at scale [36, 23,
34, 5] for several reasons. First, as demonstrated by sev-
eral prior studies, global synchronization cost and lock con-
tention among aggregators accessing the shared file within
the assigned file domain during collective I/O operations
pose a limit to the I/O performance. Similar observations
have been made in recent studies [36, 20], but the problem
will only exacerbate as the number of processes increases to
thousands and more. More importantly (especially in ac-
cessing shared storage systems), there are higher levels of
variability in I/O performance in petascale machines. This
variability is hard to avoid because of the different ways
applications access “shared” file systems. For example, mul-
tiple applications running simultaneously on the petascale
machine use the file system at the same time. Another ex-
ample of such a case occurs when analysis code is trying to
read the data stored in the shared storage while simulation
code is writing their output data. This I/O variability is a
big barrier to achieve scalable collective I/O operations be-
cause I/O performance is tied to the slowest storage nodes.
In other words, even if most storage nodes perform rela-
tively fast, the overall collective I/O time is determined by
the slowest nodes.

To quantify our hypothesis, we wrote a small program where
each process opens a file striped on a single I/O node and
writes 1GB of data on it. We have collected the write I/O
time observed at each I/O server. Details of our experi-
mental setup is given in Section 5. Figure 1 shows that,
although the amounts of bytes written to each I/O node
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Figure 1: The write I/O time distribution among all I/O
nodes while the amount of bytes written to each I/O node
remain the same.
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Figure 2: This poor scalability observed for all three bench-
marks we evaluated when there is an excessive imbalance
in I/O node performance. Details about our experimental
setup is explained in Section 5.

are equal, a couple of I/O nodes exhibit an excessively high
write I/O time relative to others. The slowest 1/O node is
in fact almost 9x slower than most other I/O nodes. Such
an imbalance is a significant barrier to achieve scalable I/O
performance in a production run. As shown in Figure 2,
this excessive imbalance severely limits the scalability of all
three benchmarks we tested.

3. DESIGN OF FILE PARTITIONING LAYER

In this section, we describe our file partitioning mechanism
in the high-level I/O library context. We discuss how our
mechanism determines the number of file partitions consid-
ering temporal behaviors of underlying I/O servers and how
datasets are mapped into partitioned files.

3.1 Runtime Storage Nodes Selection

Our mechanism to isolate the impact of accessing imbal-
anced I/O nodes is to use a runtime bandwidth probing to
identify each I/O server’s load before the file striping layout
is determined. The goal of this step is twofold. First, we
would like to monitor each OST’s current bandwidth avail-
ability. Because the I/O pattern in HPC systems is typically
bursty, we probe each I/O server’s bandwidth by writing a
small dummy dataset just before writing actual file. Second,
once the behaviors are identified, we would like to select the
list of OSTs that can be used for storing each partitioned
file.

We consider two criteria when designing our runtime probing
module. First, the impact of probing should be minimized
as it will not be the part of actual I/O. Second, the sampled
bandwidth should reflect the temporal behavior of each I/0
node. Combining these two, we determine each I/O node’s
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Figure 3: Distribution of write bandwidth observed for all
156 OSTs when 16MB of dummy data is written to each
OST. Each OST’s measured bandwidth is sorted in descend-
ing order.
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Figure 4: Maximum achievable aggregate bandwidth and its
derivative (i.e., the slope) at each point.

bandwidth by writing several tens of MB of dummy data to
each I/O server. We use POSIX I/O with the O_DIRECT
flag because our probing module writes relatively small files,
so they could sit on clients’ buffer cache unless we explicitly
bypass them. We also have to make sure the sampling data
size we use is large enough to fill the RPC buffer size; other-
wise the data will sit on the client and will not be transferred
to the I/O server.

Figure 3 shows the distribution of measured write bandwidth
across all 156 I/O nodes (OSTs) available on NERSC’s Hop-
per, sorted in descending order. This graph indicates that
certain OSTs exhibit relatively slower bandwidth than the
others. We again attribute this to an inherent imbalance
when accessing shared storage, as extensively discussed in
recent studies [23, 34, 5]. Given these observed I/O band-
widths, we use following algorithm to select the I/O nodes
for file striping. Assuming B; to be the sorted bandwidth
observed for each I/O server, i, we denote the aggregate
1/0 bandwidth, B;, using ¢« OSTs by B; = ¢ x B;, where
1 < ¢ < 156. Figure 4 shows the estimated maximum
achievable aggregate I/O bandwidth based on this formula.
As we can see, the aggregate bandwidth gradually increases
as more I/0 nodes are added, but eventually saturates and
then declines because the aggregate bandwidth is confined
to the slowest node. To select the maximum number of I/O
nodes that provide us the best achievable bandwidth, we
calculate the derivative of B;, which represents the slope of
B; at each value of i. Since our goal here is to maximize the
number of 1/O nodes, we select i when B is negative and
is less than a certain threshold, 4. The threshold value is
basically meant for capturing the degree of slowness in the
aggregate bandwidth when a certain probed bandwidth is
added. Our dynamic probing and I/O node selection mech-
anism described so far is given in Algorithm 1. Using the



Algorithm 1: Algorithm for determining the storage nodes
that would potentially give the maximum achievable aggre-
gate bandwidth at a given time. The obtained I/O node
lists are broadcasted to all processes.

Input: N: number of I/O nodes;
Output: N’: number of selected I/O nodes;
S[N']: 1/O node list of N’;
B;: each OST’s bandwidth;
lIb: lower bound of bandwidth;
for each sampling process, P; , 1 <i < N do
obtain B; by writing a dummy data using POSIX I/0 to
storage node 1;
/* gather all 0ST’s write bandwidth */
MPI_Allgather(&B;, ...);
sort the gathered B; in descending order;
for each i do
calculate aggregate bandwidth, B, = B;*i;
calculate B, the derivative of Bj;
if B, < 6 then
Ib = By;
break;
while i < [b do
S =4
i+ +;
/* broadcast number of selected I/0 nodes and
corresponding node IDs */
MPI_Bcast(&N’, 1, MPI_INT, O, MPI_COMM_WORLD);
MPI_Bcast(&S[N’], N’, MPI_INT, 0, MPI_COMM_WORLD);

results shown in Figure 4, our algorithm excludes 12 OST's
with less than 50MB/s for striping partitioned files. The
aggregate bandwidth was estimated to peak when the first
128 OSTs were added, but the significant bandwidth drop
occurs when 145th OST is added. We note that if all probed
bandwidth values are similar to each other, our algorithm
will end up selecting most of the available OSTs.

3.2 Mapping Arrays to File Partitions

Once the I/O nodes are selected, we then partition arrays
among them. Figure 5 gives an overview of our file partition-
ing scheme. The basic concept of our scheme is that, from an
application’s perspective, partitioning is transparent; that
is, all processes open and access a single file throughout
program execution. Then, our partitioning mechanism in-
ternally splits application processes into set of subprocesses,
each of which creates its own file partition collectively. The
file partition created by each subprocess group is accessed
solely by that group.

In higher I/O libraries like PnetCDF and HDF, there are
sequences of steps to follow in order to perform I/O, and a
typical example of such steps is as follows:

1. file open/creation
2. dimension definition
3. array definition

4. I/0 operation (write/read)
5. file close.

There might be additional steps like adding attributes to
a file or array, but the above steps are the key steps that
most application writers need to include in their I/O rou-
tine. Given this use pattern, we perform partitioning when
array definition is finished and the data in memory is ready
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Figure 5: Overview of our file partitioning mechanism. From
user’s viewpoint at higher-level I/O library layer, a file has
named arrays, dimensions, and attributes. Arrays also have
attributes and may share dimension. In our approach, each
array is internally divided into K file partitions, each of
which is stored in a single I/O node. All files (both master
and partitioned files) are in self-describing file format.

for write/read; in other words, just before step 4 above. We
choose this time because each array’s shape (number of di-
mensions, length of each dimension, and datatype of each
element) is finalized at this point. The header information
is also written at the end of file partition. In order to convey
the user’s intention of their file partitioning policy, we use
the MPI hint mechanism.

The default partitioning policy is along the most significant
dimension. For example, an array of Z-Y-X dimension, each
with the same length will be partitioned along the dimen-
sion Z. There are however certain applications that prevent
applying the default policy. For instance, in the S3D I/O
application, the dataset called u is a four-dimensional array
with the most significant dimension has length 3. Such a
small dimension length limits the number of file partitions,
preventing the application from exploiting potential benefits
of partitioning in larger partition counts.

If partitioning along a dimension other than the most sig-
nificant dimension is required, application writers simply
specify the dimension name using a hint, called par_dim_id.
Once this hint is given to our partitioning module, it inter-
nally converts the ID into the index of the dimension defined
in the array. We use the dimension ID because it can be
reused by any array definition with a different order of the
dimension list.

Once all user’s file partitioning strategies are specified through
the hint mechanism, our proposed module creates parti-
tioned files. The details of the file creation are as follows. It
first obtains relevant hints using MPI_Info_get (). We store
acquired information as a metadata in both master and the
partitioned file’s header information. If no hints were pro-
vided regarding file partitions, the normal procedure will be
executed; it creates a single file without partitions. Oth-
erwise, it splits the communicator because each process is
divided into a subprocess group. The split processes then
collectively create their own file partition using a dataset
function provided in the high-level I/O library, for instance,



Algorithm 2: Algorithm illustrating our file partitioning
mechanism. A file is partitioned only when partitioning is
enabled through the MPI hint.

get user’s hints about partitioning;

if partitioning is enabled then
obtain N’ by executing Algorithm 1;
determine MPI_Comm split parameters;
/* split the original communicator into

subcommunicators */
MPI_Comm_split (..., color, ..., &subcomm);
/* create a file partition */

MPI_Info_set(info, “romio_lustre_start_iodevice”, offset);
MPI_Info_set(info, “striping factor”, 717);
create a partitioned file associated with it;
for each array, A; do
get par_dim_id;
for dim_id, d[i][j] in A; do
dim_sz = d[i][j]—>size;
if j == par_dim_id then
dim. sz = d[i][j]]\ﬁsize;
define a new dimension using dim_sz and d[i][j];
for each partition, k do
create metadata for partition range, R;;
store R; to the master file;
/* master file: replace the original var with
scalar value */
A; —ndims_org = A; —ndims;
A; —»ndims = 0;
A; —dimids = NULL;
define an array with newly-defined dimension;

else
execute the normal array definition procedure;

ncmpi_create in PnetCDF. After creating a partitioned file,
our algorithm traverses each defined array in the original def-
inition and determines which dimension ID it needs to use
for partitioning. Unless the user gives a hint for the dimen-
sion ID for partitioning, the default is the first dimension
ID for an array. It calculates a new dimension length for
each partition. Note that only the partitioning dimension
will be affected; all the remaining dimensions will have the
same length as the original. Once a new dimension length is
determined, we define a new dimension for the partitioned
file and create an array with the new dimension lists. If the
array is partitioned, we update the original array definition
in the master file with a scalar value. In other words, the
master file does not have a physical space allocated for the
partitioned array as the actual data will be stored in the par-
titioned files. We repeat these procedures until all arrays in
the original file are processed. The algorithm described so
far is given in Algorithm 2.

Our default partitioning policy is to divide all arrays de-
fined in a file. There are however situations where this may
not be an ideal case. First, in real applications, there are
certain arrays merely for a bookkeeping purpose, typically
through associated attribute fields, instead of storing actual
data. Those arrays are ones that application writers typi-
cally use to store the information needed to either restart
the simulation or visualize plot files. While our partitioning
mechanism provide transparent access to those datasets, it
is better to store this information in a single file. Second,
arrays defined with fewer number of dimensions often do not
represent a significant portion of the total dataset. For in-
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Figure 6: Any I/O requests from applications belonging to
a file partition owned by other processes need to communi-
cate among processes before going to I/O servers. All these
data exchange would require sufficiently complicated com-
munication among processes.

stance, if there are two arrays, one 3D and the other 2D,
the 2D array is less than 10% of total dataset size assuming
the length of all dimensions are the same and at least 10. In
this case, partitioning the 2D array may not be a good idea
because it will result in more, but smaller I/O requests. To
deal with the above cases, we provide another hint, called
min_ndimes, to allow selective array partitioning. This hint
limits applying file partitioning for arrays with a dimension
length equal or less than min_ndims.

Our main mechanism to convey the user’s partitioning strat-
egy is through MPI hints. We however need to minimize the
number of MPI hints especially when applications run with
larger process counts. This is because most high-level I/O
libraries internally include all-to-all communication in order
to make sure the hint information conveyed to each process
is the same across all processes. Therefore, we use mix of an
MPT hint and an environment variable so that the overhead
incurred by our approach is minimized with larger process
runs.

3.3 Memory-to-File Layout Transformation

Once a file is partitioned, we need to provide a transparent
way to access those partitioned files as well. Note that, from
an application’s viewpoint, all I/O accesses still go through
the master file as it has sufficient information about how
each array is partitioned in each file. In other words, there is
no change in user’s I/O routines. We also note that reading
datasets already stored in partitioned files can be performed
transparently using the same metadata retrieval process.

Figure 6 shows an overview of the memory-to-file layout
transformation mechanism. The transformation mechanism
to partitioned files is mainly composed of two steps: i)
calculating each process’s requests to partitioned files and
exchanging it among all processes; ii) exchanging requests
among processes in each split communicator and issues I/O
requests using I/O calls (either synchronous our asynchronous
ones). We note that, since our partitioning is done at the
higher-level I/O library layer, all user’s array partitioning
is represented as start, count, and stride offset list for each
dimension.

In the first step, each process calculates the list of start
and count offsets to each file partition, dividing the data in
memory among the processes who own the partitions. This
is done by (logically) dividing the start and count offset, de-



Algorithm 3: Algorithm for handling I/O requests to par-
titioned files transparently.

Input: A;, start[], count[], stride[], buf, bufcount

initialize my_req[] and others_req[[;

if A; is partitioned then
for each partition, F; do
for each dim, D; € A; do

retrieve partition_index and par_dim_id from stored

metadata;

retrieve partition range from stored metadata;

/* determine my_req[].start[] and
my_req[].count[] */

if j == par_dim_id then
my_req[i].start = start[j] N range[D;];
my_req[i].count = count[j] N range[D;];

else
my_req|[i].start = start[j];
my_req[i].count = count[j];

/* communicate my_req among all processes */
MPI_Alltoall (my-_req, ..., others_req, ... );
/* exchange buf */

for each process, i do
if others_regfi].count != -1 €& i != myrank) then
MPI_Irecv (xbuf[é], ...);
for each process, i do
if others_reqfi].count != -1 €& i = myrank then
MPI_Isend (buf, ...);
MPI_Waitall (...) ; /* wait until all buffers are
exchanged */

/* issue all I/0 requests belonging to my rank */
for each process, i do
if my_reqfi].count != -1 then
call nonblocking I/O for buf belonging to local
process;
if others_reqfi].count != -1 €€ i != myrank then
call nonblocking I/O for xbuf[i] on behalf of remote
processes;
wait until all I/O requests are finished;
else
proceed to the normal I/O routine;

noted as my_req|], into file partitions, each of which can be
directly accessed by the processes within a sub-communicator.
In our implementation, we do not restrict the number of such
delegate processes in each subprocess groups. In fact, any
process can be a delegate so that we do not make load imbal-
ance at an application layer by selecting limited number of
delegates because non-delegate processes do not read/write
files directly. This phase requires one MPI_Allreduce() among
all processes.

The second step is based on everyone’s my_req, and calcu-
lates what requests of other processes lie in this process’s file
partitions. others_req]i].{start,count} indicates how many
noncontiguous requests of process i accessing this process’s
file partition. All these incur an MPI_Alltoall and many
isend/irecv/wait_all. This step ensures delegates collect the
request information from all other processes.

Then each process sends requests to the appropriate remote
delegate. Only delegates may have multiple I/O requests.
Non-delegate processes will not participate in this loop, but
will call to the data exchange routine if they have certain
requests to delegates. Delegate processes iterate until they
receive requests from all other processes, and issue a non-

MPI_Info_set (info, "nc_partitioning_enabled", "true");
ncmpi_create(comm, ..., info, &ncid);

/* dimension definition */

ncmpi_def_dim(ncid, "z", 100L, &cube_dim[0]);
ncmpi_def_dim(ncid, "y", 100L, &cube_dim[1]);
ncmpi_def_dim(ncid, "x", 100L, &cube_dim[2]);

/* variable (array) definition */
ncmpi_def_var(ncid, "cube", NC_INT, 3, cube_dim, &cube_id);

ncmpi_enddef () ;
/* perform 1/0 */

ncmpi_put_vara_all(ncid, cube_id, start[], count[], buf,
bufcount, MPI_INT);

Figure 7: A PnetCDF example code that creates a file with
partitioning enabled set to true. The number of file par-
titions is determined through the profiling mechanism ex-
plained in Section 3.1. This example creates a variable
named “cube” of Z-Y-X dimension, each with 100 length.
From an application writer’s viewpoint, it only requires to
add a hint to specify the intention of partitioning to store a
variable.

blocking 1/0. Each iteration goes through all others req[*]
and continues until all requests are processed. We ensure
they are all processed by calling wait_all() at the I/O li-
brary layer. The procedure described so far is given in Al-
gorithm 3.

4. EXTENDING THE PNETCDF LIBRARY

In this section, we describe our modifications to the Pnet CDF
library to implement our file partitioning mechanism de-
scribed in Section 3.

4.1 PnetCDF File Partitioning

Figure 7 shows a typical example of PnetCDF code that in-
cludes the sequence of dimension and array (variable) defini-
tion followed by the code to write data on it. In PnetCDF,
all processes in the communicator must make an explicit
call (ncmpi_enddef) at the end of the define mode in order
to verify that the values passed in by all processes match.
From our design viewpoint, this is the time when all shapes
of arrays are known, therefore, our array partitioning is in-
ternally executed at the end of this call.

The NetCDF header information for this example of parti-
tioning case is given in Figure 8. Note that, after partition-
ing, both master and partitioned files have more additional
attributes than the original file. For instance, the master
file (Figure 8(b)) has global attributes that indicate the file
name for each partitioned file, the number of partitions, and
the original dimension size for a variable, “cube”. The par-
titioned file header, on the other hand, has attributes for
describing the range of partitioned dimension as well as the
partition index.

We use a per-variable attribute to convey the user’s intent
of which dimension a variable needs to be partitioned along.
As an example, if a user wanted to use the second most
significant dimension than the default for the “cube” array,
this can be conveyed to our partitioning module by call-
ing the ncmpi_put_att_int API with “par_dim_id” set to



netcdf test {
dimensions:

z = 100;
y = 100;
netcdf test { x = 100;
dimensions: variables:
z = 100; double cube;
y = 100; cube: num_partitions = 2;
x = 100; cube: ndims_org = 3;

variables:

double cube (z, y, x); // global attributes:

:partition 0: "test.0";
// global attributes: :partition 1: "test.1";
data: data:

cube = ...... B cube = 0;

¥ ¥

(a) (b)

netcdf test.0 { netcdf test.1 {
dimensions: dimensions:

z.cube = 50; z.cube = 50;
y.cube = 100; y.cube = 100;
x.cube = 100; x.cube = 100;
variables: variables:
double cube(z.cube, double cube(z.cube,
y.cube, y.cube,
x.cube) ; X.cube) ;

cube: range(z) = 0,49; cube: range(z) = 50,99;

// global attributes:
:partition_index = 0;

// global attributes:
:partition_index = 1;

data: data:
cube = ...... H cube = ...... ;

¥ ¥

Figure 8: NetCDF file header information by ncmpidump
when the file is divided into 2. (a) Original NetCDF file (i.e.,
non-partitioned case). (b) The master NetCDF file after
partition. Note that the data section is 0, meaning empty.
(c) First partitioned NetCDF file. (d) Second partitioned
NetCDF file.

cube_dim[1]. This mechanism also can be used for handling
record variables. Record variables are the ones that use un-
limited dimensions, so we cannot determine the partition
size when the most significant dimension is defined as UN-
LIMITED. Therefore, we have to choose the second most-
significant dimension as the partitioning one for record vari-
ables. For example, let us assume that there is a variable,
xytime, with three dimensions: time, x, and y. The last two
are assigned fixed length of 100; time is assigned the length
UNLIMITED. In this example, the variable xytime can be
partitioned along either the x or y dimension.

4.2 Coordinating I/0 among Partitions

While current PnetCDF provides several data mode func-
tions, we focus on the collective versions of those functions
in our implementation. An example of such functions that
writes a variable “cube” is ncmpi_put_vara_all shown in
Figure 7. In this function, the varid (i.e., cube_id), start,
count, and stride values (not used in above API) refer to
the data in the file whereas buf, bufcount, and datatype
(MPI_INT) refer to data in memory. When this call gets
called, our partitioning module intercepts it and coordinates
the data transfer between memory to partitioned files using
the algorithm described in Algorithm 3. When each process
issues I/Os to its own partition, we use a non-blocking API
available in PnetCDF. They can aggregate multiple smaller
requests into larger ones for better I/O performance. These

routines follow the MPI model of posting operations, then
waiting for completion of those operations.

We illustrate how I/O requests to the partitioned files are
processed using the example code in Figure 7. Let us as-
sume there are 4 processes to access this array and the
number of file partitions is 2. Each I/O request is com-
posed mainly of start offset, count and stride for each di-
mension. Since our example dataset is 3 dimensional, we
have start[3], count[3], and stride[3]. For illustrative pur-
poses, let us assume that stride count is 1, meaning all array
elements are accessed contiguously. Given this, one parti-
tion (50 by 100 by 100) is owned by Py and P; whereas
the other partition (50 by 100 by 100) is owned by P, and
Ps;. Assuming a block-block access pattern and user’s file
partition, we calculate each process’s request to each file
partition. For instance, Py’s original request, denoted as
start{0,0,0} and count{100,50,50}, is now divided into two
portions: a portion belonging to its own file partition (de-
noted as start{0,0,0} and count{50,50,50}) and the other
(denoted as start{50,0,0} and count{50,50,50}) to be sent
to the remote process that owns that file partition. Once all
this information is obtained, all processes now exchange in-
formation (using alltoall) in order to figure out which process
has a portion of the data not belonging to its own partition.
Afterwards, all processes know which sub-I/Os they need
to handle by themselves. The code then communicates the
corresponding buffers and issues all those received I/O re-
quests using PnetCDF’s nonblocking 1/O calls. The 1/0 to
partitioned files returns when all the issued nonblocking I/O
calls are completed.

Our discussion so far assumes the buffer in memory is con-
tiguous. Real applications however often take advantage of
MPI derived datatype as a method to define arbitrary col-
lections of noncontiguous data in memory and to transfer it
to the file in a single MPI-IO call. In order to handle user
buffers in derived datatypes, our memory-to-file data layout
transformation first packs the noncontiguous buffer to a con-
tiguous one before determining memory regions belonging to
each partition. Subsequent buffer exchange and issuing of
nonblocking calls are all based on this contiguous buffer. We
note that no conversion and byte swap are performed at this
layer because they are done in PnetCDF layer underneath.

S. EXPERIMENTAL EVALUATIONS

All our experiments are performed on the Cray XE6 ma-
chine, Hopper, at NERSC. Hopper has a peak performance
of 1.28 Petaflops/sec, 153,216 processors cores for running
scientific applications, 212 TB of memory, and 2 Petabytes of
online disk storage. The Hopper system has two locally at-
tached high-performance scratch disk spaces, /scratch and
/scratch?2, each of 1 PB capacity. They both have the same
configuration: 26 OSSs (Object Storage Servers), each of
which hosts 6 OSTs (Object Storage Target), making a to-
tal of 156 OSTs. The parallel file system deployed in Hopper
is Lustre [2] mounted as both scratch disk spaces. When a
file is created in /scratch, it is striped across two OSTs by
default. Lustre provides users with a tunable striping con-
figuration for a directory and files; both directory and files
have the same striping configuration. In our experiment,
we use all available OSTs for striping and 1 MB as default
stripe sizes.
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Figure 9: Balanced write I/O time observed when only sub-
set of I/O nodes that were detected through our dynamic
bandwidth probing.

We implemented our proposed approach into the parallel
netCDF 1.3.1. Our feature added approximately 900 lines of
new code to PnetCDF. Our implementation is configured to
link with Cray’s xt-mpich2 version 5.6.0. We used a separate
ROMIO module described in [20] as a standalone library,
which is then linked with the native MPI library. Our pre-
vious experience tells this optimized ROMIO is about 30%
faster than the system’s default one. In other words, our
base collective I/O performance is already optimized for our
evaluation platform. All applications including benchmarks
and our modified PnetCDF are compiled using PGI compiler
version 12.9.0 with the “-fast” compilation flag.

For all experiments, we measure the I/O throughput as the
number of bytes read or written by the benchmarks and
applications during the time it took to complete. Unless
otherwise stated, all experiments were run five times, and
we present the average of those runs with error bars as a
standard deviation.

We evaluate our file partitioning scheme against the base
scheme, where all arrays are stored in a normal file (non-
partitioned) striped across all available OSTs. To show the
effectiveness of our dynamic bandwidth probing, we ran two
schemes of our partitioning cases: striped over all OST's and
striped over selected OSTs.

5.1 Collective I/O Performance Benchmark
Before presenting our evaluation with the collective 1/O per-
formance benchmark, we first show how our approach effec-
tively isolates slower I/O nodes. In order to do this, we
wrote a small test case that writes 1GB of data to an indi-
vidual I/O node selected by our dynamic probing module.
Figure 9 shows the write I/O time, collected using the TAU
profiling tool [31], observed at each I/O node that was se-
lected by our sampling module. In this example, 22 out of
156 OST's were selected for writing. As compared with Fig-
ure 1, it clearly demonstrates more balanced write I/O time
across all selected OSTs.

To understand the performance of our approach against the
base case, we ran a collective I/O test program, coll perf,
originally from ROMIO test suite, that writes and reads the
three-dimensional arrays, all in a block-partitioned manner.
We made it write/read four 3D variables. The data parti-
tioning is done by assigning a number of processes to each
Cartesian dimension. In our experiments, we set the subar-
ray size in each process to 128 x 128 x 128 of 4-byte integers,
corresponding to 8MB. All data is written to a single file
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Figure 10: Write throughput results for coll_perf.
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Figure 11: The average write I/O time for coll_perf with
error bars. Regardless of file is partitioned or not, using all
OSTs shows much “higher” deviation.

for the base case (non-partition). For our partitioning case,
all four variables are partitioned along the most significant
dimension.

Figure 10 shows the write throughput of coll_perf with and
without our file partitioning schemes. We scale both schemes
by increasing the number of processes from 1,024 up to
8,192. The results indicate that writing data into a single
file does not scale with larger number of processes; the write
throughput actually went up and down when the number
of processes are increased. On the other hand, our parti-
tioning schemes improve the write throughput significantly
by 12%-94% when used with all 156 OSTs and 36%-137%
when used with selected OSTs, respectively.

To understand the performance improvement obtained by
our approach, we have collected the performance breakdown
of coll_perf during collective I/O using the TAU profiling
tool [31]. Figure 11 shows that the time spent in POSIX
write() time by each aggregator process gradually increases
as the number of processes increase. This is because the
amount of data written increases with larger number of pro-
cesses. The most important observation we made here is
that writing to partitioned files using either all OSTs or se-
lected OSTs reduces the write I/O time significantly, about
70% on average. This indicates that writing to partitioned
files clearly lessens the contention on the file server. Another
important insight from this graph is the high variations on
the write I/O time when all OSTs are used, and the varia-
tions increased with larger process counts. The partitioned
files with selected OSTs show low deviation from average
mainly because relatively slower OSTs were eliminated be-
fore the time of writing.

In our next experiments, we would like to understand how
the read from partitioned files behaves. To do this, we per-
form the same weak scalability tests (1,024 to 8,192 pro-
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Figure 12: Read throughput results for coll_perf.

cesses) on the read case, each case collectively reads the
entire files in a block-block partitioned manner. Since par-
titioning on selected OSTs does not have fixed the num-
ber of OSTs per run, we evaluate only reading from all
OSTs for a fair comparison. To ensure data is read from
the storage nodes, all caches are flushed before each run.
Figure 12 shows that the non-partitioned file case is not
scalable while our partitioning scheme shows much higher
performance improvement than the write case. Also, the
observed read throughput is about 30% lower than that of
the write throughput. Our TAU profiling result indicates a
notable increase in read I/O time; reading from the normal
(i.e., non-partitioned) is about 6x slower than reading from
partitioned files. We attribute this to the pretty aggressive
readahead mechanism used in Lustre file system. In the case
of reading from non-partitioned files on all OSTs and given
the default stripe size of 1MB, the majority of prefetched
data by an aggregator is irrelevant parts of the data, thus
slowing down the overall performance. In our partitioned
file case, the readahead mechanism is entirely reading from
a single OST, so the benefit of readahead is maximized.

Our partitioning approach introduces additional communi-
cation during memory-to-file layout transformation time:
MPI_Isend, MPI_Irecv(),MPI_Alltoall(), and MPI_wait().
In order to quantify this overhead, we have measured time
spent on those additional communication costs using TAU.
The results indicate that the coordination overhead incurred
by the additional communication is negligible; the extra
communication overhead accounts for less 1% of the col-
lective I/O operations. The time spent on the all-to-all
communication is small because, during that phase, we only
exchange each process’s requests to each file partition. The
buffer exchange phase also does not incur much overhead be-
cause only participating process pairs exchange small amount
of buffer. Since our algorithm selects the delegation process
in other subprocess groups in a balanced manner, the pair-
wise communication is also mostly balanced.

5.2 FLASH I/0 Benchmark

The FLASH I/O benchmark [38, 18] is the I/O kernel of
a block-structured adaptive mesh hydrodynamics code that
solves the compressible Euler equations on a block struc-
tured adaptive mesh and incorporates the necessary physics
to describe the environment, including the equation of state,
reaction network, and diffusion [9]. The problem domain
is divided into blocks distributed among a number of MPI
processes. A block is a three-dimensional array with an ad-
ditional 4 elements as guard cells in each dimension on both
sides to hold information from its neighbors. There are 24
data variables per array element, and about 80 blocks on
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Figure 13: FLASH I/O write throughput.

each MPI process. A variation in block numbers per MPI
process is used to generate a slightly unbalanced I/0 load.
Because of the fixed number of blocks for each process, an
increase in the number of processes linearly increases the
aggregate I/O amount as well. The main purpose of I/O in
FLASH is to write a checkpoint file and two plot files for vi-
sualization, which contain centered and corner data. Check-
point files are the largest of the three output data sets, the
I/O time of which dominates the entire benchmark. We set
the block size to be 16 x16x 16, which corresponds to about
64 MB of data per process.

We use a FLASH I/0O format where all mesh variables (in-
cluding density, pressure and temperature) are written to
the same dataset (variable) in the output file. Both check-
pointing and plot files are written in this file format. In case
of checkpoint files, among 24 variables defined in FLASH,
only 10 variables correspond to those mesh variables, each of
which is a four-dimensional (4D) array of double-precision
typed data. All unknown variables are defined as a 5D array,
the first dimension being the number of unknown variables.
Since this dimension length is only 10, we partition these
unknown variables along the second most significant dimen-
sion. We partition only unknown variables in our approach;
All other variables are stored in the master file without par-
titioning. The plot files have three mesh variables and we
again applied partitioning for the unknown variables.

Figure 13 shows the I/O bandwidth of FLASH for the non-
partitioned case and our two approaches. Using a non-
partitioned file did not scale well even with increased process
counts. The maximum I/O bandwidth observed with 8,192
processes is about 8 GB/s. This is significantly below the
maximum I/O bandwidth on Hopper. The partitioned files
with all OSTs slightly outperform the non-partitioned file
case, by 28% on average, but there is higher variation with
larger process counts. Overall, the partitioned files with
selected OSTs can achieve about 70% I/O bandwidth im-
provement than the non-partitioned case.

5.3 S3D 1I/0 Benchmark

The S3D application [28] simulates turbulent combustion us-
ing direct numerical simulation of a comprehensive Navier-
Stokes flow. The domain is decomposed among processes in
3D. All processes periodically participate in writing out a
restart file. This file can be used both as a mechanism to
resume computation and as an input for visualization and
post-simulation analysis. We used 50x50x50 fixed subar-
rays.

The checkpoint files consist of four global arrays: two 3-
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Figure 14: S3D I/O write throughput.

dimensional, temp (z, y, x) and pressure (z, y, x) in dou-
ble precision, and two 4-dimensional arrays (double yspecies
(nsc, z, y, x) and double u (three, z, y, x)). Since the length
of the most significant dimension in 4D variables are rela-
tively small; 3 and 11 for three and nsc respectively, we
partition these variables along z-dimension, that is, the sec-
ond most significant dimension.

Figure 14 shows the I/O bandwidth of S3D for all three cases
we evaluated. We have observed that the non-partitioned
file case is marginally scalable. The partitioned files using
all OSTs can achieve higher performance improvement than
the non-partitioned file case up to 2,048 processes, but only
marginal improvement beyond that point. The partitioned
files case with selected OSTs consistently outperforms than
the non-partitioned file case, by 60% on average.

6. RELATED WORK

PLFS [4] introduced a virtual layer that remaps an applica-
tion’s preferred data layout into one optimized for the under-
lying parallel file system. Like PLFS, Split writing and Hi-
erarchical striping [37] also use a library approach to reduce
contention from concurrent access at runtime. However, the
split files are merged at close time, preventing later accesses
from leveraging the benefits of partitioned fils. It also re-
quires application modification. Yu and Vetter proposed an
augmented collective I/O, called ParColl, with file area par-
titioning and I/0 aggregator distribution [36]. PIDX [16, 15]
is a parallelization of IDX data format, and uses a novel ag-
gregation technique to improve its scalability. Dickens and
Logan [8] demonstrated that the collective I/O operations
on Lustre performs poorly because of high communication
overhead in order to make and write large, contiguous blocks
of data. They then proposed a new approach, called Y-Lib,
to collective I/O in Lustre, which improves performance by
reducing contention among processes participating in collec-
tive operations.

Our earlier study by Gao et al. [12] is similar to our ap-
proach, but it requires user intervention of how each subfile
is partitioned using a set of new APIs. Also, it only al-
lows partitioning along the most significant dimensions of
an array, and does not support record variables. In our new
design and implementation, we remove these restrictions to
enable any further layout transformation between memory
and partitioned files. All these data transformations would
require sufficiently complicated communication among pro-
cesses, which does not occur in the subfiling. Further, unlike
the subfiling, our approach gives more flexibility by allow-
ing application writers to specify per-variable partitioning.
A similar idea of subfiling is also provided in the ADIOS BP
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file format [24]. However, ADIOS has limited flexibility in
selecting how the data is stored across subfiles, and also it
does not store arrays in canonical order. Fu et al. [11, 10]
proposed an application-level two-phase I/O, called reduced-
blocking I/O (rblO), and demonstrated that rbIO performs
better than the n to n approach. rblO is similar to our
approach in that it reduces conflicts using the partitioned
files and application 2-phase I/O. However, the partition in
rblO is done by the application writers, and the coordina-
tion does not cross the partitioned process group. Kendall
et al. also used an application-level 2-phase I/O in order to
organize I/O requests to multiple-file dataset [13]. Their
optimization, however, is targeted mainly for visualization
workloads, and application writers manually provide the list
of starts and sizes of a block that each process needs to read
or write.

Many recent studies have identified that staggering file servers
are one of the main reasons of inconsistent 1/O performance
in large petascale and beyond systems [23, 34, 5]. [34]
characterizes the I/O bottlenecks in supercomputers, and it
demonstrates that slower I/O servers limit the aggregate and
striping bandwidth and reduce the parallelism. Also, due to
locking protocols, lower bandwidths are observed while writ-
ing to a shared file. In [23], it is shown that the I/O load
variation on I/O servers leads to performance degradation,
and adaptive I/O methods are proposed using a grouping
approach to balance the workload; i.e., for a group of writer
processes, assign a sub-coordinator to each group, and as-
sign a coordinator for all the sub-coordinators. In a recent
study on Hopper [5], it is shown that once the I/O strag-
glers are isolated from the I1/O, and using one file for all pro-
cesses, the performance can be significantly improved. Our
approach does take the slower 1/O servers into account and
dynamically isolates these servers from the collective I/O
operation. Using one partition per file server can poten-
tially achieve better performance by minimizing file system
locking contention.

7. CONCLUSION AND FUTURE WORK

This paper has proposed a transparent file partitioning mech-
anism to provide scalable collective I/O performance while
keeping a conventional view of large multi-dimensional ar-
rays to a user. We use a dynamic bandwidth probing to
detect slower I/O nodes and isolate the impact of these
slower I/O nodes. Our implementation is incorporated into
PnetCDF, a high-level I/O library, and we evaluate its per-
formance using a set of I/O benchmarks on NERSC’s Hop-
per. Our experimental results demonstrate that our par-
titioning scheme consistently improves the performance of
collective I/O significantly by reducing write I/O time with
less variation.

We will continue to evaluate our approach on other plat-
forms like Intrepid, IBM Blue Gene/P, at Argonne National
Laboratory [1], and other high-level I/O libraries. Future
research will focus on investigating how the data exchange
mechanism we proposed in this paper can be applied on
more general layout transformation techniques like trans-
posing array dimensions.
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