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James W Foulk Ill (Sandia, CA), localization element for hydrogen
embrittlement

Alejandro Mota (Sandia, CA), multiscale modeling, internal variable
mapping

Jakob T Ostien (Sandia, CA), finite strain FEM for thermo-hydro-
mechanics

Joseph E Bishop (Sandia, NM), mortar finite element method

John W Rudnicki (Northwestern, IL), Mechanical and hydraulic properties
of real and simulated compaction bands

Jose E Andrade (Northwestern, IL; now at Caltech, CA), lattice
Boltzmann/finite element hybrid simulations

Matthew R Kuhn (University of Portland, OR), Shear band modeling with
Discrete element method; granular physics

Ronaldo | Borja (Stanford, CA), Monte-Carlo simulations for co-seismic
deformations

Teng-fong Wong (Stony-Brook University, NY; now at Chinese University
of Hong Kong), Modeling and analysis with CT Images

L Peter Eichhubl (UT Austin), compaction band characterizations

O Yin Lu Young (Princeton University, NJ; now at University of Michigan,

Ann Arbor, Ml), Monte-Carlo simulation of sedimentation-consolidation
process 2




Research Experience

» Variational internal variable recovery with Lie algebra for
adaptive finite element method
* Mota, Sun, Ostien, Foulk, Long, Computational Mechanics
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» Estimating co-seismic deformation of sediment during
Loma Prieta earthugake with Monte Carlos simulations

* Borja, Sun, Acta Geotechnica, 2007; Borja, Sun, Journal of
Geophysical Research 2008
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» Predicting liquefaction and shear localization with a
critical state plasticity model
* Sun, Geomechanics and Geoengineering, 2013

Trapped Concentration Projected Hydrostatic Siress

v 208060 80, 100 s e e e

0.294563 107.1747 1033315 3.366e+9

* Hydrogen embrittlement in stainless steel
* Foulk, Sun, Wagner, International Journal of Numerical
Methods in Engineering, 2013



Computational Geomechanics Across the Pore, Grain,
Specimen and Field scales

Level set scheme to
obtain signed distance function,
iso-surface and mesh

Up-scaling hydraulic and
mechanical parameters
by solving inverse
problem

Finite Element models
incorporating Spatial
Variability and length scale

X-ray CT Imagel34]

. . —’t Peimeability mD
Create binary image 0959

from DEM assembly l“’
0.6
0.4

Pore-scale Calculation!®!

Meso-Scale homogenization34

Arlequin domain coupling!®!

Grain Scale Discrete Element )\
Simulationl”]

Field-scale Boundary Value Problem!%.256]
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Structure of the Presentation ) i

o Motivations

o How to model large deformation thermo-hydro-
mechanics at the field scale?

o How to use micromechanics models to predict the
macroscopic mechanical and hydraulic responses?

o How to connect micro- and field- scale models with
domain coupling methods?

o Conclusion and future Perspectives




Motivations
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Hydraulic fracture (fracking)

Soil liquefaction




Thermo-hydro-mechanics modeling in e,
the continuum scale

Finite Element models
incorporating Spatial
Variability and length scale

Field-scale Boundary Value Problem!*256l
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Kinematics of THM Problem at Finite Strain

Trajectories of the solid and fluid constituent.
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Thermal-induced
configuration

X y—o € PP (pg(B)

Undeformed
configuration
(not stress-
free)

Stress-free
©° configuration

Current
configuration

Multiplicative decomposition of the thermo-
hydro-mechanics problem

Multiplicative
decomposition F — Op(X,t) —Fy-Fy: Fg= (X, ) Fyy = O (X, 1)
of skeleton 0X A 0X ’ 0X g
deformation Isotropic tensor
gradient

f
o=0c'—-Bpl,
Concept of

Effective Stress B=1-— £
K

P(F,z,p',0)=P/ (F,z60)— JBp F~ 7T

P(FMvzapf) — P,(FM7Z) _ JBpfF_T:
8




Strong Form of THM Problem at Finite Strain ) S

1 Balance of Linear Momentum

VX.P+J(p*+p)G=0| where P(F,zp')=P (Fu,z)— JBp F~ 7,
A A A

Total Stress Effective Stress 1st PK pore pressure
O Balance of Mass

(E —3as(0—90))j—|— %p'f—?)améjt iVX-WZO.

T Py where
—1
WZJ{ w.  and w=pk- | — V' + pe(G — a")| — pesp V6,
Piola’s Transform o _* | s tAEff ,
arcian Flow oret Effec
U Balance of Energy (neglected here)
' X P'cps T X
cFl = [Dmech — Ho| + =V - Qy — W .F " V™ 0+ Ry],| where
Dissipation Heat Flux Pt Convection Heat source
0 : J
£ HS = —0—P' - F = —-3Ka..0— Solid Structural Heating (depending
I_{@ — HS + H97 and 0 00 sk on which constitutive law being used)
Total 0 . .
Structural Hé = —9—3am (9 — Qo)pf = —30ém9pf. Fluid contribution
Heating 00 9




Remarks on Estimating Effective Thermal Conductivity () =,
from Microstructures

O Volume averaging effective thermal Temperatue

L

conductivity

E0.75

f1.t f\ 1.8 :
ko = ¢'ko + (1 — ¢ )k
(cf. Preisig & Prevost, IJGGC 2011) Fozs

L Homogenized effective conductivity via :
Eshelby equivalent inclusion method (for
spherical inclusions)

o' (ki — kp)kg
(k§ — K)ot + Ky

:0.75
(cf. Zhou & Meschke, IINAMG 2013) E

05
Eo.zs

0

ko = |k} +

Important Note: In general, the temperature of the
pore-fluid and solid skeleton are not the same in the
REV, until after sufficient diffusion takes place. This
difference is neglected in current formulation.

Solution of transient heat equation of two-
phase materials 10
-__________________________________________________________________________________________



Stabilization of Two-fold Saddle Point Problem for ) Mo
Equal-order THM Finite Element Model

Laboratories

O Combined Inf-sup Condition (not satisfied) No stabilization

Jon (pth n 30Kask) Ve wh dV
sup

whev Ty

fh h
> Co(Ip™ llvy + 116" 1y )

O Combined Weak Inf-sup Condition (still satisfied)

fP'B + 3K g 0™) V= oP dV
sup fg (p + Qsk ) v

vh eV v#£0 ||vh||1

th h
> Ca(llp™ v, + 116" 1)

Pore Pressure (Pa)
2004 Botd,

= Ch(I| V=P [y, + 197 0" )

O Projection-based Stabilization

H*P (g, pitte1, 0 1) = Z/ (¢ — ) (pn+1 — M (pn — pf,bh))dV i
KeB i
. [ IEII!III==
+ Z/ (Y — ) (3a™) (Op 41 — O — IT(0) 1 — O1))dV . l,_,ll
KeB T T T
Stabilization Interpolated Projected element-
parameter temperature wise constant
changes temperature changes

For isothermal small strain poromechanics, see White and Borja, 2009




Combined F-bar Formulation

O Isochoric-volumetric split (Hughes 1975, simo 1975)
F =F,, - Fiy
O Replacing volumetric split with assumed term
F — j1/3Fiso _ jl/BJ—l/SF
¢ ¢

Modified det(F) Original det(F)

Relaxing too much, we get instabilities
Relaxing too little, we get the volumetric locking

0 Combined F-bar approach

F =aoF+4(1- OA)F- <—— Invalid operation

O Current Approach via Lie algebra

j:exp<1v;eﬁ/ longV—l—ﬂlogJ).

1-p5
Vge

Jn = exp (logj—3(

/e e (0= 60) AV + Bk (6 — 6 ) )

tip displacement
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- \Exact solution

Finite element solution

0

0.1 0.2 0.3 0.4 0.5 0.6

nu

Standard F leads to Volumetric

Locking

?\.cr= 90.3557, o =0xE

=
-

Pure F-bar leads to instability
(Brocardo, Micheloni, Krysl, IINME, 2009)

See Sun, Ostien, Salinger, International Journal for Numerical and Analytical Methods in Geomechanics, 2013
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Thermo-hydro-mechanical Responses of Porous i) aora
Sphere in Thermal Reservoir

o Material
o Neo-Hookean
o Kozeny-Carman Permeability
o Homogenized Thermal Conductivity
o Very low Pore-fluid diffusivity
o High thermal diffusivity

o Boundary Condition
o Temperature at outer surface =5°C
o Initial Temperature = 0°C
o Globally Undrained

o Analytical Solution is available for linear THM
problem (see Belotserkovets & Prevost 2011,
Selvadurai and Suvorov 2013)




Thermo-hydro-mechanical Responses of Porous ) i
Sphere in Thermal Reservoir
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X Under-diffusion with spurious patterns v’ Diffusion with estimated optimal stabilization

Pore Pressure Pa o Pore Pressure Pa
500000 70 — 500000

400000 Vi~ 8 400000

200000 IR SR AN 200000

'§0 1 < EUINSE. éo
§ 200000 (/) R Ay O 200000

=-400000 it I Ty (SO T 400000 |
£ YR IFE e s ~ = {
500000 1/ KRN ~500000 /.}

|

|
1=

Pore Pressure computed with standard Galerkin FEM Pore Pressure computed with Stabilized FEM

Note: we do not impose shape pore pressure gradient.
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Thermo-hydro-mechanical Responses of Porous i
Sphere in Thermal Reservoir

X Under-diffusion with spurious patterns v Diffusion with estimated optimal stabilization

TEMPERATURE
5

4

TEMPERATURE

Temperature computed with standard Temperature computed with Stabilized
Galerkin FEM FEM




Generalized Mandel-Cryer Effect for THM Spherical
problems
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v Solution with estimated optimal stabilization X Over-diffused solution (Constant
stabilization parameter C=200000)
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Optimal Stabilization Parameter Estimation ) i

1D poromechanics governing equation
?p  Op k. MH YL M(K +4G/3)

‘o2 ~ o’ uH+uBM T T K +4G/3+ B2M

Pore Pressure Pa
9e+5

~8e+5

Three node stencil (standard Galerkin method)

- ﬁA—l + ZﬁA - ﬁA—l Eée+5
2 “EAe+5
A~ _ 4A A — 0 ;2e+5

+ GﬁcAt(pA 1+ 4pa +Day1) §

2e+5

Three node stencil (Stabilized Galerkin method) |
—PA-1 1+2Dpa — DA Stabilized F-bar Mixed FEM

2 A
+15ear [(2—7)Pa )
+(8+27)pa + (2 = 7)Pa+1] =0

Growth/decay rate

Pore Pressure Pa

cosh h . (1 + hz/ﬁcAt) (4 + ’)’)/6 9e+5

(VOcAt)h (1= h?/0cAt)(2 —v)/12 EEZZ

To have real growth/decay rate, we need ;‘ez
JeAt deAt (11 deAt L b

7>2-125- >0 1y = (263 )(5 + 5 tanh(2 —12—5 )) N 208

f

Safety factor Turn off stabilization Standard Galerkin Methaa"\»\._
without introducing switch




Unconfined Compression Test of Cold Thermo-sensitive Porous | e
Media at Room Temperature

O O O O

©)

O O O O

O

o Material

J2 perfect plasticity
Kozeny-Carman permeability
Homogenized thermal conductivity
Pore-fluid diffusivity < thermal
diffusivity

o Boundary Condition

Temperature at surface =12°C
Initial temperature = 0°C

Globally undrained

Unconfined side surface
Prescribed displacement on the top
and bottom

Under constant rate, apply 16.67%
vertical strain in 10 hours

T=12°C, d = dx




Coupling effects of Multiphysical Responses in

Geometrically Nonlinear Regime

» Temperature & equivalent plastic strain

> Pore Pressure
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National
Laboratories

Pore Pressure Pa
Qe+6

“8e+6

E6e+6

é4e+6

“20+6
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Why localization elements?

Mesh size
dependence

Figure from Khoei et al, Communications in Nonlinear Science and

Philosophical Magazine, 2008 Numerical Simulation 2005
«  Model surface, rock joint and bulk « Cure mesh dependence by
materials without the need to introducing length scale.

discretize them in the same mesh.

20




Formulation of the localization element Wi

Fl—g o6& [#] = (F) [y

F=Flpt

GA |G4 —> F = Fll M QR N From Yang, Mota Ortiz, 2006;
h Foulk et al 2013

Deformation power of the solid skeleton

PP =N"| P.-Fav+ | P Fhds F =F'F!
BE S
+ 0 0 /
- P-Fdv + P-[F”h+[[¢]]®N} ds
T JBF So deformation of ~ homogenized
. y mid-surface displacement
= . P.-FdV + / [hP -F +T- [[go]]} ds membrane jump
:I: BO SO




Globally undrained Simple Shear Test of Fully saturated media @ Sanda
. . . Laboratories
with flow barrier in the surface element (Pore Pressure)

Without sealed rock joint With sealed rock joint

Pore Pressure Gradients Pa/m
18733896

;1.ée+7
Pore Pressure Pa
1.2 -163643.5
2e+7 =

: -400000
+8000000 E

--800000

| 3

* 4000000

11,2046

233.16447 E
=-1.6e+6

-1842973

In geometrical nonlinear regime, pore-fluid flow is significantly influenced by geometrical changes.
Capturing localized hydraulic features triggered by deformation is important to analyze overall

reservoir properties.
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Conclusion and Future Perspective @&=.

For the 15t time, A fully coupled, finite deformation,
stabilization thermo-hydro-mechanics finite element model is
implemented.

This model preserves Mandel-Cryer effect, and is able to
eliminate spurious oscillation due to the lack of inf-sup
condition.

Thermo-poro-plasticity model is extended and tested.

Localization element is introduced as localization limiter to
cure mesh dependence.

Unsaturated flow will be further tested against analytical
solutions and classical problems in the literatures.

23



Connecting micro-structural attributes and (i) i

Laboratories

macroscopic mechanical and hydraulic responses

Level set scheme to
obtain signed distance function,
iso-surface and mesh

Up-scaling hydraulic and
mechanical parameters
by solving inverse

Nroblem
Create binary image
from DEM assembly Pore-scale Calculation®

- Meso-Scale homogenization3.4)

Grain Scale Discrete Element
Simulation!”!

X-ray CT Imagel34

3IVOS

Inm Imm lcm Im




State-of-art on Analyzing Stress Induced )
Permeability Changes on Granular Materials

WVERTICAL VELOCITY PROFILE (UNIT = mmds)

. | .
-55

/ 6
2
1
0
X, mm

POROSITY PROFILE

0.165

0.155

0.135

Rotation 1)

0
0.13
2
-65

o : s
|’O ® - 1
- 0
¥, mm

1. ID tracking approach performed on tomographic images

2. Obtain porosity profile
3. Compute permeability

Ando, Hall, Viggiani, Desrues, Besuelle, Acta Sun, Andrade, Rudnicki, IINME, 2011
Geotechnica, 2012
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Some problems with this approach....

1. Not repeatable for different stress path (It is impossible to
prepare two identical granular assemblies in lab)

2. Technically, volumetric digital image correlation during
mechanical test is difficult and very rare (Hall et al 2011).

3. Permeability changes due to changes of pore geometry
(shape) is lost if porosity dependent empirical relation (i.e.,
Kozeny-Carman relation) is used to analyze pore-scale
iImages.

9/6/13 26



Analyzing Microstructure Evolution of Shear
Banding in Simple Shear Test

Laboratories

1. Run Discrete Element
Simulation.

DEM Simulation

2. Extract 3D assembles inside
and outside deformation

bands Stress/strain Evolutions of
Homogenization Microstructure + Multi-scale Pore
3. Analyze rotations, translations Pore Geometry Geometrical
and damages of grains [ Analysis

4.  Obtain macroscopic
constitutive responses Homogenized

\

Multi-scale
Permeability
Prediction

5.  Analyze pore geometry and Constitutive
. . . Responses
estimate permeability with the
multi-scale framework Kozeny-Carman
discussed before. Equation

Macroscopic

Permeability
Prediction

Comparison

9/6/13
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Discrete Element Simulation of Simple Shear Test

Balance of linear and angular momentum

i+ C" i+ P(u) = F oy

force balance

118 mm

I * (b — Me_xl'
moment balance

Homogenized Cauchy stress and infinitesimal strain

1 & 1
%ii =y Y O &= > (FiFij = 1ij) ’
o=1 L

Hertz’s contact model

2G,V/R¢
d fn — kn d 6 : kn — % 61/ 2 Sphere A Conju}ct plane
Vv normal stiffness
dff =kds; k= 2VIGVRE s
s 2 —V \
e _ 2R1R, tangential stiffness Sphere B
R +R;
effective radius




Rotation Magnitude of Grains Obtained From The
Discrete Element Simulation of Simple Shear Test

log10(| |Omegall)
0.37358
-0.040831

' -0.45525

--0.86966

-1.2841
-1.6985
-2.1129
-2.5273
-2.9417
-3.3562

log10(] [Omegal|)
0.67706
0.29054
-0.095975

--0.48249

-0.86901
-1.2555
-1.642
-2.0286
-2.4151
-2.8016

log10(| [Omegal|)

0.8761
0.41014
-0.055828

--0.52179
-0.98776
-1.4537
-1.9197
-2.3856
-2.8516
-3.3176

60

log10(| |Omegall)

1.0315
0.55924
0.086982

--0.38528
-0.85754
-1.3298
-1.8021
-2.2743
-2.7466
-3.2188

log10( |Omegall)

1.0315
0.55924
0.086982

--0.38528
-0.85754
-1.3298
-1.8021
-2.2743
-2.7466
-3.2188

log10(| [Omegal|)

1.2619
0.81921
0.37655

--0.06612
-0.50879
-0.95145
-1.3941
-1.8368
-2.2794
-2.7221
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Granular and Macroscopic Responses ) i,

x 10

3 0.355
g 25 ]
5 0.35/ i i
2 - | . ncreases during.
.| Asgrain rotates, \ = uring
e number of grain g %% shear, but this |
i a i
T contact drops. increase slovy down
T o5 034r after formation of
w > ]
shear band.
0 1 1 1 L L 0335 I I I I I
0 0.02 0.04 0.06 0.0 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12
SHE STRAIN sxy SHEAR STRAIN exy
Void ratio, e 0/{é12) .
120 05 06 07 0 25 5 75 09 1 1112 120
5.6 0.35 i T T
54 03l g\
52 % : 100 \ \\ 1 ¥ 100
- E 025 i _—H < E
a S e 80 80 ¢
% 4.8 (6] £ 2 E
z z 02 3 é 3
2 46 5 £ 60 60 £
< a 5 =
é 44 L(S 0.15 g ( §
P4 -} -
§ 42 % o1 40 % 40
. 20 ] ] 120
3.8} 009 § B <)
36 ; ; ; ; : 0 ; ; ; ; : ]
0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0 0
SHEAR STRAIN ¢ SHEAR STRAIN ¢ 035 04 0 5 10 15 09 1 1112
4 s Porosity, n é12/(é12) 5(02z +022)/ Po
(@) () (a) (b) ()
Number of grain contacts decreases Locally, porosity increase is
as shear band develops. concentrated inside shear band.

see W.C. Sun, M.R. Kuhn, J.W. Rudnicki, a multiscale DEM-LBM analysis on dilatant shear band, Acta geotechnica, 2013 30
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Question:

How does this granular motion affects pore
geometry and hydraulic properties of

deformation bands?

31
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Obtain Pore Volume Binary Images from DEM Assemblies @{“:é:?rz?énes

Algorithm 1 Seed-fill (node, void-flag, solid-flag)
if the current node is not a void then
return
else
search the spherical particle closest to the current node
Compute Euclidean distance between current node and the centroid of the closest spherical particle
if Euclidean distance # radius of the closest spherical particle then
Perform Flood-fill (the west neighbor of the current node, void-flag, solid-flag)
Perform Flood-fill (the east neighbor of the current node, void-flag, solid-flag)
Perform Flood-fill (the north neighbor of the current node, void-flag, solid-flag)
Perform Flood-fill (the south neighbor of the current node, void-flag, solid-flag)
Perform Flood-fill (the upper neighbor of the current node, void-flag, solid-flag)

Perform Flood-fill (the lower neighbor of the current node, void-flag, solid-flag)
end if
end if

Binary images generated from DEM assemblies

32
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Multi-scale Lattice Boltzmann/Finite Element Simulations M =,

Ky? Ky*
Lattice Boltzmann Finite Element
Simulation Simulation
1
fix+e,t+At) - fix,t) = - (fix,0) — f(x, 1)), V¥ p(x)=0
3e-v  9(e-v)? 3(v)?
4= wp(1 — > 1
it =w '0< * c? + 2ct 2¢2 v(x)= ——vk(x)-pr(x)
!

1 o o
v:_Zfiel" p:czp, p:Zfl
Pi=1 i=1

See W.C Sun, J.E. Andrade, J.W. Rudnicki, A multiscale method for characterization of porous microstructures and their impact on macroscopic
effective permeability, International Journal of Numerical Methods in Engineering, Vol. 88, No.12, 1260-1279, 2011.




Geometrical Changes of Pore Space Induced (i) &=
By Dilation Inside Shear Band
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Locating Medial Axis of Flow Path via Level Set ) .

200

y ';\r P ‘JL&*-;.!’
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Convert binary
image into level
set via semi-
implicit scheme

Extract Local
minimum of level
set function

See W.C Sun, J.E. Andrade, J.W. Rudnicki, A multiscale method for characterization of porous microstructures and their impact on macroscopic
effective permeability, International Journal of Numerical Methods in Engineering, Vol. 88, No.12, 1260-1279, 2011.

9/6/13 35



Pore Network and Weighed Graph ~ @&
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1. Use shortest path algorithm to determine tortuosity.
2. Use region growing method to distinguish connected and isolated pore space.

See W.C Sun, J.E. Andrade, J.W. Rudnicki, A multiscale method for characterization of porous microstructures and their impact on macroscopic
effective permeability, International Journal of Numerical Methods in Engineering, Vol. 88, No.12, 1260-1279, 2011.




Shortest Flow Path Inside and Outside =,
Compaction Bands (Aztec Sandstone)

Laboratories

Compaction band fin

t=2.79 t=2.15 1= 2.56
K= 3.4e-13 m? K= 5.3e-13 m2 K= 4.4e-13 m2

t=1.77 =176 = 1.81
9/6/13 K= 1.3e-12 m? K=1.2e-12 m2 K= 1.3e-12 m?




Occluded and Connected Pore Space in @i
Shear Enhanced Compaction Bands

2.25mm
Compaction band fin RESEE
= OCCLUDED
SCB1 POROSITY
. m CONNECTED
3 SCB2 oSITY
u
w
3 SCB3
3

B OUTSIDEL

,OUTSIDE2

OUTSIDE3

wuwg/s wwg/:

0 0.05 0.1 0.15 0.2

See W.C. Sun, J.W. Rudnicki, J.E. Andrade and P. Eichhubl, Connecting microstructural attributes and permeability from 3-D tomographic
images of in situ compaction bands using multi-scale computation, Geophysical Research Letter, doi : 10.1029/2011GL047683, 2011.
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Conclusion

1. Multiscale geometrical analysis and flow simulation indicates
that increased tortuosity, isolated pore space and reduction
in porosity leads to the permeability reduction in compaction
band in Aztec sandstone specimen.

2. Discrete element simulations suggest that increased
porosity, more interconnected pore space (as indicated by
the increased Euler number), and less tortuous flow paths
(as indicated by the decrease in surface area/volume) leads
to the permeability increase inside dilatant shear band




Concurrent Domain Coupling Method

TN

Arlequin domain coupling!®!

Grain Scale Discrete Element \
Simulation!”)

Field-scale Boundary Value Problem!*256l

v
0O
>
—
m

Inm Imm lcm Im
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Overview of Domain overlapped method ) e

Laboratories

= Background

L o

= Concurrently using different *5
. . hEH
numerical methods/models designed i
for different scales Wl

= Very flexible : not limited to the type e
of material models (e.g. can coupled ;f S
multiple model with different set of
internal variables, multiple meshes)

Figure from Hachmi Ben Dhia

continuum region (FE) e & . -
inelastic micromorphic constitutive

= New Contribution st e e G
1. Extension to large deformation S
problems (completed) and B O | . gas (ignored)
multiphysics problems (work-in- @ @ .
progress). . | | - %@QO

particle

2. Introduce coupling between local and Fevion (DE]

nonlocal constitutive laws erpartcie J
constitutive o _
. ! " particl
3. Introduce inf-sup tests to analyze s e
. . COUPLING between BRIDGING between
stability of the energy blending particle and particle and
continuum regions continuum scales

domain overlapped method _ _ _
Figure from Richard A. Regueiro
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Challenge

0.0015

0.001 -

Surface Coupling

displacenent
H

=
T

0.0008 s

0.0015
0,001

0.0006

Domain Coupling

displacernent

=

0.0005 0] D) o) D)

From Prof. Belytschko’s webpage




Energy Partition — Method to Describe One Mechanical (i) i
Response in One domain with Multiple Energy Functionals

Partitioned Incremental Energy Functional

¢[@, @, 8] =™, @] — 2™ [@. ] + AP, @, 8] Coarse
configuration

Partitioned internal Partitioned Compatibility 0,8 = 058U 055 mapping

energy external energy  constraint energy

&l

Partition of Unity for energy functional

B (1 XeB\&B
oz(X)—ﬂ(X)—{ 0 XEg\BC Fine

configuration| ~
o o mapping Y
o5, 3] :/ T (F,Z)+ (1 — )W (F,Z) dV B
BN xR
o5, 3| = | BB+ (1—B)B-pdV @ ' P(B)
5 \_/
+ 5T-¢ds+/ (1- BT -5 dS P (B)
orB orB Partitioned Domains with

overlapping region(s)

Alp, @, @] = / ¢ (@ — @)+ rkl*Grad ¢ : (CGradp — Grad @) dV
Be A 4
| I

Minimizing displacement Minimizing displacement
difference gradient difference




Linearization System of Equations ) ..

* Incremental governing equation in matrix form

1. Tangent matrix not K o A, F,
being positive definite 0 AG o=
2. may have severe L -ba b | = | Fa
oscillation problems Ho™ | A, | - 0, |
» Tangent for implicit integration
Weighted coarse scale — —
tangential stiffness matrix K. = / Grad N, : aC : Grad Ny, dV
B
Weighted fine scale - . ] ~ .
tangential stiffness matrix K.p = /BGI‘ad No: (1= a)C: Grad Ng dV
Coarse Coupling term C, :=C,, = N,N, - +kl*Grad N, : Grad N, dV
BC
Fine Coupling term Cop = / ANy + k1% Grad A, : Grad N, dV
c * T
L, coupling H' coupling
2
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Question:

Can we cut cost by
only regularizing T A mesh . mesh

independent ;| dependent

constitutive law in
fine domain? \

%, post-bifurcation

\

\  (softening)

Yes, if the fine and \
coarse energy
functionals are l e
blended “correctly”. LOCAL MODEL, NO LENGTH SCALE

stress, o

Figure from Bazant and Cedolin, 1991
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Singular Bar Example ) fee,
Singular =™ D=0
tip

« Path dependent damage model

W(C,¢) = (1 = W,(C)

* One dimensional simplification

dp Loy, do o do.,
Wooe) = 5E((G2) 2 + (55)* —2)

¢ =¢(q) = (o[l —exp(—q/q)] q(t) = max Wo(s)

* Nonlocal internal variable (damage) as localization limiter

1= voltD) /Dq v = VO&D) /L 1A(X) dX

Prescribped
displacement

X




Responses from Nonlocal/local Continuum Coupled ) =,
Model

Laboratories
«  With DOC method, only a small nonlocal domain is required to regularize the PDE. A large portion of
the domain is modeled by simpler, cheaper constitutive law with coarser mesh to cut down
computational cost.

Mesh dependent
12"104 10° /

: : . : :
(- ——Mesh Ratio = 1 : : —e—Fine Mesh, Mesh Ratio = 1
——Mesh Ratio = 2 : : —e—Fine Mesh, Mesh Ratio = 2
O 10 ——Mesh Ratio =3 || —o—Fine Mesh, Mesh Ratio = 3
- — Mesh Ratio = 4 g Fine Mesh, Mesh Ratio = 4
- 8- ‘ : ‘ ——Mesh Ratio =5 || —e—Fine Mesh, Mesh Ratio =5 ||
3 CU - - -Mesh Ratio =6 - - -Fine Mesh, Mesh Ratio = 6
O N = oL - --Mesh Ratio =7 || o - -Fine Mesh, Mesh Ratio = 7
. 1 - - -Mesh Ratio = 8 IS - & -Fine Mesh, Mesh Ratio = 8
.C - 3 [ Mesh Ratio = 9 n © Fine Mesh, Mesh Ratio = 9
— m 3 4 " B Mesh Ratio = 10| Fine Mesh, Mesh Ratio = 10
— — n
; ok T -
>
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.05 0.1 X 0.15 0.2 0.25
GJ Displacement, m Integration Point Location, m
| -
Converged solution
4
C 12X10 ‘ ‘ 10° /}, .
O ——Mesh Ratio = 1 —e—Fine Mesh, Mesh Ratio = 1
-—— —— Mesh Ratio = 2 . —e—Fine Mesh, Mesh Ratio = 2
e 10r ——Mesh Ratio =3 || —e—Fine Mesh, Mesh Ratio = 3
CU Mesh Ratio = 4 Fine Mesh, Mesh Ratio = 4
8l » - : ——Mesh Ratio =5 |{ 10%E B - e -Fine Mesh, Mesh Ratio =5 H
e N - = - - -Mesh Ratio = 6 - ~ - & -Fine Mesh, Mesh Ratio = 6
— . FIL - - -Mesh Ratio = 7 L —e—Fine Mesh, Mesh Ratio = 7
—_ | - g 6 ol - --Mesh Ratio =8 || flj - e -Fine Mesh, Mesh Ratio = 8
m ] ol Mesh Ratio = 9 n o Fine Mesh, Mesh Ratio = 9
— 4 O Mesh Ratio = 10 Fine Mesh, Mesh Ratio = 10}4
) N ‘
(@] il 1
m 0 i i i i i . ~~:~:‘F""¢ 0
[l 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1 0 0.05 0.1, . 0.15 0.2 0.25
Displacement, m Integration Point Location, m

Load-displacement curve Stretch vs. reference location




Question:

Under what circumstance will the
coupling method fails?
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1D Patch Test (constant weighting function)

Strain Displacement

Lagrange Multiplier
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Strain Displacement

Lagrange Multiplier
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1D Patch Test (linear weighting function)
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Question:

What are the major factor(s) that
leads to stable coupling?

How can we analyze the numerical
stability?
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Inf-sup Condition

Static condensation may reduce the three-field equations to two
subsystems, each with two solution fields

— _ . e — 1= A — e N —
O Kog —Cap| | APs | = | Fy _ _ _
Cha —Cpsq 0Oy Ag, 0, Ko Cabl [ A, ] _ F, )
6ba CaaKaBCBb A¢b CaaKagFﬁ

Inf-sup Condition can be used to test whether the spaces for the
displacement increment and Lagrange multiplier are chosen correctly.

¥3 I?Gradmn : Grad € dV
Jgen - &+ k1> Gradn : Grad £ >8>0

inf sup —
€V g &[] Iml]v

n-€+kl2Gradn : Grad € dV
infsupflgn5 — " § >~y >0
<V Eer 1€l 51 Iml[v
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Discrete Inf-sup Condition in Euclidean Space

= We can construct a one-to-one mapping from the function
space to the Euclidean spaces such that the inf-sup
condition (and the lack of) can be checked algebraically

0,C.,T
inf sup b 7 >065>0

OcRNV 540 (gm@mn9n> i (ETKTSES)

0,C 0
inf sup vOb 7 >v>0

~ _ 1/2 —
0cRNv v#0 (eQOnen) ('BTKrs'i}s)

\

(éamffr_r;zanb - mab>9b =0

~ o~ ~

(CoaK 05C s — NQy)0; = 0

Now, inf-sup condition is guaranteed if the smallest eigenvalue is larger than 0!
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Inf-sup Tests on Foulk’s Singular Bar (2008)

H1 Cou(gp!i)ng L2 Co%Iing
Inf-sup Test 1 , i
(Can 1ot~ 3Q,1)0 = 0 |
which is corresponding to ,
or cuneoen) |38 leuniom]
Cho CuKios 'Cly) [ Ady | | CooKls ' F ,

Inf-sup value = [10-76, 10-%]
Inf-sup Test 2

(ChaKos ' Cly = NQy)0, =0
which is corresponding to

Koy Oy (2| _[ Fo

0

Log, o(h°h')

Log,,(1N,)

Inf-sup value = [107, 1] Inf-sup value = [10'8, 10-17]

Notice that the inf-sup values of both tests are very small for L2 coupling!
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Conclusions

1. If coarse and fine meshes are conformal, then no search
algorithm is needed and hence the implementation
becomes much simpler.

2. Numerical study demonstrates that H1 coupling eliminates
spurious pattern exhibiting in L2 coupling. This finding is
consistent with the inf-sup condition.

3. Localization limiter can be used in a small domain via DOC
coupling to enhance computational efficiency.

4. Numerical examples seem to suggest that a more even
partition (e.g. half and half) or higher order weighted
partition in energy leads to more stable and compatible
solutions in overlapped domain.



On-going Challenges ) .

1. How thermal and pore-fluid diffusion affects
mechanical stability, strain localization and
fracture process at various temporal scales (e.g.
undrained vs. drained, isothermal vs. adiabatic)?

2. How to homogenize or properly take account of
the couplings of various physical processes at
different spatial scales (e.g. anisotropy of
diffusivity induced by deformation, yield surface
size changes by heat) ?

Figure from Columbia University

3. How to model fully coupled thermo-hydro-
mechanical-chemical (THMC) effect
(biodegradation, Calcite formation, dissolving
solid, fate of fracking water)?

Will fluid injection mobilize existing fault systems?

5. Validations of numerical modeling? Comparisons
with other THM code, centrifuge models, field
studies (In Salah Project)?




Future Works / Wish List .

HORIZONTAL WELL -0
AND HYDRAULIC FRACTURING o
—_—
[+ ' -
(c
 ——— R —
L 1000

Usage of polyhedral finite element to eliminate

mesh bias for fracture process (Bishop, IINME,
| oun 2013)

*‘5{ }E
it

i

3
is
H
i

| S - | | = ——
(a) (b)
» Hydraulic Fracture Enabling asynchronous variational integrator
* injection induced seismic event for domain coupling methods

* Numerical modeling of rainfall instability (Lew, Marsden, Ortiz and West, 2003)




Thank you for your patience and time!
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Hydraulic property changes due to formation of
deformation bands
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Compaction Band -flow
barrier to fluid flow

Flow barriers trap fluid

and improve efficiency

of the storage

Uniform Compaction

Permeability

Dilatant Shear Band - flow
conduits to fluid flow

Flow conduits may ~J [T
lead to leakage, which —F ———=
could be fatal. e '




Relation between Level Set Function and )&
Medial Axis

= Local minimum of the signed distance function ¢ are
located at medial axis.

= Use level set scheme to obtain signed distance function

9/6/13 63
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Skeletonization with Level Set ) .

=  Action functional (Li et al 2005)

e — P AL A Diffusion term to convert level set
(9) = 1uP(0) + g(é) T g(é) into signed distance function
= Governing equation
e Fix level set value at the boundary

do . U VA - o

— = u[ATp - V" Ad . )

5 = HIATS = V™ (15 g + N8V (o ) + v95(9)
=  Semi-Implicit Finite Difference Scheme

¢-n+1 _ d)n vc(’b chb

— #Acqbn-i-l _ /.ch .

+ Ao(0™)VE - (g

) +vgd(8")

IVea||

IVed||

tn+1 —1In




Medial Axis of Flow Paths ) e

Sirjani and Cross, 1991

= Medial axis is the spine of a volume filling object

= Media axis is a union of curves that represent the
topology and geometry of the volume

9/6/13 65




Locating Medial Axis of Flow Path via Level Set &

200

180 bY b e

e .
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A/

Convert binary
image into level
set via semi-
implicit scheme

Extract Local
minimum of level

set function
9/6/13
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Pore Network and Weighed Graph ™=

)

v)
» Weight [(19)
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Shortest Path Searching Algorithm

\ —
|(19) |
[19]

“ﬁ/\ \fﬁ)\ [19+14=33]
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Determining Connectivity with ) e

Recursive Functions

9/6/13

Laboratories

PROGRAM MAIN

1. Activate all vertices along the flow path as active
nodes and mark them as visited vertices

2. While there exists at least one active node

3. call the recursive function MARKNEIGHBOR

EXIT

FUNCTION MARKNEIGHBOR

1. IF at least one neighbors of the active nodes has
not yet been visited
1. Activate the unvisited neighbor vertices
2. Mark them as visited vertices.
3. Deactivate the old active nodes with unvisited
neighbor(s).
4, Call the recursive function MARKNEIGHBOR
2. ELSE
1. Deactivate the active nodes with no unvisited
neighbor.

6

9



Partitions of Total and Connected Pores Space

9/6/13

B il |

LBl

I

i\

(a) (b) (€
Case 1 2 3
Number of Unit Cell(s) 1 1 1
Occluded Pore Identified? No Yes No
Local Permeability, u? (top) N/A | 0.011 | 0.011

Local Permeability, u? (2nd top) N/A | 0.015 | 0.0029
Local Permeability, u? (2nd bottom) | N/A | 0.015 | 0.45
Local Permeability, u? (bottom) N/A | 0.014 | 0.014

Global Permeability, u? 0.015 | 0.013 | 0.0078

Relative Error

0 12% | 48 %
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Size of Representative Elementary Volume

= Pore-to unit cell up-scaling criterion
(Energy Dissipation Rate)

1 1.00+00

micro __ v, . . — T T T %
D =2u"€ : €; €= 2(V v+ (VTv)') oat
1 ) 1.00€-02
micro c __ x, .  l.meESo 7T
ﬁ/CD dQ*=V*p-k V*¥p oo

B
2

= Unit Cell- to specimen up-scaling
criterion (Hill-Mandel Condition)

NORMALIZED DISSIPATION
-
&

1.006-06
macro 1 T 1 €T 1
D =— | Vip-vdQ=— [ VipdQ.-— [ vdQ 100607
Q Jq Q Jq Q Jq
1.00€-08
: 2
pmacro _ l / L \Vi p- fmeso |y P 40 — ggaTCO (p2 _ pl) 1.00-09 wm=n{NSIDE CB
Q Jo p* p o (22— 21)? 100€-10 '
0 01 02 03 04 05 06 07 08
EDGE LENGTH, mm
Specimen Type Compaction Band | Outside Matrix
Volume Averaged Dissipation Rate, J/sec per 1m® 71.1 308.8
Dissipation Rate obtained from B.C. , J/sec per 1m?® 69.8 383.3
Difference, J/sec 1.3 15.6
Homogenization Error ehom 1.9 % 4.1%
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Obtain Pore Volume Binary Images from DEM Assemblies @{“:é:?rz?énes

Algorithm 1 Seed-fill (node, void-flag, solid-flag)
if the current node is not a void then
return
else
search the spherical particle closest to the current node
Compute Euclidean distance between current node and the centroid of the closest spherical particle
if Euclidean distance # radius of the closest spherical particle then
Perform Flood-fill (the west neighbor of the current node, void-flag, solid-flag)
Perform Flood-fill (the east neighbor of the current node, void-flag, solid-flag)
Perform Flood-fill (the north neighbor of the current node, void-flag, solid-flag)
Perform Flood-fill (the south neighbor of the current node, void-flag, solid-flag)
Perform Flood-fill (the upper neighbor of the current node, void-flag, solid-flag)

Perform Flood-fill (the lower neighbor of the current node, void-flag, solid-flag)
end if
end if

Binary images generated from DEM assemblies
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Permeability of Aztec Sandstone

Compaction Band Specimen

Velocity Porosity

Porosity

Effective Permeability
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How to find the shortest path between t@ﬁa
lab to Livermore airport?

Chabot-Las Positas
Community College

Positas = Suyiin

Course gQ
2
—_N
Lawrence
* Livermore National

Laboratory




Constitutive relations for solid ) i
deformation, flow and heat transport

Darcy’s Law for deforming porous media | | Fourier’s law for deforming porous media
1

—W=K-(-V*p +p,F' .G

Pf ( P PI ) QQZ—KQ-VXH

Q = (1/ps))W

) - Ky=JF ' kg -F 7T
K=JF ' k. FT

History dependent behavior of solid skeleton
P(F,z,p',0)=P'(F,z0)— JBp' F~ T
P/ — 8¢(F7279)

OF
Y(F,z,0)=U(J) +W(b®) + K(z) + M(J,0)
Hyper-elastic plastic ~ Thermo-mechanical

dissipation ~ coupling energy
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Domain Overlapped Coupling Weak Form

Coarse . _ —
deformation  Ra[®h, P4l :/ aP : Grad N, dV — BN, dV
mapping B

4+ ( N,N, - +kl?> Grad N, : Grad N, dV) o}
Bc

— / BT - N, dS
orB
Fine

deformation  Rul®h, &u] = /(1 —a)P': Grad A\, dV — (1 — B)B'\, dV
mapping B
— ( / ANy + K12 Grad )\, : Grad N, dV) o,

—/ (1— B)T" - A, dS
orB

Lagrangian R[@,, ¢, :(

N, N, I2Grad N, : AN, dV | @
Multiplier b+l Grad N - Grad Ay V) i

BC

- ( N\ + kl* Grad N, : Grad \g dV) P
BC
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Optimal Stabilization Parameter Estimation

1D poromechanics governing equation
?p  Op k. MH YL M(K +4G/3)

‘o2 ~ o’ uH+uBM T T K +4G/3+ B2M

Pore Pressure Pa
9e+5

~8e+5

Three node stencil (standard Galerkin method)

- ﬁA—l + ZﬁA - ﬁA—l Eée+5
2 “EAe+5
A~ _ 4A A — 0 ;2e+5

+ GﬁcAt(pA 1+ 4pa +Day1) §

2e+5

Three node stencil (Stabilized Galerkin method) |
—PA-1 1+2Dpa — DA Stabilized F-bar Mixed FEM

2 A
+15ear [(2—7)Pa )
+(8+27)pa + (2 = 7)Pa+1] =0

Growth/decay rate

Pore Pressure Pa

cosh h . (1 + hz/ﬁcAt) (4 + ’)’)/6 9e+5

(VOcAt)h (1= h?/0cAt)(2 —v)/12 EEZZ

To have real growth/decay rate, we need ;‘ez
JeAt deAt (11 deAt L b

7>2-125- >0 1y = (263 )(5 + 5 tanh(2 —12—5 )) N 208

f

Safety factor Turn off stabilization Standard Galerkin Methaa"\»\._
without introducing switch
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Footing placed on an elastoplastic porous
medium

Without Stabilization

Pore Pressure Pa
1.5e+6

[1e+6

Pore Pressure Pa
20000

In low diffusivity case,
the stabilization
scheme is able to
eliminate spurious
oscillation.

With Stabilization

In h|gh d|foS|V|ty Case, . Pore Pressure Pa
- . 1.5e+6
the stabilization ;
le+é
scheme does not
8e+5
4e+5

Pore Pressure Pa
20000

introduce extra
diffusivity that cause
error. 6000

Low diffusivity case High diffusivity case

From Sun, Ostien, Salinger, International Journal for Numerical and Analytical Methods in Geomechanics, 2013



Application of Level Set Scheme and Graph Theory for i) i
geometrical analysis of tomographic images

Applying Tracking local Constructing
level set maxima of weighed
Scheme . level set graph

See W.C Sun, J.E. Andrade, J.W. Rudnicki, A multiscale method for characterization of porous microstructures and their impact on macroscopic
effective permeability, International Journal of Numerical Methods in Engineering, Vol. 88, No.12, 1260-1279, 2011.




Internal Variable Recovery via Lie Algebra ()&=,

1. Application of Lie Algebra to interpolate
internal variables within admissible space

Balance of Linear Momentum

e
2.00e-15

D‘I’[Lp,i,i/](n)z/P:Gradn dV—/poB-ndV— T-ndS=0
B B orB

EW 00e-15

Variational Continuum Projection Operator
DBl 2.5(¢) = [ (@-v)-CaV =0 .

D3lp.z3l(€) = [ (2-2) 64V =0

o _ _ (a)Error of rotation is negligible if (b)Error of rotation without logarithmic
2.Application of Lie Algebra to interpolate logarithmic mapping has been applied mapping is generated when remeshing

internal variables within admissible space

ogarithmic Mapping o
Internal Variables

Polynomial Interpolation

Transformed Internal

: (a) Plastic split of deformation gradient (b) Spurious plastic dilation/contraction
Variables remains isochoric when logarithmic generated due to improper linear
mapping is applied for J2 plasticity mapping. 80

.. model.



Resolution Issues for Conducting Lattice
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Boltzmann Simulation on Binary Images

Low resolution
Faster and
cheaper
computation

CONNECTED POROSITY

o
o

o
i
T

©
w

o
N

0.1+

0

LATTICE SPACE
''''' EXACT GEOMETRY

VOXEL LENGTH, R

High resolution
Higher
accuracy
Higher cost for
computation
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Size of Representative Elementary Volume .

= Pore-to unit cell up-scaling criterion
(Energy Dissipation Rate)

1.00£+00
: ‘ 1
DTnlCTO — QHLG . 6; € = §(v:z: v + (v:z: ,v)T) 1.006-01
1.00€-02
1 .
ﬁ / DTI'HCTOdQC — va . k'meso . V:B p 1.006-03

8
2

= Unit Cell- to specimen up-scaling
criterion (Hill-Mandel Condition)

NORMALIZED DISSIPATION
8
&

1.00€-06
1 1 1 100607
Dmeero = —/ VZp-vdQ = —/ prd_Q-—/ v dQ
2 Ja 2 Ja 2 Ja 1.006-08
. 2 |
pmacro _ l L VEp . kM0 .V dQ = 00 (pg — pr)* M
Q Jo p? p? (22— 21)? 1o
o 01 02 03 04 05 06§ 07 08
EDGE LENGTH, mm
Specimen Type Compaction Band | Outside Matrix
Volume Averaged Dissipation Rate, J/sec per 1m® 71.1 308.8
Dissipation Rate obtained from B.C. , J/sec per 1m?® 69.8 383.3
Difference, J /sec 1.3 15.6
Homogenization Error ehom 1.9 % 4.1%




Implementation of Total Lagrangian Poro-plasticity Problem

25:24
24:16 /24:9 24:10 24:11 24:12
oissons Ratio

ps:7 w @ Yield Strength Hardening Modulus

21:8\21:7

3 Blue = mechanical
Red = pore-fluid diffusion

Purple = coupled terms
Green = General FEM

» Gather coordinates, displacement and pore-pressure fields
* Interpolate fields and gradients to integration points

» Chain together Evaluators to compute momentum and mass Residuals of the solid and pore-fluid constituents

* Apply LBB stabilizer
» Scatter back to the global system of equations

Sandia
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p6:3




Sandia
'I1 National
Laboratories

Hydrogen Transport




Stabilized hydrogen diffusion-deformation K-field problem (g v
for low diffusive materials shortrs

Balance of Linear Momentum
VX.P(F,z,Cr)=0

Concentration Sensitive Yield Function

fr.7.0r) = ldevlr]l — 2lov (Cr) + Ko <0 b T
- ] i TR
0.294563 107.1747

Hydrogen Transport Theorem

Vi
D* X.DpvX x.
Cp=V*-Dp V> Cp+ V5 o

L2 Projection of Hydrostatic Stress

/ Na(ah — NbO'b) dV =0
B

Projected Hydrostatic Stress
le+9 2e+9 3e+9
[ | o N Il ‘ |

1033315 3.366e+9




Implicit Time Integration of Fully Coupled Scheme

Backward Euler Scheme

0 0 (! 4 Kuu BucL u Fewt
McL'u, Ktran éL 0 Kst cr Fea:t

crcr, CLCcL
Kyu BucL Un+1 _ stt

Deformation

induced flow
The e cannot be
is| Yo
com ot have
T ient
The image cannot be displayed. Your computer may not have enoug|

Solid deformation J . advection-

Sandia
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Laboratories

T diffusion hydrogen
o transport
Hydrogen transport /
induced deformation €—

constraint

Physical interpretation of the matrix form




Challenges on Implementation of Hydrogen ()
Transport Problem

1. Numerical instability may occur if (1) time step is too small and/or (2)
diffusivity is too small (i.e. stainless steel) (Harari, 2004) and (3) boundary
layer due to the advection term is thinner than the side length of the
finite element (Belytschko, Liu, Moran, 2012).

2. Hydrogen transport problem is highly nonlinear, thus require a
consistent linearization to implicitly solve for solutions (i.e., NUMEROUS
manual, mechanical derivations EACH time the problem is amended).

3. Volmetric Locking, which may occur under perfectly plastic response /
isochoric deformation..etc.



Example

Say we want to find the
linearized D* (i.e., the first

order Dr = dey [ﬁ]
term in the Taylor expansion). e
D* depends on the trapped Cp = —Nz
solvent, temperature, lattice 1+ b
concentration—but trapped 0 = L
solvent also depends on I e
equivalent plastic strain and .

hence, displacement, yield Cr = 0Nt
stress...etc. Dy = Dge Q/ET
How do we derive consistent Np = Na/Vir
linearization with respect to all K = eWs/ET

the dependent variables ?

Nt
Notice that we need to restart o =00+ H €p'
the entire process if we make

any changes....

Sandia
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D* — effective diffusion constant

Do = 2.0 x 107 m?2 /s — pre-exponential factor

Q = 6900J/mol — diffusion activation enthalpy

R =8.314 J/(molK) — ideal gas constant

T = 300 K — room temperature

Dy, =1.27 x 1078 m? /s (300K) — diffusion coefficient

N4 = 6.0232 x 1023 atoms/mol — Avogadro’s number
Vi = 7.166 x 1079 m3 /mol — molar volume of Fe

N = 1.40 x 10° solvent lattice mol /m>

Wpg =60 x 10% J/mol — trap binding energy

K7 = 2.801 x 10'° — equilibrium constant

Vi = 2.0 x 1075 m?/mol (~ 300K) — partial molar volume
AH, = 28.6 x 10® J/mol — enthalpy of solution
pH, = 1 atm — hydrogen pressure

Cro = 2.0 x 1026e=AH/RT /5 atoms /m®

_ 10(A_Be_cep)CL’0 = 3.47 x 1073 mol /m? — initial concentration

Np = 1023:3-2:33¢""%) /N trapped solvent mol /m®
Nt = 1.549 x 103 — trapped solvent mol /m>

01,0 = 0.9986

Cro = 1.547 x 1073 mol/m3 — 1nitial concentration
Ciotat.o = Cr.o + Cro = 5.017 X 1073 mol/m3

ONT. — 1((A=Be™“P)11(10)BCe~C% /N 4 — trapped solvent mol /m3

Oep



Implementation of Hydrogen Diffusion-Mechanics Problem
with automatic differentiation

p5:24

24:23

24:22

» Gather coordinates, displacement and lattice
concentration fields

* Interpolate fields and gradients to integration points

« Chain together Evaluators to compute Momentum

Blue = Hydrogen Transport

Sandia
National
Laboratories

and Conservation of Hydrogen Residuals Red = Solid Mechanics (J2 Plasticity)

« Scatter back to the global system of equations Purple = coupled terms
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Combined F-bar formulation

Isochoric-volumetric split , R Hycrostatic Shess P
| ¢ 7 5587e+9
\ :A.e+9
F p— Fvol * FiSO 3 E2e+9
C_L mol/mA3 N E
: : L = R fo
Replacing volumetric split with E’m N
assumed term | N
— _ _ I§37.8
F:J1/3Fiso:J1/3J_1/3F . =376
o 37.48

Classical Combined F-bar approach
Concentration prediction affected by locking

F=aF —(1-a)F. "

_ Exact solution

Current Approach via Lie algebra

J=JJgrJe ; J9=1+XC-0C,)
1 —«
Vge

/ log J(X) dV+Oé log J(X)) ' Finite element solution

0 0.1 0.2 0.3 0.4 0.5 0.6

J(X) :exp(

Volumetric an';cking




Stabilization at small time limit

Hydrogen Transport Theorem

: Vi dNr
D*Cp, — VX D V* Cp + VX ——C DL V™ Sy + 0r p =0
RT dep
0 0 () )
transient Hydrogen diffusion Advection coupling Plastic strain nonlinear
term term term coupling
term

» Spurious oscillations may occur when

. D*is large, which means local rate of change dominates
. The mesh size h is large (relative to the advection and diffusion length scale)
. The time step is small (relative to the advection and diffusion time scale).

Sandia
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. Notice that Peclet number measures whether advection of diffusion is more important, but does not

tell much about the transient term!
« Examples of stabilization scheme

. Petrov-Galerkin/streamline upwind method (Hughes, 1978, Johnson, 1984)

. Space-time finite incremental calculus method (Onate and Manzan 2000)

. SUPG with adaptive stabilization parameters (Tezduyar 2003)

. Spurious oscillations at layers diminishing method (Volker and Schmeyer, 2008).
. Artificial diffusivity (Onate and Manzan, 2000).
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Stabilization for hydrogen convection-diffusion problem

» For transient problem, stability criteria must be satisfied for the Stable result
pair of time step and element size h used in simulations. y is the
parameter for backward Euler time integrator (Harari, 2004).

h?D*

P
67 DAL

351.13933
* Meanwhile, stability of the steady solution can be predicted by the
Peclet number. If Pe is less than 1 and D*/D, is reasonably close

to h"2/dt

Pe= RT| V© Sulh <1 Stabilized Implicit Gakerlin Formulation

e . . Spurious oscillated result
* add stabilization term to penalize the deficiency cL

560

EAOO

0

1 ) 1 .
Ry = / [ — — / Q) (Cl — / Chdg)] do
Q Va Ja Va Ja

Rstab = / T VX 77h VX Cg dS$)
Q

-128.1184

Standard Implicit Galerkin Formulation




Conclusion and Future Perspective
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=  We have implemented a fully implicit hydrogen transport model in the
Laboratory of Computational Mechanics package with the following
desirable features

Capacity to conduct fully coupled, fully implicit simulations with
stabilization scheme.

Automatic differentiation, which makes it fast and easy to make
amendment to existing model and eliminate chance of making error
in derivation

Stabilization scheme available to handle material with extremely low
diffusivity, thin boundary layer...etc.

A L2 projection scheme to obtain a C°-continuous stress gradient
term that enables the advection term to be correctly modeled
without introducing errors during the extrapolation process.
Localization element is currently developing for modeling boundary/
lattice diffusion and fracture.
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