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elastoplastic parameters were obtained from laboratory-
derived modulus degradation and damping ratio curves.
[7] Sediment deformations were calculated from the

mechanical properties of the alluvium at Gilroy 2. A series
of geophysical surveys were performed to measure shear
and compression wave velocities within the alluvium
[EPRI, 1993]. Shear wave velocities vary from about
200 m/s near the ground surface and reaches a value of
about 700 m/s at 170 m depth; compressional wave veloc-
ities are about 300 m/s to 2100 m/s at the corresponding
depths [see Figure 2]. Shear modulus reduction and damp-
ing ratio increase with shear strain. They were established

from very detailed laboratory testing of cored samples at
different depths within the alluvium, and are relevant for
modeling the inelastic deformation. Statistical variations of
material properties also have been well documented for the
alluvium [Andrade and Borja, 2006; Borja et al., 2000].
[8] For the mechanical model to provide meaningful

solutions, the calculated sediment deformation should not
be significantly influenced by the noise and baseline offsets
present in the input ground motion. Therefore we tested the
sensitivity of the mechanical model to noise and baseline
offset corrections by subjecting the base of the alluvium to
unprocessed and processed input ground motions from

Figure 3. Coseismic horizontal deformation of alluvium at Gilroy 2 calculated from the integrated
accelerograms at Gilroy 1 and Gilroy 2. Open circles denote start and end points of surface movement
relative to the bedrock, and the number next to the straight line denotes the inelastic sediment
deformation. (left) Raw accelerograms produced a sediment deformation of 49.7 cm. (right) PEER-
filtered accelerograms resulted in a sediment deformation of 0.05 cm.

Figure 2. Mechanical model for alluvium (‘‘stiff soil’’) at Gilroy 2. With a time shift, the ground motion
measured at the rock outcropping Gilroy 1 was applied at the bottom of the finite element model and the
calculated response at the top was compared to the measured sediment response at Gilroy 2. The
mechanical model utilized the elastic shear modulus inferred from S- and P-wave velocities and the shear
modulus reduction and damping ratio curves established from laboratory testing of cored samples. Input
motion at the bedrock consisted of unprocessed (raw) and two filtered ground motion data from Gilroy 1.
NS = North-South; EW = East-West; UD, Up-Down.
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•  Estimating co-seismic deformation of sediment during 
Loma Prieta earthuqake with Monte Carlos simulations  

•  Borja, Sun, Acta Geotechnica, 2007; Borja, Sun, Journal of 
Geophysical Research 2008 

•  Predicting liquefaction and shear localization with a 
critical state plasticity model  

•  Sun, Geomechanics and Geoengineering, 2013 

•  Variational internal variable recovery with Lie algebra for 
adaptive finite element method   

•  Mota, Sun, Ostien, Foulk, Long, Computational Mechanics 
2013  
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Figure 6.2: Interpolation error (6.5) for different interpolation schemes: (a) direct interpola-
tion of rotation and stretch; (b) Lie algebra interpolation of rotation and direct interpolation
of stretch; (c) Lie algebra interpolation of rotation and stretch; (d) Lie algebra without polar
decomposition.
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Figure 9. Numerical simulations of undrained triaxial compression tests on Toyoura sand with initial void ratio = 0.907: (a) simulated deviatoric stress versus
effective hydrostatic pressure and (b) deviatoric stress versus axial strain. The confining pressures of the three simulations are 100 kPa (blue), 1000 kPa (red) and
2000 kPa (green). Experimental data from Verdugo and Ishihara (1996) used to calibrate the material parameters are plotted in dots.
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Figure 11. Numerical simulations of undrained triaxial compression tests on Toyoura sand with initial void ratio = 0.735: (a) simulated deviatoric stress versus
effective hydrostatic pressure and (b) deviatoric stress versus axial strain. The confining pressures of the three simulations are 100 kPa (blue), 1000 kPa (red),
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•  Hydrogen embrittlement in stainless steel 
•  Foulk, Sun, Wagner, International Journal of Numerical 

Methods in Engineering, 2013 
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Fig.3.Spatial distribution of rotation in free-rotation grain assembly at vertical strain = 5, 10, 
15, 20%. Color indicates rotation (radian) of individual grains.  
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Multiplicative decomposition of the thermo-
hydro-mechanics problem 
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8.3 Type II zero-energy mode

8.4 Capturing diffuse instability in finite element simulation

8.5 Diffuse Bifurcation under Extreme Drainage Condition

8.5.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

8.6 Numerical Example: Surface Rumpling of Slope

Remark 1. Due to the finite precision of arithmetic operation in computer, the set of eigen-

values computed are never exactly zero. Thus, theoretical specking, computer simulation

involving material approaching diffuse bifurcation should still be able to converge to unique

solution. The finite precision of arithmetic operation also introduces similar impact on the

fluttering mode, as it ceases the possibility for exact pair of complex conjugate eigenvalues in

computer unless symbolic operation is carried out.
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of thermal effect is generally neglected, perhaps due to the lack of detailed thermal properties in field and
experimental settings. As a result, F θ can be characterized by the thermal expansion coefficient αsk(θ),
i.e.,

F θ = exp[
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θ̂
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ṗ

�
+

�
Kuu Bup

0 Kst
pp

� �
u
p

�
=

�
F ext
u

F ext
p

�
(4.8)

�
Kuu Bup

Bpu Kst
ppδt+Ktran

pp

� �
un+1

pn+1

�
=

�
F ext
u

F ext
p +Bpuun −Ktran

pp pn

�
(4.9)

Stabilization term

Rstab =

�

Ω
[τ(ηh − 1

VΩ

�

Ω
ηhdΩ)(ph − 1

VΩ

�

Ω
phdΩ)] dΩ (4.10)

5 Deformation Mapping

x = ϕ(Xs, t) (5.1)

Xs = ϕ−1(x, t) (5.2)

x = ϕf (Xf , t) (5.3)

y = ϕf (Y f , t) (5.4)

6 Hydrogen transport

The balance of linear momentum reads

∇X ·P (F , z, CT ) = 0 (6.1)

f(τ , z, CT ) = ||dev[τ ]||−
�

2

3
[σY (CT ) +Kα ≤ 0 (6.2)

The transport equation reads
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Fig. 1 Trajectories of the solid and fluid constituents ϕs = ϕ and ϕf. The motion ϕ conserves all the mass of the solid
constituent, while the fluid may enter or leave the body of the solid constituent. Figure reproduced from [58].

where ρα is mass of the α constituent divided by the current volume of the α constituent, while ρα is the
partial density of the α constituent, defined as the mass of the α constituent divided by the volume of
the mixture in the current configuration. φs is the volume fraction of the solid constituent in the current
configuration. φf is the porosity of the porous medium in the current configuration, which is referred as
Eulerian porosity in [18]. For fully saturated porous media, φs + φf = 1. Thus, the total current density
also reads,

ρ = (1− φf)ρs + φfρf (2.4)

where the densities of the solid and fluid constituents both depend on the pore pressure and the temper-
ature.

2.2 Balance of Linear Momentum

Under the non-isothermal condition, solid skeleton may deform due to mechanical loadings, thermal
expansion (or contraction) and interactions with pore-fluid. Assuming that the mixture theory is valid
for porous media, we have,

σ = σs + σf = φsσs + φfσf. (2.5)

where σs and σf are the intrinsic partial Cauchy stress defined in the volume of the solid grains V s and
pore space V f respectively. The total Cauchy stress is the volume averaged stress defined in the current
volume V = V s + V f. Neglecting the shear resistance of the pore fluid, intrinsic partial stress of fluid
consistent σf is therefore isotropic and holds the following relation with the macroscopic pore pressure
pf, i.e.,

σf = φfσf = −φfpfI = −pfI. (2.6)

The partial stress of the solid constituent σs depends on the effective stress σ� and the stress exerted on
the solid grains by the pore fluid Kpf/KsI , i.e.,

σs = σ� +
K
Ks

pfI. (2.7)

Trajectories of the solid and fluid constituent.  
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This definition is from [39], which assumes that the non-uniform localization of stress at the grain scale,
grain crushing, and damage are all insignificant to the skeleton (cf. [64] p.8-11). By substituting (2.6)
and (2.7) into (2.5), the total Cauchy stress now reads,

σ = σ� −BpfI, (2.8)

where B is the Biot’s coefficient defined as [39],

B = 1− K
Ks

. (2.9)

Typically, Biot’s coefficient B is close to unity for sand, but can be ranged from 0.5 to 0.8 for rocks or
concrete. Notice that B in (2.8) have been defined in a number of different ways in the literature. For
instance, Terzaghi and Rendulic defined B as a function of the effective area of solid grains [54, 59]. For
bio-materials and composites, Cowin and Doty generalize the effective stress concept in [8] and introduce
the effective stress coefficient tensor B in [20], i.e.

σ = σ� − pfB. (2.10)

This definition of effective stress is not adopted in this work, but will be considered in future study. The
balance of linear momentum therefore reads,

∇x·σ + ρG+ hs + hf = 0, (2.11)

where G is the acceleration due to gravity. hs and hf are the interactive body force per unit reference
volume exerted on their corresponding phases due to drag, lift, virtual mass effect, history effects and
the relative spinning (Magnus effect) which balances out internally, i.e., hs + hf = 0 [46]. In the total
Lagrangian formulation, balance of linear momentum in 2.11 is rewritten in reference configuration via
the Piola transformation [25], i.e.,

∇X ·P + JρG = 0, (2.12)

where P denotes the total first Piola-Kirchhoff stress and J is the determinant of the deformation gradient
of the solid skeleton F . Similar to the total Cauchy stress, the total first Piola-Kirchhoff stress can be
partitioned into two parts, the effective first Piola-Kirchhoff stress P � and the pull-back of the pore fluid
contribution JBpfF−T . The effective first Piola-Kirchhoff stress P � is the amount of stress carried by
the solid skeleton. For solid skeleton exhibiting elasto-plastic responses,the effective first Piola-Kirchhoff
stress can be determined from the deformation gradient and the internal variable(s) z of the solid skeleton.

P (F , z, pf , θ) = P �(F , z, θ)− JBpfF−T . (2.13)

Under non-isothermal condition, the multiplicative decomposition of the deformation gradient can be
written as [25],

F =
∂ϕ(X, t)

∂X
= FM · F θ ; F θ =

∂ϕθ(X, t)
∂X

;FM =
∂ϕM (Xθ, t)

∂Xθ
(2.14)

where F θ and FM are the pure thermal and mechanical splits of the deformation gradient.
As shown in Figure 2, the mechanical split FM of the deformation gradient can be further decomposed

into the elastic and plastic parts such that ,

FM = F · F−1
θ = F e · F p ; F p =

∂ϕp(Xθ, t)
∂Xθ

; F e =
∂ϕe(Xσ�=0, t)

∂Xσ�=0
(2.15)

where ϕθ(B) is the intermediate thermal effective-stress-free configuration caused by thermal expansion
or contraction. Similarly, ϕp(ϕθ(B)) is the intermediate effective-stress-free configuration, which can be
obtained by deforming the current configuration via ϕe−1. Notice that we do not consider the possibility
of having the pore pressure split for the deformation gradient of the solid skeleton. In addition, we
assume that the thermal is isotropic. To replicate the thermal effect accurately, anisotropy of thermal
effect must be considered for composite or reinforced materials. Nevertheless, for geomaterials, anisotropy
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8.6 Numerical Example: Surface Rumpling of Slope

Remark 1. Due to the finite precision of arithmetic operation in computer, the set of eigen-

values computed are never exactly zero. Thus, theoretical specking, computer simulation

involving material approaching diffuse bifurcation should still be able to converge to unique

solution. The finite precision of arithmetic operation also introduces similar impact on the

fluttering mode, as it ceases the possibility for exact pair of complex conjugate eigenvalues in

computer unless symbolic operation is carried out.
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Fig. 2 Multiplicative decomposition of the thermohydromechanics deformation.

of thermal effect is generally neglected, perhaps due to the lack of detailed thermal properties in field and
experimental settings. As a result, F θ can be characterized by the thermal expansion coefficient αsk(θ),
i.e.,

F θ = exp[

� θ

θ̂
αsk(θ̂)dθ̂]I .. (2.16)

If the thermal expansion coefficient is constant, then, we have

F θ = exp[αsk(θ − θo)]I ; Jθ = exp[3αsk(θ − θo)], (2.17)

where θo is the reference temperature at which there is no thermal deformation. Notice that linearizing the
thermal expansion defined in (2.17) leads to the classical thermal strain �v = log Jθ = 3αsk(θ−θo). Recall
that the configuration ϕθ(B) is stress free, and the thermal-induced deformation gradient is isotropic,
thus F = F θFM = FMF θ. As a result, Equation (2.13) can be rewritten as,

P (FM , z, pf ) = P �(FM , z)− JBpfF−T , (2.18)

in which the thermal expansion alone does not induce any change in the effective stress of the solid
skeleton.

2.3 Balance of Fluid Content

The balance of fluid content in the non-isothermal condition has been derived by McTigue in [34] by
extending the isothermal balance principle in [47]. In this study, our new contribution is to provide the
derivations for the balance of fluid mass suitable for total Lagrangian formulation. First of all, let us
define the Lagrangian fluid content M f : B × [0, T ] → R+ as the fluid mass per unit reference volume.
The fluid content is therefore a function of the porosity and the fluid density, i.e.,

M f = Jρf = Jφfρf = Φfρf, (2.19)

where Φf(X, t) = J(X, t)φf(ϕ(X, t), t) is the Lagrangian porosity, the ratio between current void volume
to the initial total volume (cf. [18], p.5). In the current configuration, the balance of fluid mass content
reads, i.e.,

D
Dt

�

ϕ(B)
φfρfdv = −

�

∂ϕ(B)
w · n da. (2.20)

Stabilized FEM for thermo-hydro-mechanics at finite strain 5

This definition is from [39], which assumes that the non-uniform localization of stress at the grain scale,
grain crushing, and damage are all insignificant to the skeleton (cf. [64] p.8-11). By substituting (2.6)
and (2.7) into (2.5), the total Cauchy stress now reads,

σ = σ� −BpfI, (2.8)

where B is the Biot’s coefficient defined as [39],

B = 1− K
Ks

. (2.9)

Typically, Biot’s coefficient B is close to unity for sand, but can be ranged from 0.5 to 0.8 for rocks or
concrete. Notice that B in (2.8) have been defined in a number of different ways in the literature. For
instance, Terzaghi and Rendulic defined B as a function of the effective area of solid grains [54, 59]. For
bio-materials and composites, Cowin and Doty generalize the effective stress concept in [8] and introduce
the effective stress coefficient tensor B in [20], i.e.

σ = σ� − pfB. (2.10)

This definition of effective stress is not adopted in this work, but will be considered in future study. The
balance of linear momentum therefore reads,

∇x·σ + ρG+ hs + hf = 0, (2.11)

where G is the acceleration due to gravity. hs and hf are the interactive body force per unit reference
volume exerted on their corresponding phases due to drag, lift, virtual mass effect, history effects and
the relative spinning (Magnus effect) which balances out internally, i.e., hs + hf = 0 [46]. In the total
Lagrangian formulation, balance of linear momentum in 2.11 is rewritten in reference configuration via
the Piola transformation [25], i.e.,

∇X ·P + JρG = 0, (2.12)

where P denotes the total first Piola-Kirchhoff stress and J is the determinant of the deformation gradient
of the solid skeleton F . Similar to the total Cauchy stress, the total first Piola-Kirchhoff stress can be
partitioned into two parts, the effective first Piola-Kirchhoff stress P � and the pull-back of the pore fluid
contribution JBpfF−T . The effective first Piola-Kirchhoff stress P � is the amount of stress carried by
the solid skeleton. For solid skeleton exhibiting elasto-plastic responses,the effective first Piola-Kirchhoff
stress can be determined from the deformation gradient and the internal variable(s) z of the solid skeleton.

P (F , z, pf , θ) = P �(F , z, θ)− JBpfF−T . (2.13)

Under non-isothermal condition, the multiplicative decomposition of the deformation gradient can be
written as [25],

F =
∂ϕ(X, t)

∂X
= FM · F θ ; F θ =

∂ϕθ(X, t)
∂X

;FM =
∂ϕM (Xθ, t)

∂Xθ
(2.14)

where F θ and FM are the pure thermal and mechanical splits of the deformation gradient.
As shown in Figure 2, the mechanical split FM of the deformation gradient can be further decomposed

into the elastic and plastic parts such that ,

FM = F · F−1
θ = F e · F p ; F p =

∂ϕp(Xθ, t)
∂Xθ

; F e =
∂ϕe(Xσ�=0, t)

∂Xσ�=0
(2.15)

where ϕθ(B) is the intermediate thermal effective-stress-free configuration caused by thermal expansion
or contraction. Similarly, ϕp(ϕθ(B)) is the intermediate effective-stress-free configuration, which can be
obtained by deforming the current configuration via ϕe−1. Notice that we do not consider the possibility
of having the pore pressure split for the deformation gradient of the solid skeleton. In addition, we
assume that the thermal is isotropic. To replicate the thermal effect accurately, anisotropy of thermal
effect must be considered for composite or reinforced materials. Nevertheless, for geomaterials, anisotropy
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in (8) is decoupled from the pore-fluid response.
Hence, this assumption enables us to use any
single-phase stress integration algorithm to obtain
the effective first Piola-Kirchhoff stress. By apply-
ing the standard mixture theory and neglecting
the inertial force , the balance of linear momentum
reads,

∇X ·P s + JρsG+H
s = 0 (9)

∇X ·P f + JρfG+H
f = 0 (10)

where ρα = φαρα is the intrinsic or apparent
density of the α phase. G is the vector of gravity
acceleration. As pointed out in [22], Hs and H

f

are the interactive body force per unit reference
volume exerted on their corresponding phases due
to drag, lift, virtual mass effect, history effects
and the relative spinning (Magnus effect) which
balances out internally, i.e., Hs +H

f = 0. As a
result, combining (9) and (10) yields,

∇X ·P + J(ρs + ρf )G = 0 (11)

or equivalently,

∇x·σ + (ρs + ρf )G = 0 (12)

where (11) and (12) are related by the Piola trans-
formation ∇X ·P = J ∇x·σ.

2.3 Balance of Mass

Here we derive a generalized balance of mass equa-
tion in which the compressibility of both the solid
and pore-fluid constituents are considered. While
this generalized derivation for compressible con-
stituents has been recently considered in [14], our
new contribution here is that the infinitesimal ver-
sion of this formulation is fully consistent with the
classical small strain balance law in [4; 31; 41], and
can also be consistently reduced to the finite strain
formulation in [1] when solid constituent becomes
incompressible and the finite strain formulation in
[7; 32] when the porous media is fully saturated
and composed of incompressible constituents.

Recall that we define the material time deriva-
tive based on the motion of the solid skeleton.
In the absence of mass exchange among all con-
stituents, the balance of mass for the pore-fluid
onstituent reads,

Dρf

Dt
= −∇X ·W (13)

where W and w are the Lagrangian and Eulerian
relative mass flow vectors defined as [11], i.e.

w = φfρf (v
f − v) ; W = JF−1 ·w (14)

Assuming isothermal conditions, the material time
derivative of the pore-fluid density can be parti-
tioned through following identity,

Dρf

Dt
= φf Dρf

Dt
+ ρf

Dφf

Dt
(15)

Notice that the material time derivatives can be
further simplified as,

Dρf

Dt
= ρf

D

Dt
log

� ρf
ρf0

�
+ ρf

Dφf

Dt
(16)

where log(ρf/ρf0) is the infinitesimal change of
the pore-fluid density. By assuming that the pore-
fluid is barotropic, the first term of (16) reads,

φf

�
ρf

D

Dt
log

� ρf
ρf0

��
=

φfρf
Kf

Dpf

Dt
(17)

which is obtained by applying the barotropic as-
sumption, as pointed out in [1],

Kf = ρf
dpf

dρf
= constant ⇒ ρf

ρf0
= exp

�
pf

Kf

�

(18)

On the other hand, the second term takes into
account the volumetric change of pore space for
a fixed pore-fluid density, which comes from the
skeleton volumetric change and the volume changes
caused by the compression or extension of the solid
grains. Assuming that change of porosity at an
infinitesimal time is small, the change of porosity
can be written as (cf. [24]),

Dφf

Dt
=

D

Dt

�
B log J +

B − φf

Ks
pf

�
(19)

where log J = log(detF ) = tr � and � is the Eu-
lerian logarithm strain tensor. B is the Biot’s
coefficient defined as [31],

B = 1− K

Ks
(20)
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Fig. 2 Multiplicative decomposition of the thermohydromechanics deformation.

of thermal effect is generally neglected, perhaps due to the lack of detailed thermal properties in field and
experimental settings. As a result, F θ can be characterized by the thermal expansion coefficient αsk(θ),
i.e.,

F θ = exp[

� θ

θ̂
αsk(θ̂)dθ̂]I .. (2.16)

If the thermal expansion coefficient is constant, then, we have

F θ = exp[αsk(θ − θo)]I ; Jθ = exp[3αsk(θ − θo)], (2.17)

where θo is the reference temperature at which there is no thermal deformation. Notice that linearizing the
thermal expansion defined in (2.17) leads to the classical thermal strain �v = log Jθ = 3αsk(θ−θo). Recall
that the configuration ϕθ(B) is stress free, and the thermal-induced deformation gradient is isotropic,
thus F = F θFM = FMF θ. As a result, Equation (2.13) can be rewritten as,

P (FM , z, pf ) = P �(FM , z)− JBpfF−T , (2.18)

in which the thermal expansion alone does not induce any change in the effective stress of the solid
skeleton.

2.3 Balance of Fluid Content

The balance of fluid content in the non-isothermal condition has been derived by McTigue in [34] by
extending the isothermal balance principle in [47]. In this study, our new contribution is to provide the
derivations for the balance of fluid mass suitable for total Lagrangian formulation. First of all, let us
define the Lagrangian fluid content M f : B × [0, T ] → R+ as the fluid mass per unit reference volume.
The fluid content is therefore a function of the porosity and the fluid density, i.e.,

M f = Jρf = Jφfρf = Φfρf, (2.19)

where Φf(X, t) = J(X, t)φf(ϕ(X, t), t) is the Lagrangian porosity, the ratio between current void volume
to the initial total volume (cf. [18], p.5). In the current configuration, the balance of fluid mass content
reads, i.e.,

D
Dt

�

ϕ(B)
φfρfdv = −

�

∂ϕ(B)
w · n da. (2.20)

where 

where 
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Applying Reynold’s transport theorem and Guass theorem, we obtain the corresponding local fluid con-

tent continuity equation in the current configuration,

DJφfρf
Dt

+ J ∇x·w = 0, (2.21)

where Dφfρf/Dt is the material time derivative of the current fluid density that reads,

DJφfρf
Dt

=
∂Jφfρf

∂t
+ φfρfJ̇ , (2.22)

where ˙(·) = D(·)/Dt. In (2.20) and (2.21), w is the relative pore-fluid mass flux in the deforming solid

skeleton body. Assuming that the pore-fluid flow is Darian, then the relative pore-fluid mass flux is related

to both the gradient of the pore pressure and the temperature under non-isothermal condition, i.e.,

w = ρfk ·
�
−∇x pf + ρf(G− af

)

�
− ρfsT ∇x θ, (2.23)

where k is the permeability tensor divided by the viscosity; af
is the acceleration of the pore-fluid

constituent and ST is the Soret coefficient. In particular, the latter term sT ∇x θ represents a phenomenon

analogous to the Ludwig-Soret effect (the flux induced by the gradient of temperature) [7, 34, 42].

The balance of mass content in the Lagrangian configuration can be obtained from (2.21) via Piola

transformation, i.e.,

DM f

Dt
= −∇X ·W . (2.24)

The Lagrangian relative mass flux W can be obtained via the Piola identity, i.e.

W = JF−1 ·w. (2.25)

Furthermore, let us assume that the inertial force is negligible, af
= 0. After a pull-back operation, the

Lagrangian mass flux reads,

W = ρfQf = ρfK · (−∇X pf + ρfF
T ·G)− ρfST ∇X θ, (2.26)

where both the permeability tensor and Soret coefficient tensor are both positive semi-definite, i.e.,

K = JF−1 · k · F -T
; ST = JsTC

−1, (2.27)

where C = FT · F is the right Cauchy-Green tensor. Next, we consider the local rate of change of the

fluid content M f
in the left hand side of (2.24). The material time derivative of the fluid mass content

can be partitioned by applying the chain rule on (2.19),

˙M f = Φfρ̇f + ρf ˙Φf. (2.28)

To complete the formulation, we need to re-express (2.28) in terms of the two fields ϕ and pf. As a result,

we assume that the pore fluid density only depends on temperature θ and pore pressure pf. Hence, we

have

ρ̇f(θ, p
f
) =

∂ρf
∂pf

���
θ

˙pf +
∂ρf
∂θ

���
pf

θ̇. (2.29)

In the above expression, ∂ρf/∂pf|θ represents the change of the density due to pore pressure rise/drop at

a fixed temperature, while ∂ρf/∂θ|fp represents the represents the change of density due to a temperature

rise/drop at a fixed pore pressure. Assuming that the bulk modulus Kf and thermal expansion αf of the

pore fluid remains constant, we have

ρf(θ, p
f
) = ρfo exp

�
pf − pfo
Kf

− 3αf(θ − θo)

�
. (2.30)
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2.4.2 Structural Heating and the Gough-Joule Coupling Effect

Giving the fact that the actual expressions of both structural heating and dissipation vary significantly
for different material models, we consider Equation (2.45) the general statement for the balance of energy.
However, we may introduce additional assumptions to express the balance of energy in a more explicit
form. For instance, we may assume that the structural heating contains no latent plastic terms and this
is identical with the thermoelastic heating [51]. To further particularize the problem, assume that the
non-dissipative (latent) structural heating or cooling Hθ are the sum of the power contributed by the
solid skeleton and the pore fluid, i.e.,

Hθ = H
s
θ +H

f
θ, (2.52)

where power contributed by the volumetric deformation of the solid skeleton reads [51],

H
s
θ = −θ

∂

∂θ
P � : Ḟ = −θ

∂
2

∂J∂θ
3αskK log J(θ − θo)J̇ = −3Kαskθ

J̇

J
. (2.53)

Following the derivation in Coussy [18], the pore-fluid contribution reads,

H
f
θ = −θ

∂

∂θ
3αm(θ − θo)ṗf = −3αm

θṗf. (2.54)

Substituting (2.54) and (2.54) into (2.45) and neglect the mechanical dissipation, we obtain the energy
balance equation that takes account of the Gough-Joule coupling effect,

cF θ̇ − 3Kαskθ
J̇

J
− 3αm

θṗf −∇X ·Kθ ∇X
θ +

Φ
f
cF f

ρf
W · F−T ·∇X

θ −Rθ = 0. (2.55)

3 Stabilized Variational Formulation

In this section, we consider the stabilized variational form required for the equal-order displacement-
pressure-temperature finite element model with assumed deformation gradient. We first define the stan-
dard weak form of the poromechanics problem based on the balance law derived in Section 2. By applying
a multiplicative split, we introduce the assumed deformation gradient suitable for the thermohydrome-
chanics problem. To prevent spurious modes due to the usage of equal-order interpolations, we introduce
a stabilization mechanism into the weighted-residual statement of the mass and energy balance equations.
A simple scheme for choosing the stabilization parameters is also presented.

3.1 Galerkin Form

Our objective is to derive a weighted-residual statement suitable for a total Lagrangian scheme. We
first specify the appropriate boundary and initial conditions. Following the standard line, we consider a
domain B whose boundary ∂B is the direct sum of the Dirichlet and Von Neumann boundaries, i.e.,

∂B = ∂Bu ∪ ∂Bt = ∂Bpf ∪ ∂BQf
= ∂Bθ ∪ ∂BQθ

, (3.1)

∅ = ∂Bu ∩ ∂Bt = ∂Bpf ∩ ∂BQf
= ∂Bθ ∩ ∂BQθ

, (3.2)

where ∂Bu is the solid displacement boundary; ∂Bt is the solid traction boundary; ∂Bp is the pore
pressure boundary; ∂BQf

is the pore-fluid flux; ∂Bθ is the temperature boundary; ∂BQf
is the heat flux;

boundary, as illustrated in Figure 3.
In summary, Dirichlet boundary conditions for the thermo-hydro-mechanics problem reads,

u = u on ∂Bu,

p
f = p on ∂Bp, (3.3)

θ = θ on ∂Bθ.
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those applications, it is common to neglect the contribution from the structural heating and dissipation

as shown in [30, 31, 32, 34, 38, 48, 50, 53].

Here we assume that the structural heating is thermoelastic. This leads to the classical Gough-Joule

coupling effect in which local temperature changes may occur when a porous medium undergoes adiabatic

deformation. Rθ is the heat source term. −J ∇x·(qθ/J) is the heat conduction term. Pulling back (2.43)

into the reference configuration via the Piola transformation yields,

cF θ̇ = [Dmech −Hθ] + [−∇X ·Qθ − Φ
f
cF f

ρf
W · F−T ∇X

θ +Rθ], (2.45)

where Qθ is the Piola-Kirchhoff heat flux. Assume that both the solid and fluid constituent obey Fourier’s

law, the Cauchy heat flux is often written as the dot product of the volume averaged heat conductivity

tensor and the gradient of temperature [44], i.e.,

qθ = φ
fkf

θ ∇x
θ + (1− φ

f
)ks

θ ∇x
θ = kθ ∇x

θ, (2.46)

where kθ = φ
fkf

θ + (1 − φ
f
)ks

θ is the volume averaged heat conductivity tensor. However, this volume

averaged approach is only valid if the solid and fluid constituents are connected in parallel. Presumably,

calculating the correct homogenized effective heat conductivity requires knowledges of the pore geometry

and and connectivity obtained from three dimensional tomographic images [56, 57] or directly from

experiments. However, since micro-structural attributes of pore space is not always available, we adopt

an alternative homogenization approach where equivalent inclusion method is used to determine effective

heat conductivity tensor of the two-phase materials [24]. Assuming that the pore fluid as the bulk material

and the solid grains as spherical inclusions, the effective thermal conductivity may be estimated via

Eshelby equivalent inclusion method reads,

kθ =

�
k
f
θ +

φ
f
(k

s
θ − k

f
θ)k

f
θ

(k
s
θ − k

f
θ)φ

f + k
f
θ

�
I =

�
k
f
θ +

Φ
s
(k

s
θ − k

f
θ)k

f
θ

(k
s
θ − k

f
θ)(J − Φs) + Jk

f
θ

�
I, (2.47)

where k
s
θ and k

f
θ are the isotropic thermal conductivity coefficient of the solid and the fluid consitituents.

Applying the Piola transformation and using the relations Φ
s
+ Φ

f
= J and φ

s
+ φ

f
= 1, (2.46) can be

rewritten in reference configuration, i.e.,

J
−1FQθ = −kθF

−T ∇X
θ . (2.48)

Hence, the Piola-Kirchhoff heat flux Qθ corresponding to (2.46) reads,

Qθ = −Kθ ∇X
θ (2.49)

where Kθ is the pull-back thermal conductivity tensor, i.e.,

Kθ = JF−1 · kθ · F−T
. (2.50)

2.4.1 Simplified Heat Transfer Equation in Geometrically Nonlinear Regime

If both the mechanical dissipation and the Gough-Joule coupling effect are neglected, then we recover

the finite deformation version of the heat transfer equation in [30, 31, 38, 49, 50], which reads,

cF θ̇ −∇X ·Kθ ∇X
θ +

Φ
f
cF f

ρf
W · F−T ·∇X

θ −Rθ = 0, (2.51)

Notice that the thermal diffusion process is fully coupled with the skeleton deformation in the geometrical

non-linear regime, even if the mechanical dissipation and Gough-Joule coupling effect are both neglected.

This coupling effect is captured by the porosity changes and volumetric deformation that lead to changes

in the effective specific heat CF , the pull-back conductivity tensor and the convection term. If the both

structural heat and dissipation mechanisms exhibit little influence on the thermal diffusion process of the

porous medium, then (2.51) is sufficient. However, for more general cases, particularly biological tissues

or other rubber-like materials, both the structural heat and dissipation mechanism must be taken into

account properly.

Stabilized FEM for thermo-hydro-mechanics at finite strain 9

Combining (2.26) and (2.38), we obtain the strong form of the balance of fluid content equation,

�
B

J
− 3αs(θ − θo)

�
J̇ +

1

M
ṗf − 3α

m
θ̇ +

1

ρf
∇X ·W = 0. (2.40)

Notice that if both constituents are incompressible, then B = 1, 1/M = 0 and ∇x
ρf = 0. Applying the

Piola transform and assuming isothermal condition, (2.40) reduces to the form identical to that seen in

[11],

∇x· v +∇x· q = 0, (2.41)

where q = (1/ρf )w. In summary, the balance law expressed in (2.40) captures the influence of the skeleton

deformation and heat transfer on fluid transport in the following ways.

1. Compression or expansion of fluid induced by solid skeleton deformation

2. Shrinkage or expansion of the pore space that leads to the change of the change of specific storage

3. Expansion or shrinkage of solid and fluid constituents due to temperature changes

4. The Soret effect, i.e., the thermo-induced diffusion of pore fluid

5. The geometrical nonlinear effect due to the deformation of solid skeleton

Remark 1 One important observation of the derivation shown in (2.32)-(2.40) is that the balance of fluid

content equation at finite strains can be significantly different if a different porosity evolution law (such

as those in [37]) is chosen.

2.4 Balance of Energy

In the vast body of literature on thermo-hydro-mechanics, the balance of energy for thermohydromechan-

ics problems differs significantly due to the variety of underlying assumptions. For instance, Selvadurai

and co-workers assume that both the skeleton deformation and pore-flow diffusion processes impose neg-

ligible influences on the heat transfer process and thus leads to a decoupled heat transfer equation in the

infinitesimal regime [38, 49, 50], i.e.,

∇x· kθ ∇x
θ = ρCpθ̇, (2.42)

where kθ and Cp are the volume averaged thermal conductivity and heat capacity of the fluid-solid mix-

ture. Similar assumptions are made in several other small strain thermohydromechanics codes reported

in international co-operative research project DECOVALEX [28] and in the open source simulation code

OpenGeoSys [30].

Our objective here is to provide a more complete picture of energy balance equation by considering

the mechanical work by the solid skeleton and pore-fluid, the density variation and size changes of pore

space due to thermal-hydro-mechanical coupling and the geometrical nonlinear effect. To simplify the

derivation, we consider that all phase of the saturated porous media are locally in thermal equilibrium and

hence the temperature of both solid and fluid constituents are the same locally, i.e. θs = θf = θ. Except

the additional advection term, the local balance of energy is in analogous to that of the single-phase

thermo-plasticity materials [51],

cF θ̇ = [Dmech −Hθ] + [−J ∇x· qθ − φ
f
cF f

ρf
Jw ·∇x

θ +Rθ], (2.43)

where cF is the specific heat capacity per unit volume of the porous media at constant deformation
[25]. For the fully saturated, two-phase porous media, the specific heat capacity of the solid-fluid mixture

can be obtained by volume averaging the specific heat capacities of the solid and fluid constituents, i.e.,

cF = (J − Φ
s
)cF s + Φ

f
cF f, (2.44)

Dmech denotes the contribution to the dissipation due to pure mechanical load. On the other hand, Hθ

is the non-dissipative (latent) structural heating or cooling [25]. At the adiabatic limit without heat

source, the last three terms in (2.43) can be neglected. By contrary, for many petroleum and geotechnical

engineering applications, the life-cycle of the thermo-hydro-mechanical system is in the order of years. For
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2.4.2 Structural Heating and the Gough-Joule Coupling Effect

Giving the fact that the actual expressions of both structural heating and dissipation vary significantly
for different material models, we consider Equation (2.45) the general statement for the balance of energy.
However, we may introduce additional assumptions to express the balance of energy in a more explicit
form. For instance, we may assume that the structural heating contains no latent plastic terms and this
is identical with the thermoelastic heating [51]. To further particularize the problem, assume that the
non-dissipative (latent) structural heating or cooling Hθ are the sum of the power contributed by the
solid skeleton and the pore fluid, i.e.,

Hθ = H
s
θ +H

f
θ, (2.52)

where power contributed by the volumetric deformation of the solid skeleton reads [51],

H
s
θ = −θ

∂

∂θ
P � : Ḟ = −θ

∂
2

∂J∂θ
3αskK log J(θ − θo)J̇ = −3Kαskθ

J̇

J
. (2.53)

Following the derivation in Coussy [18], the pore-fluid contribution reads,

H
f
θ = −θ

∂

∂θ
3αm(θ − θo)ṗf = −3αm

θṗf. (2.54)

Substituting (2.54) and (2.54) into (2.45) and neglect the mechanical dissipation, we obtain the energy
balance equation that takes account of the Gough-Joule coupling effect,

cF θ̇ − 3Kαskθ
J̇

J
− 3αm

θṗf −∇X ·Kθ ∇X
θ +

Φ
f
cF f

ρf
W · F−T ·∇X

θ −Rθ = 0. (2.55)

3 Stabilized Variational Formulation

In this section, we consider the stabilized variational form required for the equal-order displacement-
pressure-temperature finite element model with assumed deformation gradient. We first define the stan-
dard weak form of the poromechanics problem based on the balance law derived in Section 2. By applying
a multiplicative split, we introduce the assumed deformation gradient suitable for the thermohydrome-
chanics problem. To prevent spurious modes due to the usage of equal-order interpolations, we introduce
a stabilization mechanism into the weighted-residual statement of the mass and energy balance equations.
A simple scheme for choosing the stabilization parameters is also presented.

3.1 Galerkin Form

Our objective is to derive a weighted-residual statement suitable for a total Lagrangian scheme. We
first specify the appropriate boundary and initial conditions. Following the standard line, we consider a
domain B whose boundary ∂B is the direct sum of the Dirichlet and Von Neumann boundaries, i.e.,

∂B = ∂Bu ∪ ∂Bt = ∂Bpf ∪ ∂BQf
= ∂Bθ ∪ ∂BQθ

, (3.1)

∅ = ∂Bu ∩ ∂Bt = ∂Bpf ∩ ∂BQf
= ∂Bθ ∩ ∂BQθ

, (3.2)

where ∂Bu is the solid displacement boundary; ∂Bt is the solid traction boundary; ∂Bp is the pore
pressure boundary; ∂BQf

is the pore-fluid flux; ∂Bθ is the temperature boundary; ∂BQf
is the heat flux;

boundary, as illustrated in Figure 3.
In summary, Dirichlet boundary conditions for the thermo-hydro-mechanics problem reads,

u = u on ∂Bu,

p
f = p on ∂Bp, (3.3)

θ = θ on ∂Bθ.
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those applications, it is common to neglect the contribution from the structural heating and dissipation

as shown in [30, 31, 32, 34, 38, 48, 50, 53].

Here we assume that the structural heating is thermoelastic. This leads to the classical Gough-Joule

coupling effect in which local temperature changes may occur when a porous medium undergoes adiabatic

deformation. Rθ is the heat source term. −J ∇x·(qθ/J) is the heat conduction term. Pulling back (2.43)

into the reference configuration via the Piola transformation yields,

cF θ̇ = [Dmech −Hθ] + [−∇X ·Qθ − Φ
f
cF f

ρf
W · F−T ∇X

θ +Rθ], (2.45)

where Qθ is the Piola-Kirchhoff heat flux. Assume that both the solid and fluid constituent obey Fourier’s

law, the Cauchy heat flux is often written as the dot product of the volume averaged heat conductivity

tensor and the gradient of temperature [44], i.e.,

qθ = φ
fkf

θ ∇x
θ + (1− φ

f
)ks

θ ∇x
θ = kθ ∇x

θ, (2.46)

where kθ = φ
fkf

θ + (1 − φ
f
)ks

θ is the volume averaged heat conductivity tensor. However, this volume

averaged approach is only valid if the solid and fluid constituents are connected in parallel. Presumably,

calculating the correct homogenized effective heat conductivity requires knowledges of the pore geometry

and and connectivity obtained from three dimensional tomographic images [56, 57] or directly from

experiments. However, since micro-structural attributes of pore space is not always available, we adopt

an alternative homogenization approach where equivalent inclusion method is used to determine effective

heat conductivity tensor of the two-phase materials [24]. Assuming that the pore fluid as the bulk material

and the solid grains as spherical inclusions, the effective thermal conductivity may be estimated via

Eshelby equivalent inclusion method reads,

kθ =

�
k
f
θ +

φ
f
(k

s
θ − k

f
θ)k

f
θ

(k
s
θ − k

f
θ)φ

f + k
f
θ

�
I =

�
k
f
θ +

Φ
s
(k

s
θ − k

f
θ)k

f
θ

(k
s
θ − k

f
θ)(J − Φs) + Jk

f
θ

�
I, (2.47)

where k
s
θ and k

f
θ are the isotropic thermal conductivity coefficient of the solid and the fluid consitituents.

Applying the Piola transformation and using the relations Φ
s
+ Φ

f
= J and φ

s
+ φ

f
= 1, (2.46) can be

rewritten in reference configuration, i.e.,

J
−1FQθ = −kθF

−T ∇X
θ . (2.48)

Hence, the Piola-Kirchhoff heat flux Qθ corresponding to (2.46) reads,

Qθ = −Kθ ∇X
θ (2.49)

where Kθ is the pull-back thermal conductivity tensor, i.e.,

Kθ = JF−1 · kθ · F−T
. (2.50)

2.4.1 Simplified Heat Transfer Equation in Geometrically Nonlinear Regime

If both the mechanical dissipation and the Gough-Joule coupling effect are neglected, then we recover

the finite deformation version of the heat transfer equation in [30, 31, 38, 49, 50], which reads,

cF θ̇ −∇X ·Kθ ∇X
θ +

Φ
f
cF f

ρf
W · F−T ·∇X

θ −Rθ = 0, (2.51)

Notice that the thermal diffusion process is fully coupled with the skeleton deformation in the geometrical

non-linear regime, even if the mechanical dissipation and Gough-Joule coupling effect are both neglected.

This coupling effect is captured by the porosity changes and volumetric deformation that lead to changes

in the effective specific heat CF , the pull-back conductivity tensor and the convection term. If the both

structural heat and dissipation mechanisms exhibit little influence on the thermal diffusion process of the

porous medium, then (2.51) is sufficient. However, for more general cases, particularly biological tissues

or other rubber-like materials, both the structural heat and dissipation mechanism must be taken into

account properly.
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q  Volume averaging effective thermal 
conductivity  

q  Homogenized effective conductivity via 
Eshelby equivalent inclusion method (for 
spherical inclusions)   

(cf. Zhou & Meschke, IJNAMG 2013) 

(cf. Preisig & Prevost, IJGGC 2011) 

Important Note:  In general, the temperature of the 
pore-fluid and solid skeleton are not the same in the 
REV, until after sufficient diffusion takes place. This 
difference is neglected in current formulation. 

Solution of transient heat equation of two-
phase materials  
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kbulk >> kboundary kbulk << kboundary (8.14)

8.2 Asynchronous domain coupling method

S =
�

k

Sk =
�

k

� tj+1
k

tjk

Lkdt =
�

k

� tj+1
k

tjk

Tk − Vkdt (8.15)

Sk = αT k + (1− α) �Tk − αV k − (1− α)�Vk + Ck (8.16)

DϕS = 0 (8.17)

D �ϕS = 0 (8.18)

DφS = 0 (8.19)
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(3.28) Ru, Rpf and Rθ are the residual of the balance of linear momentum, mass and energy equations.
Note that (3.28) can be rewritten as,

�
A BT

B F

� �
∆û

∆x̂

�
=

�
Ru

R̂

�
, (3.31)

where

F =

�
E D

T

D F

�
; B =

�
B

C

�
; ∆x̂ =

�
∆p

f

∆θ

�
; R̂ =

�
Rpf

Rθ

�
. (3.32)

Obviously, stable pore pressure and temperature solution requires that the matrix BABT has full rank.
For BABT to have full rank, A must be positive definite (and hence remains elliptic in the kernel of B)
and the compound matrix B must fulfill the inf-sup condition proven in [26], i.e., there exists a constant
Co > 0 such that

sup
wh∈Vu

h

�
B

�
pfhB + 3θKαsk

�
∇x·wh dV

||wh||
V

h
u

≥ Co

�
||pfh||V h

p
+ ||θh||V h

θ

�
, (pfh, θh) ∈ V h

p × V h
θ . (3.33)

where || · ||
V

h
u
, || · ||V h

p
and || · ||V h

θ
are the norms corresponding to the finite dimensional space V

h
u, V

h
p

and V h
θ . Here we equip the spaces of the solutions and their corresponding testing functions with the

same associated norms, i.e.,

||u||V h
u
= ||u||1 =

��

B

∇x u ·∇x u dV ,

||p||V h
pf

=

��

B

Bp2 dV ,

||θ||V h
θ
=

��

B

3
�
αskK

�
θ2 dV .

(3.34)

Note that || · ||V h
pf
, || · ||V h

θ
and || · ||0 are equivalent norms. Unfortunately, if displacement, pore pressure

and temperatures are all spanned by the same basis function, then the condition listed in (3.33) does not
hold [13].

Our new contribution here is twofold. First, we prove that a weaker inf-sup bound also exists for the
compound matrix B. Then, for the first time, we propose a proper stabilization term that may eliminate
the spurious oscillations of pore pressure and temperature for the thermo-hydro-mechanics problem.

3.4.1 Weak Inf-Sup Conditions of Coupling Terms

To derive stabilized finite element formulation, we may first quantify the inf-sup ”deficiency” of the
unstable, equal-order discretization, then propose additional terms to eliminate the spurious modes due
to the inf-sup ”deficiency”. Previously, this strategy is used in Bochev et al [9] where a weaker inf-sup
bound is first identified for the Stokes equations, then a stabilization term is derived to restore stability
for two interpolated velocity-pressure pairs.

To determine the weak inf-sup bound of individual coupling terms, let us first recall that the divergence
is an isomorphism of the orthogonal complement of divergence-free functions in H

1
0(B) onto L2

0(B) space.
Given that the pressure pfh ∈ V h

p ⊂ L2
0(B), then the isomorphism of the divergence operator guarantees

the existence of a w ∈ H
1
0(B) such that,

∇x·w = pfh and ||w||1 ≤ ||pfh||V h
pf

. (3.35)

With (3.35) in mind, we then have,

sup
v∈H1

o(B)

|
�
B
pfhB∇X · v dV |

||v||1
≥

�
B
| pfhB∇X ·w dV |

||w||1
≥

�
B
| pfhBpfh dV |
||pfh||V h

pf

≥ C̃p||pfh||V h
pf

, (3.36)
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On the other hand, (3.43) implies the existence of wh ∈ V wh with ||wh||1 = 1 such that
�

B

3Kαskθ
h ∇x·wh dV ≥ β1||θh||V h

θ
− β2h||∇x θh||V h

θ
, θh ∈ V h

θ , (3.45)

Now let u = vh +wh, then,
�

B

pfhB∇x·u dV =

�

B

pfhB∇x· vh dV+

�
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Recall that V h
pf and V h

θ are spanned by the same set of basis functions. Thus, �ph = (3Kαsk/B)θh and
�θh =

�
B/(3Kαsk)

�
pfh, we have,

�

B
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�

B

3Kαsk(θ
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�
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+ ||θh||V h

θ

�
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�
||∇x pfh||V h
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+ ||∇x θh||V h

θ

�
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(3.47)

where γ1 = min(α1,β1) and γ2 = max(α2,β2). Thus, according to the definition of supremum, we may
express the combined weaker inf-sup bound as,

sup
vh∈V h

u ,v �=0

�
B

�
pfhB + 3Kαskθ

h
�
∇x· vh dV

||vh||1
≥ C1

�
||pfh||V h

pf
+ ||θh||V h

θ

�
− C2h

�
||∇x pfh||V h

pf
+ ||∇x θh||V h

θ

�
,

(3.48)

where C1 and C2 are positive constant.

3.4.3 Projection-based Stabilization

By comparing (3.33) and (3.48), we notice that the difference between the inf-sup bound and the weak
inf-sup bound is the gradient term in (3.48), i.e.,

−C2h
�
||∇x pfh||V h

pf
+ ||∇x θh||V h

θ

�
, (3.49)

This term can be used as a template for the design of stabilization terms. For instance, a simple remedy to
restore numerical stability by directly adding perturbation gradient terms in (3.48) such that the inf-sup
deficiency is counterbalanced. Here we consider an alternative characterization of the inf-sup deficiency
formulated in terms of projection operators. The upshot of a projection-based stabilization method is
that it does not depend on the mesh size h or the type of element shapes, hence easier to be implemented.
As discussed in Sun et al [58], the rationale of the projection-based stabilization is based on the inverse
inequality, which guarantees the existence of a positive constant CI such that ,

CIh
�
||∇x pfh||V h

pf
+ ||∇x θh||V h

θ

�
≤ ||pfh −Πpfh||V h

pf
+ ||θh −Πθh||V h

θ
, (3.50)

where Π(·) is a projection operator leads to a piecewise constant field. Here we define Π(·) as simply the
element average operator that reads,

Π(·) = 1
V e

�

K
(·) dV ;K ∈ B. (3.51)
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restore numerical stability by directly adding perturbation gradient terms in (3.48) such that the inf-sup
deficiency is counterbalanced. Here we consider an alternative characterization of the inf-sup deficiency
formulated in terms of projection operators. The upshot of a projection-based stabilization method is
that it does not depend on the mesh size h or the type of element shapes, hence easier to be implemented.
As discussed in Sun et al [58], the rationale of the projection-based stabilization is based on the inverse
inequality, which guarantees the existence of a positive constant CI such that ,
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Furthermore, since it is not clear whether the two-way couplings between pore-fluid diffusion and heat
transfer may destabilize the system if either the pore-fluid or the thermal conductivity is too low, we
introduce a third term as a safety measure. The resultant perturbation functional reads,

W
per(θh, pfh) = C

�1
2
||pfh −Πp

fh||2V h
pf
+

1
2
||θh −Πθ

h||2V h
θ
+

�

K∈Ω

|
�

K
3αm(pfh −Πp

fh)(θh −Πθ
h)dV |

�
,

(3.52)
where C is a positive constant. The stabilization term added to the discrete balance of mass equation
(3.17) is simply the first variation of (3.52) with respect to pore pressure, i.e.,

Ĥ
stab(ψ, pfhn+1, θ

h
n+1) =

�

K∈B

�

K
C(ψ −Πψ)B

�
p
fh
n+1 − p

fh
n −Π(pfhn+1 − p

fh
n )

�
dV

+
�

K∈B

�

K
C(ψ −Πψ)(3αm)

�
θ
h
n+1 − θ

h
n −Π(θhn+1 − θ

h
n)
�
dV .

(3.53)

On the other hand, the hand, the stabilization term added to the balance of energy (3.17) is obtained by
taking the first variation of (3.52) with respect to temperature and multiply the result by the temperature,
i.e.,

L̂
stab(ω, pfhn+1, θ

h
n+1) =

�

K∈B

�

K
C(ω −Πω)(3αm)θn+1

�
p
fh
n+1 − p

fh
n −Π(pfhn+1 − p

fh
n )

�
dV

+
�

K∈B

�

K
C(ω −Πω)(3Kαskθ

h
n+1)

�
θ
h
n+1 − θ

h
n −Π(θhn+1 − θ

h
n)
�
dV .

(3.54)

Finally, applying the stabilized formulation in the discrete variational equation (3.15) yields,

Ĝ(uh
n+1, p

fh
n+1, θ

h
n+1,η) = 0

Ĥ(uh
n+1, p

fh
n+1, θ

h
n+1,ψ)− Ĥ

stab(uh
n+1, p

fh
n+1, θ

h
n+1,ψ) = 0

L̂(uh
n+1, p

fh
n+1, θ

h
n+1,ω)− L̂

stab(uh
n+1, p

fh
n+1, θ

h
n+1,ω) = 0 .

(3.55)

In summary, we use the simplified analysis in this section to establish the combined weak inf-sup condition
of the THME problems. This weak condtion is used as a template for us to design perturbation terms
that stabilizes the equal-order finite element models. The estimation of the stabilization parameters for
specific methods is discussed in the next section.

3.4.4 Stabilization Parameter Estimation

4 Implementation

5 Numerical Examples

6 Conclusion

The new contribution of this work is twofold. First, we establish a large deformation thermo-hydro-
mechanics theory that fully incorporates the influences of the geometrical nonlinearity. Using the automatic-
differentiation technique to simplify the implementation process, the nonlinear relations between porosity,
permeability and thermal conductivity is fully captured. Secondly, we introduce a stabilized equal-order
mixed finite element model that can provide stable numerical solutions without over-diffusion. To the
best of the author’s knowledge, this is the first time a stabilization technique being introduced in the
thermo-hydro-mechanics problem. Our numerical results indicate that such a stabilization procedure is
useful for solving problems near the undrained and adiabatic regimes.

For isothermal small strain poromechanics, see White and Borja, 2009 
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Ĥ (un+1, p
f
n+1,η)

=

�

B

ψ
Bn+1 −Bn

∆t
(log Jn+1 +

p
f
n+1

Ks
) dV

+

�

B

ψBn+1
log Jn+1 − log Jn

∆t
dV

+

�

B

ψ
1

Mn+1

p
f
n+1 − p

f
n

∆t
dV

−
�

B

∇X
ψ ·Qn+1 dV

−
�

∂BQ

ψQn+1 dΓ (48)

3.3 Enhanced Deformation Gradient for

Volumetric Locking

In this section, we derive an assumed deformation

gradient definition for the case when the solid

skeleton matrix becomes incompressible. A simple

stabilization mechanism is provided.

The assumed deformation gradient method is

often used to avoid over-constraining associated

with equal-order interpolations of the volumetric

and isochoric parts of the deformation gradient

[14; 28; 47; 52]. The key to avoid this problem is to

replace the interpolated volumetric deformation

field J = detF with a reduced order volumetric

field J such that fewer volumetric constraints oc-

cur when incompressibility limit is approached.

The resultant assumed deformation gradient is

therefore composed of the modified volumetric

deformation field and the original interpolated

isochoric deformation gradient.

Recall that the kinematic split of the deforma-

tion gradient F is formulated as,

F = F vol · F iso (49)

where

F vol = J
1/3I ; F iso = J

−1/3F (50)

An assumed strain formulation replaces the in-

terpolated volumetric split F vol = J
1/3I with an

modified definition F vol = J̄
1/3I such that

F = J̄
1/3F iso = J̄

1/3
J
−1/3F (51)

However, the usage of assumed deformation gra-

dient may lead to numerical instabilities when

the stiffness from the assumed deformation gra-

dient is too low. As a result, Moran et al. (1990)

[28] suggested replacing the assumed deformation

gradient F of a linear interpolation between the

original and the assumed deformation gradient,

i.e.,

�F = αF − (1− α)F . (52)

where α is a stabilization parameter in which α =
0 leads to the pure F-bar formulation and α = 1
leads to the standard formulation. The idea is

to stiffen the element by increasing α whenever

numerical instability is encountered. Recent work

by Mota et al. (2012), however, has demonstrated

that linear interpolation may lead to significant

error, since the addition operation is not valid for

the multiplicative group of which the deformation

gradient belongs.

In order to provide the essential volumetric

relaxation while maintaining stability, we intro-

duce a simple combined/standard F-bar element

by recourse to exponential/logarithmic mapping,

�F = �J1/3
J
−1/3F (53)

where

�J(X) = exp
�1− α

VBe

�

Be

log J(X) dV+α log J(X)
�

(54)

where α ∈ [0, 1]. The combined formulation may

reduce to fully standard or F-bar formulation by

adjusting α as in [28]. Furthermore, it can be

easily shown that (53) is identical to the mid-point

assumed deformation gradient formulation in [14]

if α = 0 and the volume averaging of log J(X) is

computed via one-point quadrature at the centroid

of the element.

Notice that this formulation does not require

modification other than consistently replacing the

conventional interpolated deformation gradient

with the modified counterpart in (53).

Remark 2 The method to select α is at present

unclear. While assumed deformation gradient may

lead to spurious mode for certain single-phase solid

mechanics problem as demonstrated in [9], non-

zero α is not required in the solutions presented

in the example section.

q  Isochoric-volumetric split (Hughes 1975, Simo 1975)  
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if α = 0 and the volume averaging of log J(X) is

computed via one-point quadrature at the centroid
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Notice that this formulation does not require
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conventional interpolated deformation gradient

with the modified counterpart in (53).

Remark 2 The method to select α is at present

unclear. While assumed deformation gradient may
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q  Replacing volumetric split with assumed term 

q  Combined F-bar approach 
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where
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[28] suggested replacing the assumed deformation

gradient F of a linear interpolation between the

original and the assumed deformation gradient,

i.e.,

�F = αF − (1− α)F . (52)

where α is a stabilization parameter in which α =
0 leads to the pure F-bar formulation and α = 1
leads to the standard formulation. The idea is

to stiffen the element by increasing α whenever

numerical instability is encountered. Recent work
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that linear interpolation may lead to significant

error, since the addition operation is not valid for

the multiplicative group of which the deformation
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In order to provide the essential volumetric
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where α ∈ [0, 1]. The combined formulation may

reduce to fully standard or F-bar formulation by

adjusting α as in [28]. Furthermore, it can be

easily shown that (53) is identical to the mid-point

assumed deformation gradient formulation in [14]

if α = 0 and the volume averaging of log J(X) is

computed via one-point quadrature at the centroid

of the element.

Notice that this formulation does not require

modification other than consistently replacing the

conventional interpolated deformation gradient

with the modified counterpart in (53).

Remark 2 The method to select α is at present

unclear. While assumed deformation gradient may

lead to spurious mode for certain single-phase solid

mechanics problem as demonstrated in [9], non-

zero α is not required in the solutions presented

in the example section.

q  Current Approach via Lie algebra  

! "#$%&'( &' )'$#*+,-..&/0- "&'-1, 201.3&$&34

!"#$%&'( )*' +",,"-%#. '/0'(%1'#)2 3 ,%#'4( ',4$)%5 ',4$)%5 54#)%,'6'( %# 0,4#' $)(4%# %$
1"&','& -%)* 4 $%10,' )%0 ,"4&2 7*' &'!'5)%"# %$ 5"108)'& 8$%#. 4 1'$* "+ $)4#&4(&
9:#"&' ;84(%,4)'(4, ','1'#)$ 4#& 0,"))'& 4.4%#$) )*' <"%$$"# (4)%" 4$ %) %$ 64(%'& +("1 !
)" ! " 7*' ('$8,) %$ &'0%5)'& =',"-2

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 0.1 0.2 0.3 0.4 0.5 0.6

nu

tip
 d

is
pl

ac
em

en
t

Exact solution

Finite element solution

>%.8(' ?@A B"5C%#. ' '5) "# 1'$* $*"-# +"( 4 <"%$$"#D$ (4)%" -*%5* 64(%'$ "6'( )*'
(4#.' @2@ )" @2E F%#5"10('$$%=,' 54$'G2

H) %$ 5,'4( +("1 )*%$ '/0'(%1'#) )*4) )*' 0(%14, "#%)' ','1'#) +"(18,4)%"# +4%,$ -*'#
)*' 0("=,'1 04(41')'($ 4(' $') 5,"$' )" )*"$' +"( %#5"10('$$%=,' ',4$)%5%)I2 J' -%,,
'/0,"(' )*' "(%.%#$ "+ )*%$ 0("=,'1 4#& ('6%'- $"1' 400("45*$ +"( 5"(('5)%#. )*%$ $'(%"8$
&'"5%'#5I2
B')D$ $)4() =I ('6%'-%#. )*' 5"#$)%)8)%6' ';84)%"# +"( ,%#'4( ',4$)%5%)I2 !"#$%&'( )*'

',4$)%5%)I )'#$"( -(%))'# 4$

# $ % $ & F9@G

-*'(' 4#& 4(' )*' B41' 5"#$)4#) 4#& $*'4( 1"&8,8$K ('$0'5)%6',I2 L""C'D$ ,4-
$)4)'$

#

-*'(' )*' ,%#'4(%M'& $)(4%# %$ .%6'# =IK

#
'

(
! " #

'

(
% $ & F9?G

NO

Standard F leads to Volumetric 
Locking 

Pure F-bar leads to instability 
(Brocardo, Micheloni, Krysl, IJNME, 2009) 

1126 M. BROCCARDO, M. MICHELONI AND P. KRYSL

Figure 6. Instability of an elastic plane strain block: the first two buckling modes, NICE-H8 and NICE-T4
meshes with 40 elements horizontally.

The first two instability modes are found by linear buckling analysis (see Figure 5 for results
obtained with the NICE-H27 element). Figure 6 shows results for the same analysis with the
NICE-H8 element. This time the reader may wonder whether the instability modes are entirely
physical—observe the alternating vertical compression and dilation especially in the mode shown
on the right. Indeed they are not, as the present formulation contains low-energy deformation
modes. This has been pointed out in some of the original work on average-pressure (average-strain)
elements [21, 22]. Clearly, whether or not the (unphysical) low-energy modes will appear among
the physical instability modes depends upon which element is used in the analysis: the instability
modes for NICE-H27 are apparently physical, whereas un-physical modes begin to show up for
NICE-H8. The demonstration of such occurrence for NICE-T4 in Figure 6 is quite dramatic.
Evidently, in this case the low-energy modes are associated with lower critical load than the first
physical modes (compare the critical load multipliers !cr).

4.4. Possible stabilization mechanism

A possible stabilization technique could put penalty on the difference between the nodal defor-
mation gradients and the deformation gradient computed at the node from the adjoining elements.
Thus, we add a penalty stabilization force term to Equation (19) of the form

∫

V0
" tr[(∇0g−∇0g)T(F̄−F)] (45)

where " has the physical units of elastic moduli. The reasoning is that if our derivations were
based on energy, such term would result from a quadratic positive semi-definite form of penalty
energy. It is of interest to note that the linearization of the stabilization force in (45) is a constant
symmetric tangent operator to be added to the material and geometric operators derived earlier.
A similar approach to stabilization has been discussed in the context of meshless and nodal-
averaging methods [21, 22].

How to choose the magnitude of the parameter " is an open problem at present. Here we give
an illustration of the relevant aspects. In Figure 7 we show that choosing "=0.01E (that is 1% of
Young’s modulus) suppresses the unphysical part of the first buckling mode, but it also replaces
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[36, 52, 55, 58, 63]. The key to avoid overconstraint is to replace the interpolated volumetric deformation

field J = detF with a reduced order volumetric field J such that fewer volumetric constraints occur when

incompressibility limit is approached. The resultant assumed deformation gradient is therefore composed

of the modified volumetric deformation field and the original interpolated isochoric deformation gradi-

ent. In other words, the interpolated volumetric split F vol = J
1/3I is replaced by an modified definition

F vol = J̄
1/3I such that

F = J̄
1/3F iso = J̄

1/3
J
−1/3F . (3.22)

While the relaxation provided by the modification of deformation gradient definition is able to cure

the locking issue, the usage of non-standard deformation gradient may lead to numerical instability

as exhibited in Broccardo et al [15], Castellazzi and Krysl [17]. Moran et al [36] suggested replacing

the assumed deformation gradient F with a linear interpolation between the original and the assumed

deformation gradient, i.e., �F = αF +(1−α)F . where α is a stabilization parameter in which α = 0 leads

to the pure F-bar formulation and α = 1 leads to the standard formulation. The idea is to introduce

stiffness to spurious zero-energy mode by increasing the magnitude of α whenever the numerical instability

is encountered.

However, as deformation gradient belongs to multiplicative group, linear interpolation may lead to

significant error. For instance, linearly interpolating rigid body rotations may lead to tensor not belonging

to SO(3) group. To cure locking without comprising stability, we introduce a simple combined/standard

F-bar element by recourse to exponential/logarithmic mapping for the thermo-hydro-mechanics problem

in which the modified deformation gradient reads ,

�F = �J1/3F iso = �J1/3
J
−1/3F , (3.23)

where �J is the modified volumetric split of the deformation gradient, i.e.,

�J = exp

�
1− β

VBe

�

Be

log J dV + β log J

�
. (3.24)

Augmented with the (2.17) and assumed that the thermal expansion coefficient α
m

is constant, the

logarithmic volumetric strain log J reads,

log J = log J
e
+ log J

p
+ 3αsk(θ − θo), (3.25)

where β ∈ [0, 1] is a weighing parameter that partitions the standard and assumed deformation gradient.

The mechanical contribution of the assumed deformation gradient therefore reads,

�FM = �J1/3
M F iso , (3.26)

where

�JM = exp

�
log �J − 3

�1− β

VBe

�

Be

αsk

�
θ − θo

�
dV + βαsk(θ − θo

��
. (3.27)

The combined formulation may reduce to the standard or F-bar formulation by adjusting α. Furthermore,

it can be easily shown that (3.23) is identical to the mid-point assumed deformation gradient formulation

in [55] if α = 0 and the volume averaging of log J(X) is computed via one-point quadrature at the

centroid of the element. In all the simulations presented in this paper, we found that setting α = 0.05

appeared to eliminate the zero energy modes.

Remark 2 At present, the optimal value of β is not known. While the assumed deformation gradient may

lead to spurious modes for certain single-phase solid mechanics problems, non-zero β is not required in

the solutions presented in the example section.
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Drucker-Prager type, then the diffusivity c can be
expressed as,

c =
k

µ

M
�
H

H + νβM � ;M
� =

M(K + 4G/3)

K + 4G/3 +B2M
(65)

where H, ν and β are the hardening modulus,
dilatancy factor and the frictional parameter de-
termined from the constitutive model. For brevity,
the derivation of (64) will not be repeated here.
Interested readers please refer to [23; 24; 27] for
details.

Equations taking the form of (64) can be dis-
cretized in time and that leads to a modified
Helmholtz operator in space [15], which reads,

p̂n+1 + ϑc∆t
∂
2

∂x2
p̂n+1 = p̂n − (1− ϑ)c∆t

∂
2

∂x2
p̂n

(66)

where ϑ ∈ [0, 1] is the scalar parameter of the gen-
eralized trapezoid rule. Without introducing any
boundary conditions, (66) has an exact solution
that reads,

p̂(x) = exp(±x/

√
ϑc∆t) (67)

Notice that the finite element approximate growth
and decay rate of the solution can be determined
by assuming that xA = Ah such that,

p̂A = exp(±(h/(
√
ϑc∆t)h)A (68)

where
√
ϑc∆t)h is the approximate growth/decay

rate of the finite element solution. Obviously the
finite element solution may exhibit spurious oscil-
lation if

√
ϑc∆t)h is complex valued, as pointed

out in [15]. To determine the range of the stabi-
lization parameters that prevent

√
ϑc∆t)h being

complex valued, we consider a simple case in which
piecewise-linear finite elements are of uniform size
h. As a result, we may construct a three-node
stencil via the standard Galerkin method, i.e.,

− p̂A−1 + 2p̂A − p̂A−1

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (69)

Next, we add the stabilization terms defined in
(56) and (59) into (66). By assembling the effective
stiffness matrices of the L2 projection stabilization
term, we obtain,

−p̂A−1 +2p̂A − p̂A−1

+ h2

12ϑc∆t [(2− γ)p̂A−1

+(8 + 2γ)p̂A + (2− γ)p̂A+1] = 0 (70)

where γ is the stabilization parameter for the
pressure projection term. On the other hand, the
pore pressure gradient stabilized three node pencil
reads,

(1 + βkh) (−p̂A−1 + 2p̂A − p̂A−1)

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (71)

where β is the stabilization parameter for the
gradient stabilization term. By comparing (70)
and (71), one may show that the L

2 projection
stabilization and gradient stabilization can become
identical to each other in the one-dimensional case
by setting

β = γ
hk

12ϑc∆t
(72)

Hence, once the bound of stability parameter γ is
defined, the bound of β is also known via (72). To
compute the stability bound for the L

2 projection
stabilization, we first apply (68) into (70), which
leads to

cosh
h

(
√
ϑc∆t)h

=
1 + h

2
/ϑc∆t)(4 + γ)/6

1− h2/ϑc∆t)(2− γ)/12
(73)

The approximate growth/decay rate does not con-
tain an imaginary part if the hyperbolic cosine
function is positive valued. Provided that γ and β

are both positive, the stabilization parameter that
eliminate spurious oscillation can be determined
from the denominator in the R.H.S of (73) ,

γ > 2− 12
ϑc∆t

h2
> 0 (74)

which is equivalent to the following relation for
the 1D case,

β >
hk

6ϑc∆t
− 1

h
k > 0 (75)

In our implementation, we employ the L
2 projec-

tion scheme and define γ as

γ = (2− 6
ϑc∆t

h2
)
�1
2
+

1

2
tanh(2− 12

ϑc∆t

h2
)
�

(76)

Notice that the term 1/2 + tanh(2 − 12ϑc∆t
h2 )/2

approaches zero if diffusivity is high and equal to 1
if diffusivity is low. This treatment is to limit over-
diffusion caused by usage of stabilization term as
mentioned in [39].

Stabilized F-bar Mixed FEM 

Standard Galerkin Method 

1D poromechanics governing equation 

Stabilized FEM for Poromechanics at Finite Strain 11

may assign a very large value to stabilize the so-
lution, doing so may over-diffuse the solution and
lead to nonphysical results [55].

Since it is difficult to directly determine, a
priori, the optimal value of the stabilization pa-
rameter for multi-dimensional large deformation
poromechanics problems, we estimate the sta-
bilization parameter based on a simplified one-
dimension diffusion problem. As [20] points out,
this represents a uniform d-dimensional mesh aligned
with the direction of the growth and decay of the
solution.

Our starting point of this analysis is the lin-
earized perturbation equation from Rice [42], where
an infinitesimal perturbation of pore pressure p̂

satisfies the linearization of the one dimensional
poromechanics governing equation, written as

c
∂
2
p̂

∂x2
=

∂p̂

∂t
, (65)

where c is the diffusivity. If the elastic response
of the solid skeleton and the permeability are
both isotropic and the plastic response is of the
Drucker-Prager type, then the diffusivity c can be
expressed as,

c =
k

µ

M
�
H

H + νβM � ;M
� =

M(K + 4G/3)

K + 4G/3 +B2M
(66)

where H, ν and β are the hardening modulus,
dilatancy factor and the frictional parameter de-
termined from the constitutive model. Notice that
M

� also appears in (60) and (61).
For brevity, the derivation of (65) is not re-

peated here. Interested readers please refer to
[42; 43; 46] for details.

Equations taking the form of (65) can be dis-
cretized in time and that leads to a modified
Helmholtz operator in space [20], which reads,

p̂n+1 + ϑc∆t
∂
2

∂x2
p̂n+1 = p̂n − (1− ϑ)c∆t

∂
2

∂x2
p̂n

(67)

where ϑ ∈ [0, 1] is the scalar parameter of the gen-
eralized trapezoid rule. Without introducing any
boundary conditions, (67) has an exact solution
that reads [20],

p̂(x) = exp(±x/

√
ϑc∆t) (68)

Notice that the finite element approximate growth
and decay rate of the solution can be determined
by assuming that xA = Ah such that,

p̂A = exp(±(h/(
√
ϑc∆t)h)A (69)

where
√
ϑc∆t

h
is the approximate growth/decay

term in the finite element solution. Obviously the
finite element solution may exhibit spurious oscil-
lations if

√
ϑc∆t

h
is complex valued, as pointed

out in [20]. To determine the range of the stabi-
lization parameters that prevent

√
ϑc∆t

h
being

complex valued, we consider a simple case in which
piecewise-linear finite elements are of uniform size
h. As a result, we may construct a three-node
stencil via the standard Galerkin method, i.e.,

− p̂A−1 + 2p̂A − p̂A−1

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (70)

Next, we add the stabilization terms defined in
(57) and (60) into (67). By assembling the effective
stiffness matrices of the L2 projection stabilization
term, we obtain,

−p̂A−1 +2p̂A − p̂A−1

+ h2

12ϑc∆t [(2− γ)p̂A−1

+(8 + 2γ)p̂A + (2− γ)p̂A+1] = 0 (71)

where γ is the stabilization parameter for the
pressure projection term. On the other hand, the
three node stencil stabilized by the fluid pressure
Laplacian method reads,

(1 + β
hk

ϑ∆tµ
)(−p̂A−1 + 2p̂A − p̂A−1)

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (72)

where β is the stabilization parameter for the gra-
dient stabilization term. By comparing (71) and
(72), one may show that the L

2 projection stabi-
lization and fluid pressure Laplacian stabilization
are identical to each other in the one-dimensional
case if the following holds,

γ =
�
12

ck

µh

�
β (73)

Hence, once the bound for the stability parameter
γ is defined, the bound of β is also known via
(73). To compute the stability bound for the L

2
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lead to nonphysical results [55].

Since it is difficult to directly determine, a
priori, the optimal value of the stabilization pa-
rameter for multi-dimensional large deformation
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2

∂x2
p̂n+1 = p̂n − (1− ϑ)c∆t

∂
2

∂x2
p̂n

(67)

where ϑ ∈ [0, 1] is the scalar parameter of the gen-
eralized trapezoid rule. Without introducing any
boundary conditions, (67) has an exact solution
that reads [20],

p̂(x) = exp(±x/

√
ϑc∆t) (68)

Notice that the finite element approximate growth
and decay rate of the solution can be determined
by assuming that xA = Ah such that,

p̂A = exp(±(h/(
√
ϑc∆t)h)A (69)

where
√
ϑc∆t

h
is the approximate growth/decay

term in the finite element solution. Obviously the
finite element solution may exhibit spurious oscil-
lations if

√
ϑc∆t

h
is complex valued, as pointed

out in [20]. To determine the range of the stabi-
lization parameters that prevent

√
ϑc∆t

h
being

complex valued, we consider a simple case in which
piecewise-linear finite elements are of uniform size
h. As a result, we may construct a three-node
stencil via the standard Galerkin method, i.e.,

− p̂A−1 + 2p̂A − p̂A−1

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (70)

Next, we add the stabilization terms defined in
(57) and (60) into (67). By assembling the effective
stiffness matrices of the L2 projection stabilization
term, we obtain,

−p̂A−1 +2p̂A − p̂A−1

+ h2

12ϑc∆t [(2− γ)p̂A−1

+(8 + 2γ)p̂A + (2− γ)p̂A+1] = 0 (71)

where γ is the stabilization parameter for the
pressure projection term. On the other hand, the
three node stencil stabilized by the fluid pressure
Laplacian method reads,

(1 + β
hk

ϑ∆tµ
)(−p̂A−1 + 2p̂A − p̂A−1)

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (72)

where β is the stabilization parameter for the gra-
dient stabilization term. By comparing (71) and
(72), one may show that the L

2 projection stabi-
lization and fluid pressure Laplacian stabilization
are identical to each other in the one-dimensional
case if the following holds,

γ =
�
12

ck

µh

�
β (73)

Hence, once the bound for the stability parameter
γ is defined, the bound of β is also known via
(73). To compute the stability bound for the L

2
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may assign a very large value to stabilize the so-
lution, doing so may over-diffuse the solution and
lead to nonphysical results [55].

Since it is difficult to directly determine, a
priori, the optimal value of the stabilization pa-
rameter for multi-dimensional large deformation
poromechanics problems, we estimate the sta-
bilization parameter based on a simplified one-
dimension diffusion problem. As [20] points out,
this represents a uniform d-dimensional mesh aligned
with the direction of the growth and decay of the
solution.

Our starting point of this analysis is the lin-
earized perturbation equation from Rice [42], where
an infinitesimal perturbation of pore pressure p̂

satisfies the linearization of the one dimensional
poromechanics governing equation, written as

c
∂
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p̂
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where c is the diffusivity. If the elastic response
of the solid skeleton and the permeability are
both isotropic and the plastic response is of the
Drucker-Prager type, then the diffusivity c can be
expressed as,

c =
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M
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M(K + 4G/3)
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(66)

where H, ν and β are the hardening modulus,
dilatancy factor and the frictional parameter de-
termined from the constitutive model. Notice that
M

� also appears in (60) and (61).
For brevity, the derivation of (65) is not re-

peated here. Interested readers please refer to
[42; 43; 46] for details.

Equations taking the form of (65) can be dis-
cretized in time and that leads to a modified
Helmholtz operator in space [20], which reads,

p̂n+1 + ϑc∆t
∂
2

∂x2
p̂n+1 = p̂n − (1− ϑ)c∆t

∂
2

∂x2
p̂n

(67)

where ϑ ∈ [0, 1] is the scalar parameter of the gen-
eralized trapezoid rule. Without introducing any
boundary conditions, (67) has an exact solution
that reads [20],

p̂(x) = exp(±x/

√
ϑc∆t) (68)

Notice that the finite element approximate growth
and decay rate of the solution can be determined
by assuming that xA = Ah such that,

p̂A = exp(±(h/(
√
ϑc∆t)h)A (69)

where
√
ϑc∆t

h
is the approximate growth/decay

term in the finite element solution. Obviously the
finite element solution may exhibit spurious oscil-
lations if

√
ϑc∆t

h
is complex valued, as pointed

out in [20]. To determine the range of the stabi-
lization parameters that prevent

√
ϑc∆t
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complex valued, we consider a simple case in which
piecewise-linear finite elements are of uniform size
h. As a result, we may construct a three-node
stencil via the standard Galerkin method, i.e.,
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+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (70)

Next, we add the stabilization terms defined in
(57) and (60) into (67). By assembling the effective
stiffness matrices of the L2 projection stabilization
term, we obtain,

−p̂A−1 +2p̂A − p̂A−1

+ h2

12ϑc∆t [(2− γ)p̂A−1

+(8 + 2γ)p̂A + (2− γ)p̂A+1] = 0 (71)

where γ is the stabilization parameter for the
pressure projection term. On the other hand, the
three node stencil stabilized by the fluid pressure
Laplacian method reads,

(1 + β
hk

ϑ∆tµ
)(−p̂A−1 + 2p̂A − p̂A−1)

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (72)

where β is the stabilization parameter for the gra-
dient stabilization term. By comparing (71) and
(72), one may show that the L

2 projection stabi-
lization and fluid pressure Laplacian stabilization
are identical to each other in the one-dimensional
case if the following holds,

γ =
�
12

ck

µh

�
β (73)

Hence, once the bound for the stability parameter
γ is defined, the bound of β is also known via
(73). To compute the stability bound for the L
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may assign a very large value to stabilize the so-
lution, doing so may over-diffuse the solution and
lead to nonphysical results [55].

Since it is difficult to directly determine, a
priori, the optimal value of the stabilization pa-
rameter for multi-dimensional large deformation
poromechanics problems, we estimate the sta-
bilization parameter based on a simplified one-
dimension diffusion problem. As [20] points out,
this represents a uniform d-dimensional mesh aligned
with the direction of the growth and decay of the
solution.

Our starting point of this analysis is the lin-
earized perturbation equation from Rice [42], where
an infinitesimal perturbation of pore pressure p̂

satisfies the linearization of the one dimensional
poromechanics governing equation, written as

c
∂
2
p̂

∂x2
=

∂p̂

∂t
, (65)

where c is the diffusivity. If the elastic response
of the solid skeleton and the permeability are
both isotropic and the plastic response is of the
Drucker-Prager type, then the diffusivity c can be
expressed as,

c =
k

µ

M
�
H

H + νβM � ;M
� =

M(K + 4G/3)

K + 4G/3 +B2M
(66)

where H, ν and β are the hardening modulus,
dilatancy factor and the frictional parameter de-
termined from the constitutive model. Notice that
M

� also appears in (60) and (61).
For brevity, the derivation of (65) is not re-

peated here. Interested readers please refer to
[42; 43; 46] for details.

Equations taking the form of (65) can be dis-
cretized in time and that leads to a modified
Helmholtz operator in space [20], which reads,

p̂n+1 + ϑc∆t
∂
2

∂x2
p̂n+1 = p̂n − (1− ϑ)c∆t

∂
2

∂x2
p̂n

(67)

where ϑ ∈ [0, 1] is the scalar parameter of the gen-
eralized trapezoid rule. Without introducing any
boundary conditions, (67) has an exact solution
that reads [20],

p̂(x) = exp(±x/

√
ϑc∆t) (68)

Notice that the finite element approximate growth
and decay rate of the solution can be determined
by assuming that xA = Ah such that,

p̂A = exp(±(h/(
√
ϑc∆t)h)A (69)

where
√
ϑc∆t

h
is the approximate growth/decay

term in the finite element solution. Obviously the
finite element solution may exhibit spurious oscil-
lations if

√
ϑc∆t

h
is complex valued, as pointed

out in [20]. To determine the range of the stabi-
lization parameters that prevent

√
ϑc∆t

h
being

complex valued, we consider a simple case in which
piecewise-linear finite elements are of uniform size
h. As a result, we may construct a three-node
stencil via the standard Galerkin method, i.e.,

− p̂A−1 + 2p̂A − p̂A−1

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (70)

Next, we add the stabilization terms defined in
(57) and (60) into (67). By assembling the effective
stiffness matrices of the L2 projection stabilization
term, we obtain,

−p̂A−1 +2p̂A − p̂A−1

+ h2

12ϑc∆t [(2− γ)p̂A−1

+(8 + 2γ)p̂A + (2− γ)p̂A+1] = 0 (71)

where γ is the stabilization parameter for the
pressure projection term. On the other hand, the
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where β is the stabilization parameter for the gra-
dient stabilization term. By comparing (71) and
(72), one may show that the L

2 projection stabi-
lization and fluid pressure Laplacian stabilization
are identical to each other in the one-dimensional
case if the following holds,

γ =
�
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µh

�
β (73)

Hence, once the bound for the stability parameter
γ is defined, the bound of β is also known via
(73). To compute the stability bound for the L
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projection stabilization, we first apply (69) into
(71), which leads to

cosh
h

(
√
ϑc∆t)h

=
(1 + h

2
/ϑc∆t)(4 + γ)/6

(1− h2/ϑc∆t)(2− γ)/12
(74)

The approximate growth/decay rate does not con-
tain an imaginary part if the hyperbolic cosine
term is positive. Provided that γ and β are both
positive, the stabilization parameter that elimi-
nates spurious oscillation can be determined from
the denominator in the right hand side of (74),

γ > 2− 12
ϑc∆t

h2
> 0 (75)

which is equivalent to the following relation for
the 1D case,

β >
µ

k
(
ch

6
− ϑk∆t

µh
) > 0 (76)

In our implementation, we employ the L
2 projec-

tion scheme and define γ as

γ = (2− 6
ϑc∆t

h2
)
�1
2
+

1

2
tanh(2− 12

ϑc∆t

h2
)
�

(77)

Notice that the term 1/2 + tanh(2 − 12ϑc∆t
h2 )/2

approaches zero if diffusivity is high and equal to
1 if diffusivity is low. This treatment is to limit
over-diffusion caused by usage of the stabilization
term as mentioned in [55].

Remark 3 It is evident that the estimation of the
stabilization parameter is based on a 1D problem,
and thus as useful as it is, cannot be relied upon
as a definitive analytical solution for the optimal
value of the stabilization parameter. Nevertheless,
in engineering practice, it may serve as an useful
guideline for typical problems. In the numerical
examples shown in Section 5, the estimated sta-
bilization parameter is able to eliminate spurious
oscillations and converges to analytical solutions
without introducing significant over-diffusion.

Remark 4 Notice that the above formulation can
be reduced to the classical 1D lumped mass case if
γ = 2 and β = h/(6ϑc∆t). The latter relation has
been pointed out in [33]. The stabilization param-
eter suggested in [55] is equivalent to γ = 2M �

/G

in our formulation. This is a more conservative
choice than the γ defined in (77) if 1/2G is larger
than 2/M �.

Remark 5 Rice’s analysis in [42] has shown that
dilatant hardening is unstable when H is negative.
This unstable response prevails in both analytical
and numerical responses, since the growth/decay
rates of the numerical and analytical solutions are
both complex valued.

Remark 6 For multi-dimensional problems, one
may use the definition in [53] to define the element
length, i.e.,

h(X) = 2(
�

a

| ∇X
p
f (X)

||∇X pf (X)|| ·∇
X

Na(X)|)−1

(78)

where h(x) is not a constant within an element,
but rather a continuous field which measures the
element length in the direction of the pore pressure
gradient. This definition, however, is not suitable
for problems where pore pressure varies within
the boundary layer but remains zero elsewhere.
For those cases, we define the element length as,

h(X) = 2(
�

a

|N ·∇X
Na(X)|)−1 (79)

where N = (1/
√
3)(e1 + e2 + e3) is a unit vector.

4 Implementation

Implementation of the poromechanics formulation
presented above is carried out within a highly
abstracted C++ framework employing template
based generic programming practices. The mo-
tivation and advantages of such an environment
are presented in this section and include access
to transformational tools, graph based assembly,
simplified analytic linearization, and a natural
treatment of strongly coupled systems. The sec-
tion summarizes the framework described in [36]
and [37].

Demands on multi-physics analyses, includ-
ing poromechanics, such as uncertainty quantifica-
tion, optimization, and sensitivity analysis, require
additional embedded computational capabilities.
These embedded tools have been implemented
using templates and operator overloading in a
series of packages within the Trilinos framework
[22]. These packages have been employed in an

To have real growth/decay rate, we need  

Growth/decay rate 
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tivation and advantages of such an environment
are presented in this section and include access
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simplified analytic linearization, and a natural
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Demands on multi-physics analyses, includ-
ing poromechanics, such as uncertainty quantifica-
tion, optimization, and sensitivity analysis, require
additional embedded computational capabilities.
These embedded tools have been implemented
using templates and operator overloading in a
series of packages within the Trilinos framework
[22]. These packages have been employed in an

Turn off stabilization 
 without introducing switch 

Safety factor 

See Sun, Ostien, Salinger, International Journal for Numerical and Analytical Methods in Geomechanics, 2013 



Unconfined	
  Compression	
  Test	
  of	
  Cold	
  Thermo-­‐sensi(ve	
  Porous	
  
Media	
  at	
  Room	
  Temperature	
  

o  Material  
o  J2 perfect plasticity 
o  Kozeny-Carman permeability 
o  Homogenized thermal conductivity 
o  Pore-fluid diffusivity < thermal 

diffusivity 

o  Boundary Condition  
o  Temperature at surface  =12oC 
o  Initial temperature = 0oC 
o  Globally undrained 
o  Unconfined side surface 
o  Prescribed displacement on the top 

and bottom 
o  Under constant rate, apply 16.67% 

vertical strain in 10 hours 

T= 12oC 
T= 0oC 

T= 12oC 

T= 12oC, d = -dx 

T= 12oC, d = dx 



Coupling	
  effects	
  of	
  Mul(physical	
  Responses	
  in	
  
Geometrically	
  Nonlinear	
  Regime	
  	
  

Ø  Temperature & equivalent plastic strain Ø  Pore Pressure 



Why	
  localiza(on	
  elements?	
  

20	
  

C.B. Hirschberger, N. Sukumar, P. Steinmann (2008)

Computational homogenization of material layers with micromorphic mesostructure

Figure 1: Example for a material layer within a bulk material of different properties.

homogenization framework is implemented within a finite element method along the
lines of previous approaches (16; 17; 18; 19; 20) and subsequent refinements that ac-
count for the influence of higher gradients (21; 22). In the multiscale finite-element
solution scheme, we utilize cohesive interface elements to represent the material layer
at the macro level and a micromorphic finite-element boundary value problem on the
representative volume element to account for the mesostructure of the interface. Simi-
lar approaches can be found in the literature, e.g. with a micropolar continuum at the
macro level (23) or in the gradient-enhanced homogenization of thin sheet structures
(24). The use of cohesive interface elements dates back to the 1980s (25) and has been
employed in the modelling of decohesion in Reference (26; 27; 28), plastic localization
in References(29; 30; 31; 32; 33), and has been combined with a discontinuous Galerkin
approach towards the efficient numerical treatment of discontinuities in Reference (34).

In two-dimensional continua, which is the focus in this paper, the interface elements
are one-dimensional. On the macro level, the contribution of each interface element to
the global macro stiffness and the macro residual is obtained by a numerical integration
that involves vectorial traction and separation quantities rather than the complete stress
and strain tensor. The constitutive relation between the traction and the interface sep-
aration is numerically evaluated at each integration point of the interface element via
the finite-element solution of the mesostructural boundary value problem. As indicated
before, we model this meso boundary value problem such that it accounts for a rep-
resentative geometry and the composition of the underlying microstructure. Since the
micromorphic finite elements within the RVE incorporate both standard and additional
micromorphic degrees of freedom, a nonlinear meso–micro coupled system of equation
is solved. From the computational homogenization procedure, the macro traction vector
and the tangent operator are obtained from the RVE and embedded into the iterative
solution of the nonlinear macro boundary value problem.

Outline The remainder of this paper is organized as follows. In Section 2, we recall
the continuum mechanics framework for the macro level, before we introduce the mi-
cromorphic representative volume element in Section 3. In Section 4, the homogeniza-

3
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also occur in over-consolidated soils deforming in shear (e.g. References [26–29]). In these
cases, the deformation across the band may include a certain degree of dilatancy in addition
to shear. Finally, spallation in metals may be regarded as the result of a process of damage
localization leading to the formation of void sheets [30–36].

The computational modelling of strain localization has been the subject of extensive work.
Ortiz et al. [28, 29, 37], and subsequently others, devised specialized elements by embedding
discontinuous deformation modes into finite elements, with the geometry and orientation of the
deformation discontinuities determined from a local bifurcation analysis. While this approach
ameliorates the dependence of shear band paths on the mesh orientation, the mesh sizes sets
the maximum spatial resolution of the calculation. Another approach consists of resolving the
shear band thickness, either with a fixed mesh [20], or by recourse to mesh adaption [38].
However, the simultaneous resolution of fine shear bands and coarse geometrical features, such
as grains and shear-band arrays, may result in exceedingly large meshes, specially in three
dimensions. Yet another approach consists of the use of mesh-free Galerkin methods [39–41].
This approach is well-suited to the computation of arbitrary shear-band paths, but the maximum
spatial resolution afforded by the method is still limited by the density of nodes.

In the present work, we regard strain localization strictly as a sub-grid phenomenon and,
consequently, the bands of strain localization are modelled as displacement discontinuities.
These displacement discontinuities are confined to volume–element interfaces and are enabled
by the insertion of specialized strain-localization elements. These elements consist of two
surfaces, attached to the abutting volume elements, which can separate and slip relative to
each other. The kinematics of the strain-localization elements is identical to the kinematics
of cohesive elements proposed by Ortiz and Pandolfi [42] for the simulation of fracture. In
contrast to cohesive elements, the behaviour of strain-localization elements is governed directly
by the same constitutive relation which governs the deformation of the volume elements. As is
evident from dimensional considerations alone, the transformation of displacement jumps into a
deformation gradient requires the introduction of a length parameter, namely, the band thickness.
In the present work, the band thickness is optimized on the basis of an incremental variational
principle [43, 44]. We show that this optimization takes the form of a configurational-force
equilibrium and results in a well-defined band thickness. The predictive ability of the approach
is demonstrated by means of simulations of Guduru et al. [45] dynamic shear-band tests in
pre-notched C300 steel specimens.

2. GENERAL FRAMEWORK

We consider a solid of reference configuration B undergoing a motion defined by a deformation
mapping ! : B × [0, T ] → R3, where [0, T ] denotes a time interval. The motions of the body
obey all the thermodynamic laws, i.e. the conservation of mass, linear momentum, angular
momentum and the first and second laws of thermodynamics. The deformation of the solid
includes a thin band of strain localization defined by its mid-surface S ⊂ B and its local
thickness h, Figure 1. In addition, let !!" be the displacement jump across S and let N be the
unit normal to S. Motivated by the multiplicative decomposition of the deformation gradient
for the formulation of single-crystal plasticity [46], we represent the deformation gradient F
within the band in the form

F = F‖F⊥ (1)

Copyright ! 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 62:1013–1037

Futhermore, the power is simplified

PD =
�

±

�

B±
0

P · Ḟ dV +

�

S0

P · Ḟh dS

=
�

±

�

B±
0

P · Ḟ dV +

�

S0

P ·
�
Ḟ

�
h+ [[ϕ̇]]⊗N

�
dS

=
�

±

�

B±
0

P · Ḟ dV +

�

S0

�
hP · Ḟ �

+ T · [[ϕ̇]]
�
dS

(9)

such that there is no longer coupling between membrane and jump components. The

work-conjugate to [[ϕ̇]] is now the traction in the reference configuration T = PN . Fi-

nally, we should also not that the particular order of the decomposition is arbitrary. One

can obtain a result identical to Equation 7 through an alternate decompostion F⊥F �

provided one is consistent with regard to the reference B0, intermediate BI , and cur-

rent configuration B of the body. The alternate decomposition is noted in Figure 3.

The intermediate configuration is now rotated through F �
and the we must express

F⊥
with respect to N̄ . Note that N̄ is parallel to N̂ but is not a unit vector. The ef-

fective normal is N̄ = N̂dÂ/(ĴdA) where Ĵ = det[F �] and it is constructed to yield

(F �)−TN . Because the mid-plane in the current configuration is only a translation

of the mid-plane in the intermediate configuration and that each configuration shares a

common basis, we can still employ the original definition of F �
. Both multiplicative

decompositions yield the same additive decomposition.

figures/Localization_configurations_alternate.pdf

Figure 3: The reference B0, intermediate BI , and current configuration B of the body. One can switch the

order of the multiplicative decomposition and obtain the same additive decomposition provided F �
and F⊥

are consistent with respect to the intermediate configuration.

We stress that although we do specify an intermediate configuration for each for-

mulation, we can obtain all the needed information to completely define both F⊥
and

F �
from the reference and current configuration. This is enabled by construction. The

in-plane basis vectors are only rotated through F �
. The jump [[ϕ]] only acts to translate

the constructed mid-plane.

2.1. Finite element implementation
Borrowing heavily from the methodology, implementation, and notation discussed

in [? ], we review the kinematics and the force calcualtion. Through standard shape

functions λa(s1, s2) where a ranges from 1 to the number of nodes n and s1 and s2
are the natural coordinates of the surface element, we can define the mid-plane to have

undeformed coordinates

X (s) =
n�

a=1

λa (s) X̄a (10)
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Figure 14. Results of multiscale effective permeability analysis inside compaction band. Color maps
represent: (a) porosity; (b) vertical velocity field; and (c) pore pressure.

Table II. Dissipation rates computed via spatial averaging and prescribed values at boundaries.

Volume averaged dissipation rate, J/s per 1m3 71.1
Dissipation rate obtained from B.C., J/s per 1m3 69.8
Difference, J/s 1.3
Homogenization error 1.9%

difference. These results show a smaller drop in permeability than other studies which report
drops between two and three orders of magnitude [17, 30, 31]. This discrepancy may be due to
the fact that the permeability in the literature such as [17, 31] are obtained via stochastically
reconstructed pore space from 2D SEM images, whereas the calculations presented in this example
are conducted on 3D tomographic images directly obtained from X-ray CT. To assess the accuracy
of the homogenization procedure, we compute the volume-averaged energy dissipation rate and
the energy dissipation rate obtained from boundary conditions. The error of the meso-to-macro
homogenization procedure for the compaction band specimen is 1.9%, as shown in Table II. These
results show that the LBM/FEM multiscale framework is able to achieve reasonable accuracy,
providing that the unit cells are large enough to behave as representative elementary volumes.

It should be noted that all examples shown in this work were conducted in a single-processor
machine. The permeability calculations for the compaction band samples are not even feasible
without resorting to the multiscale LB/FEM technique proposed in this work.

6. CONCLUSION

How does microstructural pore geometry affect the macroscopic fluid transport properties of porous
materials? To begin answering this question, we have presented a computational framework that
quantifies the interplay between microscale geometrical attributes, directly extracted from tomo-
graphic images, and the macroscopic pore fluid properties encapsulated in the effective permeability
of the material. Specifically, we have incorporated and expanded a variety of numerical techniques,
including semi-implicit level sets, graph theory, and LB coupled with finite element computations
exploiting hierarchical multiscale techniques. The numerical techniques proposed are used sequen-
tially with the output from one serving as the input for the next. We have also proposed quantitative
criteria to assess the validity of the unit cell size and the accuracy in the multiscale calculations.
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the fact that the permeability in the literature such as [17, 31] are obtained via stochastically
reconstructed pore space from 2D SEM images, whereas the calculations presented in this example
are conducted on 3D tomographic images directly obtained from X-ray CT. To assess the accuracy
of the homogenization procedure, we compute the volume-averaged energy dissipation rate and
the energy dissipation rate obtained from boundary conditions. The error of the meso-to-macro
homogenization procedure for the compaction band specimen is 1.9%, as shown in Table II. These
results show that the LBM/FEM multiscale framework is able to achieve reasonable accuracy,
providing that the unit cells are large enough to behave as representative elementary volumes.

It should be noted that all examples shown in this work were conducted in a single-processor
machine. The permeability calculations for the compaction band samples are not even feasible
without resorting to the multiscale LB/FEM technique proposed in this work.

6. CONCLUSION

How does microstructural pore geometry affect the macroscopic fluid transport properties of porous
materials? To begin answering this question, we have presented a computational framework that
quantifies the interplay between microscale geometrical attributes, directly extracted from tomo-
graphic images, and the macroscopic pore fluid properties encapsulated in the effective permeability
of the material. Specifically, we have incorporated and expanded a variety of numerical techniques,
including semi-implicit level sets, graph theory, and LB coupled with finite element computations
exploiting hierarchical multiscale techniques. The numerical techniques proposed are used sequen-
tially with the output from one serving as the input for the next. We have also proposed quantitative
criteria to assess the validity of the unit cell size and the accuracy in the multiscale calculations.

Copyright ! 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)
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1. Not repeatable for different stress path (It is impossible to 
prepare two identical granular assemblies in lab) 

2. Technically, volumetric digital image correlation during 
mechanical test is difficult and very rare (Hall et al 2011). 

3. Permeability changes due to changes of pore geometry 
(shape) is lost if porosity dependent empirical relation (i.e., 
Kozeny-Carman relation) is used to analyze pore-scale 
images.  
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Fig. 1 The cumulative probability function of grain diameter of the DEM assembly.

Fig. 2 DEM assembly and loading conditions. Small boxes show locations of the 4mm unit cells used for pore-fluid analysis (Section 3.2).

was undergoing simple shear at a constant shearing rate and under constant vertical stress. Periodic boundaries were
used on all sides of the assembly during the initial compaction process [9], but the periodicity of the top and bottom
boundaries was broken at the start of shearing and replaced with thin rigid horizontal layers of conforming spheres that
were arranged along the x-z planar directions. In this manner, the top and bottom boundaries were modeled as rough
rigid platens. The four vertical sides, in x-y and y-z planar directions, remained as periodic boundaries during shear
loading. With these conditions, a shear band could develop along the full x-x width and z-z depth, while passing across
the periodic side boundaries.

2 WaiChing Sun et al.

relation, while permeability changes due to macroscopic shear and grain rearrangement, rotation, and sliding are
neglected. Hence, a macroscopic empirical porosity-permeability relation may fail to deliver reliable predictions when
the permeability changes are caused by factors other than volumetric changes of pore space, such as isolation of the
pores and changes in tortuosity and size distribution of flow channels, as shown in [34].

Volumetric digital image correlation applied to X-ray tomography images of geomaterials may help in under-
standing the kinematics of grains motion and changes in pore geometry as shown in [23; 27]. However, due to the
technical difficulty of conducting mechanical tests while simultaneously performing CT X-ray imaging, experimental
measurement of microstructural attributes is rare (e.g., [13]).

DEM is widely used to model particle assemblies and to simulate the mechanical behavior of granular materials.
Recent work has coupled DEM with LBM and finite element models to study fluid flow processes that evolve on
a similar time scale as particles are being rearranged: soil liquefaction, fluidized beds, and suffusion [7; 11; 12]. In
this study, our focus is on shear band formation in high-porosity granular material under the fully drained condition.
Because the shearing that produces shear bands in sands is slow in comparison with fluid migration under the drained
condition, the current work decouples the DEM and LBM analyses, with DEM used to simulate the formation of a
band and LBM analysis used to analyze the fluid flow after formation of the band.

To analyze the links between microstructural granular motion and macroscopic hydraulic properties in a repeatable
and cost-efficient way, we introduce a multiscale numerical alternative. This approach incorporates the discrete element
method (DEM) to simulate grain motion inside the dilatant shear band and a multiscale lattice Boltzmann (LBM)/finite
element (FEM) scheme to capture the evolution of permeability. Since the motion of every particle in the DEM
ensemble is recorded at every time step, this approach makes it possible to quantify how individual particles affect
macroscopic hydraulic properties without the necessity of introducing an additional phenomenological law.

As for notations and symbols, bold-faced letters denote tensors; the symbol ‘·’ denotes a single contraction of
adjacent indices of two tensors (e.g. a · b = aibi or c · d = ci jd jk ); the symbol ‘:’ denotes a double contraction of
adjacent indices of tensor of rank two or higher ( e.g. C : εe = Ci jklεe

kl ); the symbol ‘⊗’ denotes a juxtaposition of two
vectors (e.g. a⊗b = aib j or two symmetric second order tensors (e.g. (α ⊗β ) = αi jβkl).

2 Method

2.1 Grain assembly from simple shear discrete element simulation

In this study, we use the open source 3D discrete element (DEM) code OVAL to simulate a simple shear test on a
specimen composed of spherical particles [2; 10; 20]. A DEM simulation represents a granular material as an assembly
of elemental particles, among which interactions are explicitly modeled by simplified constitutive contact laws [10].
Each particle’s motions are obtained through force and momentum balances, expressed as

mü+Cm u̇+P(u) = Fext (1)

I · ω̈ = Mext (2)

where m and Cm are the mass and translational damping. Vector P(u) is the net force imbalance vector due to the
inter-particle contact forces, and Fext denotes the external loads exerted by walls or gravity. I is the moment of inertia,
ω̈ is the rotational acceleration, and Mext is the external moment on a particular grain. For simplicity, gravity loads are
neglected in the current discrete element simulations. To solve Equation 1, a time-stepping explicit central difference
leap-frog algorithm is used [10]. When simulations are intended to approximate slow, quasi-static loading conditions,
the mass damping Cm and contact damping Cs (described below) must be sufficient to dissipate high frequency
vibrational modes without unduly impeding particle motions that arise from particle interactions or the boundary
conditions. The homogenized macroscopic stress and strain tensors, σ and ε of the granular assembly are determined
from the contact forces f α

i and branch vectors lα
j between the centers of the Nc contacting particle pairs and from the

average deformation gradient Fi j of the assembly:

σi j =
1

VΩ

Nc

∑
α=1

f α
i lα

j ; εi j =
1
2
(FikFk j − Ii j) (3)

where VΩ is the assembly volume.
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2.1.1 Contact model

In our implementation, we use a simplified contact model in which the grain-to-grain force-displacement relation

is governed by a frictional Hertz-Mindlin mechanism with viscous damping but without cohesive bonding between

particles. Incremental changes in the normal and tangential contact forces, f n
and f t

, are determined by the shear

modulus of the grains Gg, Poisson ratio ν , radii of the contacting grains R1 and R2, and the normal and tangential

displacements at the contact, dδ and ds [18],

d f n = kndδ ; kn =

√
2Gg

√
Re

1−ν
δ 1/2

(4)

d f t = ksds ; ks =
2

√
2Gg

√
Re

2−ν
δ 1/2

(5)

where δ is the indentation at the contact and Re
is the effective radius,

Re =
2R1R2

R1 +R2

(6)

The tangential force is limited by the friction coefficient µ f
, such that | f t |≤ µ f f n

. Equation 5 gives the initial, elastic

tangential stiffness ks
between elastic spheres. The incremental tangential force f t

, however, is path-dependent, and

an exact solution involves the history of normal and tangential force at the contact [19]. The approximate solution

of Thornton and Randall [37] is used in the current simulation, which permits solution of a full loading-unloading-

reloading cycle between two spherical grains.

To maintain a stable quasi-static simulation, a viscous damping force is applied at each contact

f s,vis =Csṡ (7)

where ṡ is the tangential sliding velocity at a contact, and Cs
is the contact viscosity. This contact viscosity is “turned

off” whenever the frictional sliding occurs, as such sliding becomes a dissipation mechanism that prevents spurious

grain vibrations. To freely permit the spontaneous emergence of shear bands, the viscosity Cm
in Eq. 1 was set to zero,

and the viscosity Cs = 0.12

√
mkn was used exclusively as a damping measure. In the simulation, the shear modulus G

was 29GPa, the Poisson ratio ν was 0.15, and the friction coefficient between particles was 0.50. These values are in

the ranges of those measured for quartz grains [25].

2.1.2 Initial particle arrangement

The DEM simulation was conducted with an assembly of 129,000 spherical grains that were densely arranged with an

initial isotropic fabric. The distribution of particle sizes is shown in Fig. 1 and corresponds to a poorly graded medium

sand with a coefficient of uniformity Cu of 1.4 (= D60/D10), a median particle size D50 (by volume) of 1.00 mm, and

an effective size D10 of 0.754 mm. The dense arrangement was attained from an initially sparse random arrangement

of particles by isotropically reducing the boundary dimensions. During compaction, friction was removed from the

particle interactions, a technique that is commonly used to achieve high packing densities [36]. The compacted porosity

was 0.337 (a void ratio of 0.509), with an initial average coordination number of 5.52 contacts per particle. Because of

the isotropic compaction technique, the initial normal stresses in all directions were nearly equal to the mean stress of

416kPa. These stresses, computed with Eq. 3, are the inter-granular, effective stresses that are developed by the contact

forces.

2.1.3 Boundary conditions

The assembly shape and boundary conditions were chosen to promote the free emergence of shear bands during simple

shear loading, and the assembly dimensions were chosen to produce a shear band of sufficient volume for studying its

fabric and hydraulic properties. The DEM assembly dimensions were 50.6×118×12.7 mm, or in terms of the particle

size D50, about 51×118×13 D50. Shearing was imposed across the 118 mm y-height by moving the top boundary

horizontally at a constant velocity in the x-direction (Fig. 2), while maintaining constant assembly widths in the x-x and

z-z directions and a constant vertical stress σyy. That is, the vertical height was freely allowed to change while assembly
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relation, while permeability changes due to macroscopic shear and grain rearrangement, rotation, and sliding are
neglected. Hence, a macroscopic empirical porosity-permeability relation may fail to deliver reliable predictions when
the permeability changes are caused by factors other than volumetric changes of pore space, such as isolation of the
pores and changes in tortuosity and size distribution of flow channels, as shown in [34].

Volumetric digital image correlation applied to X-ray tomography images of geomaterials may help in under-
standing the kinematics of grains motion and changes in pore geometry as shown in [23; 27]. However, due to the
technical difficulty of conducting mechanical tests while simultaneously performing CT X-ray imaging, experimental
measurement of microstructural attributes is rare (e.g., [13]).

DEM is widely used to model particle assemblies and to simulate the mechanical behavior of granular materials.
Recent work has coupled DEM with LBM and finite element models to study fluid flow processes that evolve on
a similar time scale as particles are being rearranged: soil liquefaction, fluidized beds, and suffusion [7; 11; 12]. In
this study, our focus is on shear band formation in high-porosity granular material under the fully drained condition.
Because the shearing that produces shear bands in sands is slow in comparison with fluid migration under the drained
condition, the current work decouples the DEM and LBM analyses, with DEM used to simulate the formation of a
band and LBM analysis used to analyze the fluid flow after formation of the band.

To analyze the links between microstructural granular motion and macroscopic hydraulic properties in a repeatable
and cost-efficient way, we introduce a multiscale numerical alternative. This approach incorporates the discrete element
method (DEM) to simulate grain motion inside the dilatant shear band and a multiscale lattice Boltzmann (LBM)/finite
element (FEM) scheme to capture the evolution of permeability. Since the motion of every particle in the DEM
ensemble is recorded at every time step, this approach makes it possible to quantify how individual particles affect
macroscopic hydraulic properties without the necessity of introducing an additional phenomenological law.

As for notations and symbols, bold-faced letters denote tensors; the symbol ‘·’ denotes a single contraction of
adjacent indices of two tensors (e.g. a · b = aibi or c · d = ci jd jk ); the symbol ‘:’ denotes a double contraction of
adjacent indices of tensor of rank two or higher ( e.g. C : εe = Ci jklεe

kl ); the symbol ‘⊗’ denotes a juxtaposition of two
vectors (e.g. a⊗b = aib j or two symmetric second order tensors (e.g. (α ⊗β ) = αi jβkl).

2 Method

2.1 Grain assembly from simple shear discrete element simulation

In this study, we use the open source 3D discrete element (DEM) code OVAL to simulate a simple shear test on a
specimen composed of spherical particles [2; 10; 20]. A DEM simulation represents a granular material as an assembly
of elemental particles, among which interactions are explicitly modeled by simplified constitutive contact laws [10].
Each particle’s motions are obtained through force and momentum balances, expressed as

mü+Cm u̇+P(u) = Fext (1)

I · ω̈ = Mext (2)

where m and Cm are the mass and translational damping. Vector P(u) is the net force imbalance vector due to the
inter-particle contact forces, and Fext denotes the external loads exerted by walls or gravity. I is the moment of inertia,
ω̈ is the rotational acceleration, and Mext is the external moment on a particular grain. For simplicity, gravity loads are
neglected in the current discrete element simulations. To solve Equation 1, a time-stepping explicit central difference
leap-frog algorithm is used [10]. When simulations are intended to approximate slow, quasi-static loading conditions,
the mass damping Cm and contact damping Cs (described below) must be sufficient to dissipate high frequency
vibrational modes without unduly impeding particle motions that arise from particle interactions or the boundary
conditions. The homogenized macroscopic stress and strain tensors, σ and ε of the granular assembly are determined
from the contact forces f α

i and branch vectors lα
j between the centers of the Nc contacting particle pairs and from the

average deformation gradient Fi j of the assembly:

σi j =
1

VΩ

Nc

∑
α=1

f α
i lα

j ; εi j =
1
2
(FikFk j − Ii j) (3)

where VΩ is the assembly volume.
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relation, while permeability changes due to macroscopic shear and grain rearrangement, rotation, and sliding are
neglected. Hence, a macroscopic empirical porosity-permeability relation may fail to deliver reliable predictions when
the permeability changes are caused by factors other than volumetric changes of pore space, such as isolation of the
pores and changes in tortuosity and size distribution of flow channels, as shown in [34].

Volumetric digital image correlation applied to X-ray tomography images of geomaterials may help in under-
standing the kinematics of grains motion and changes in pore geometry as shown in [23; 27]. However, due to the
technical difficulty of conducting mechanical tests while simultaneously performing CT X-ray imaging, experimental
measurement of microstructural attributes is rare (e.g., [13]).

DEM is widely used to model particle assemblies and to simulate the mechanical behavior of granular materials.
Recent work has coupled DEM with LBM and finite element models to study fluid flow processes that evolve on
a similar time scale as particles are being rearranged: soil liquefaction, fluidized beds, and suffusion [7; 11; 12]. In
this study, our focus is on shear band formation in high-porosity granular material under the fully drained condition.
Because the shearing that produces shear bands in sands is slow in comparison with fluid migration under the drained
condition, the current work decouples the DEM and LBM analyses, with DEM used to simulate the formation of a
band and LBM analysis used to analyze the fluid flow after formation of the band.

To analyze the links between microstructural granular motion and macroscopic hydraulic properties in a repeatable
and cost-efficient way, we introduce a multiscale numerical alternative. This approach incorporates the discrete element
method (DEM) to simulate grain motion inside the dilatant shear band and a multiscale lattice Boltzmann (LBM)/finite
element (FEM) scheme to capture the evolution of permeability. Since the motion of every particle in the DEM
ensemble is recorded at every time step, this approach makes it possible to quantify how individual particles affect
macroscopic hydraulic properties without the necessity of introducing an additional phenomenological law.

As for notations and symbols, bold-faced letters denote tensors; the symbol ‘·’ denotes a single contraction of
adjacent indices of two tensors (e.g. a · b = aibi or c · d = ci jd jk ); the symbol ‘:’ denotes a double contraction of
adjacent indices of tensor of rank two or higher ( e.g. C : εe = Ci jklεe

kl ); the symbol ‘⊗’ denotes a juxtaposition of two
vectors (e.g. a⊗b = aib j or two symmetric second order tensors (e.g. (α ⊗β ) = αi jβkl).

2 Method

2.1 Grain assembly from simple shear discrete element simulation

In this study, we use the open source 3D discrete element (DEM) code OVAL to simulate a simple shear test on a
specimen composed of spherical particles [2; 10; 20]. A DEM simulation represents a granular material as an assembly
of elemental particles, among which interactions are explicitly modeled by simplified constitutive contact laws [10].
Each particle’s motions are obtained through force and momentum balances, expressed as

mü+Cm u̇+P(u) = Fext (1)

I · ω̈ = Mext (2)

where m and Cm are the mass and translational damping. Vector P(u) is the net force imbalance vector due to the
inter-particle contact forces, and Fext denotes the external loads exerted by walls or gravity. I is the moment of inertia,
ω̈ is the rotational acceleration, and Mext is the external moment on a particular grain. For simplicity, gravity loads are
neglected in the current discrete element simulations. To solve Equation 1, a time-stepping explicit central difference
leap-frog algorithm is used [10]. When simulations are intended to approximate slow, quasi-static loading conditions,
the mass damping Cm and contact damping Cs (described below) must be sufficient to dissipate high frequency
vibrational modes without unduly impeding particle motions that arise from particle interactions or the boundary
conditions. The homogenized macroscopic stress and strain tensors, σ and ε of the granular assembly are determined
from the contact forces f α

i and branch vectors lα
j between the centers of the Nc contacting particle pairs and from the

average deformation gradient Fi j of the assembly:

σi j =
1

VΩ

Nc

∑
α=1

f α
i lα

j ; εi j =
1
2
(FikFk j − Ii j) (3)

where VΩ is the assembly volume.
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see W.C. Sun, M.R. Kuhn, J.W. Rudnicki, a multiscale DEM-LBM analysis on dilatant shear band, Acta geotechnica, 2013 
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Fig. 6 (a) Evolution of coordination number and (b) fraction of sliding contacts during simple shear loading.

The nature of stress and deformation within the band are illustrated in Figure 8 which shows profiles of porosity,

shearing strain and rotation, and confinement stress at the bulk strain εxy = 12%. Together, the three plots indicate that

the shear band is about 13–16 mm thick, or about 13–16 times D50. Porosity is clearly larger within the shear band

than elsewhere within the profile (Fig. 8a). Indeed, historical awareness of such localization was based upon x-ray

transmission images showing thin planar features of reduced density [5; 24]. By comparing Figures 3, 5, 7, and 8a, we

see that softening and dilation become concentrated within the shear band at strains of 5–8%, after which, material

within the shear band attains a steady, critical state density. Outside of the shear band, the density retains its pre-peak

condition, as that material elastically unloads while softening occurs within the band.

Figure 8b shows the profiles of two micro-scale measures of continuum deformation: the local shearing strain εxy
and the mean rotation ωz of particles along the height of the assembly. This figure records the differences of strains

and rotations between two reference strains, εxy = 10% and 12%. The 2% increment is the average strain increment

�∆εxy� of the entire assembly, but strains near the center of the shear band are more than 15 times larger than the

assembly strain; whereas strains outside of the shear band are nearly zero. The mean particle rotations are also shown

in Fig. 8b. The rotations exhibit considerable scatter, as is apparent in Fig. 7, and within the band the standard deviation

of these rotations is more than 5 times their mean value. Separate scales are used in Fig. 8b for the mean shear strain

and particle rotation, since the rotation is half of the strain rate ε̇xy. The lines for shear strain and particle rotation are

nearly identical, showing that micro-rotation and vorticity are nearly equal within the shear band.

Figure 8c gives the profile of the mean horizontal stress,
1

2
(σxx +σzz), at the strain εxy = 12%, in which the average

horizontal confinement stress has been normalized with respect to the initial mean stress po = 416kPa. The average

horizontal confinement throughout the assembly is 12% larger than the initial value (also see Fig. 4). The general

increase in the average confinement can interpreted as a response to a dilational tendency that is permitted expression

only in the vertical direction, while no horizontal strain is allowed in the x-x and z-z directions. Figure 8c shows,

however, an anomalous reduction in the horizontal confinement within the shear band, where the horizontal stress

is about 6% less than the initial stress. This anomalous behavior within the band indicates that mechanical behavior

within the band has diverted from the pre-peak response and from the response of material outside of the shear band.
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3.1.1 Stress-Strain Response

Figure 3 shows the stress-strain response of the grain assembly during simple shear loading with constant vertical stress

po = 416 kPa. The peak shear stress occurs at shear strain εxy = 4.4%. After reaching this peak, softening occurs as

the shear stress decreases from 277kPa to around 170kPa at εxy = 9%. At strains beyond 9%, the shear stress fluctuates

at 170kPa, signifying a critical-state, residual condition that continues even beyond 12% strains, to strains of 20%, the

terminal strain in the simulations. The results correspond to peak and residual friction angles φ of 33.6◦ and 22.2◦
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Fig. 3 Shear Stress-strain response during simple shear loading.

respectively. These strengths are somewhat smaller than would be expected with uncemented sands, a result of the

smooth spherical particle shapes. A similar trend is observed in a plot of the mean stress
1

3
(σxx +σyy +σzz) (see

Figure 4), with the mean stress reaching a maximum value at strain εxy = 3.8% and then remaining nearly level until it

abruptly decreases between the strains εxy = 6% and 8%. The average mean stress then fluctuates at 440kPa during

the residual condition, about 6% larger than the initial confinement stress. These changes in the mean stress result

from changes in horizontal confinement,
1

2
(σxx +σzz), since the vertical stress σyy is maintained a constant 416kPa

throughout shearing.

Even as the compressive mean stress increases, the volume and porosity monotonically increase during shearing

and then remain constant after the shear stress decreases to the residual level (Figure 5). This trend is consistent with

the plastic dilatancy commonly observed in dense spherical packings and in dense sands. Casagrande [8] attributed this

increase in volume to the re-arrangement of densely packed particles as they rise up over neighboring particles. This

phenomenon may be absent in loose packings, in which shear may induce pore collapse and densify the assembly.

Figure 6 shows the average coordination number of the entire assembly (the average number of contacting neighbors

per particle) and the percentage of contacts that are sliding. The results are slightly skewed by the top and bottom

layers of rigidly moving platen particles, which have only interior neighbors and do not slide among themselves.

The average coordination number decreases greatly in the early, pre-peak strains as particles disengage during this

formative dilational stage. As shearing stress approaches the peak, the number of contacts decreases more slowly and

remains nearly constant throughout the subsequent peak, softening and residual periods (a trend also observed by

Thornton [36]). Figure 6 also shows that frictional sliding is mobilized early in the loading process, with the fraction of

sliding contacts reaching a maximum of 29%, well before the peak stress is attained. The fraction of sliding contacts

then decreases to about 18% while the shearing stress is near its peak state. This decrease in the number of sliding

contacts suggests that deformation begins to localize before the peak state is reached and before a shear band is

fully developed. Once a shear band has formed and the material is softening (at strains greater than 5%), the fraction

of sliding contacts decreases again to less than 10% during the remainder of loading. In this final stage of loading,

deformation and sliding are concentrated in the small, localized volume of the shear band.
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3.1.2 Localized deformation in shear band

Localized deformation is apparent in Figure 7, a view of the x-y plane through the full z-depth of the assembly. The
figure shows the overall deformed profiles and the distributions of individual particle rotations about their z-axes, ωz.
At a pre-peak strain of εxy = 2%, the deformed, tilting profile is nearly uniform, although rotations, which are both
positive and negative, hint at intensely non-uniform motions at the micro-scale of individual particles. A shear band is
clearly forming within the upper half of the assembly at 6% strain. Less apparent are other non-persistent, ephemeral
localization bands that occur between strains of 4% and 6%, near the peak stress condition. At strains greater than
6%, continued deformation coalesces within the upper shear band. Although grain rotation is more uniform prior to
formation of the shear band, rotations become concentrated within the band, with some grains rotating about 19 radians
(over three full rotations). The shear band, occurring along a horizontal plane, is located at about three-quarters of the
assembly height from the base of the assembly. In simulations on similar assemblies, the band was found to occur at
other heights, the particular location being unpredictable and likely the result of subtle weaknesses within the assembly.
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Fig. 8 Profiles of density, deformation, and confinement along the assembly height: (a) porosity and void ratio, (b) shear deformation ∆εxy
and particle rotation ∆θz, and (c) horizontal confinement stress. Boxes along right margins show locations of 4mm unit cells for pore analysis
(Section 3.2).
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Fig. 9 Rose diagrams of contact orientations.

3.1.3 Fabric of contact orientation

A common measure of particle arrangement is the distribution of the center-to-center orientations of pairs of contacting
particles [26]. During deformation, contacts are more likely to be oriented in the direction of the major principal
compressive stress. Fig. 9 shows the distributions of the orientations within the x-y plane for the initial, unloaded
assembly and at strain εxy = 12%, within and outside of the shear band. The initial distribution is isotropic, a result of
the isotropic compaction of the specimen. Upon shearing, the distribution becomes highly anisotropic with far more
contacts in the direction of the major compressive stress, σ1, than in the orthogonal direction. Distributions inside and
outside of the shear band also differ, with a slightly greater fabric asymmetry outside the shear band. The figure also
shows that the directions of the major principal compressive stress, differing by about 4.5◦ between material within
and outside the band, the latter having a more horizontal orientation. The principal directions of the contact fabric,

Locally, porosity increase is 
concentrated inside shear band. 

Number of grain contacts decreases 
 as shear band develops. 

Specimen porosity 
increases during 
shear, but this 

increase slow down 
after formation of 

shear band. 

As grain rotates, 
number of grain 
contact drops. 

see W.C. Sun, M.R. Kuhn, J.W. Rudnicki, a multiscale DEM-LBM analysis on dilatant shear band, Acta geotechnica, 2013 
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2.2 Geometrical analysis on pore geometry of simulated assembly

To analyze how grain rearrangement affects the hydraulic property of the assembly, we convert portions of the 3D DEM

assembly into 3D discrete binary images. The binary images are collections of binary voxels which signal whether a

cubic volume is occupied by solid (b=255) or by void (b=0). The union of void voxels can be used as the simulation

domain for lattice Boltzmann flow problem. In addition, binary images can be analyzed with software designed for

tomographic images, such as ImageJ [32].

We use a simple computer algorithm called seed-fill to create the binary images of the DEM assemblies. As the

name implies, the seed-fill algorithm is used to grow the region from a seed such that the "flag" or "identification" of

the seed can be propagated in a confined object. The seeds we used in the problem are the centroids of the spherical

particles. To obtain the binary image of the DEM assemblies, we confine the growing of the seeds by preventing them

from growing outside the spherical particles. The pseudo-code used to create binary image goes as follows, noting that

Algorithm 1 Seed-fill (node, void-flag, solid-flag)

if the current node is not a void then
return

else
search the spherical particle closest to the current node

Compute Euclidean distance between current node and the centroid of the closest spherical particle

if Euclidean distance �= radius of the closest spherical particle then
Perform Flood-fill (the west neighbor of the current node, void-flag, solid-flag)

Perform Flood-fill (the east neighbor of the current node, void-flag, solid-flag)

Perform Flood-fill (the north neighbor of the current node, void-flag, solid-flag)

Perform Flood-fill (the south neighbor of the current node, void-flag, solid-flag)

Perform Flood-fill (the upper neighbor of the current node, void-flag, solid-flag)

Perform Flood-fill (the lower neighbor of the current node, void-flag, solid-flag)

end if
end if

the algorithm is recursive. A similar algorithm has been used in [35] to determine the connected/isolated porosity of

Aztec sandstone. To quantitatively compare the geometrical features of the pore space inside and outside the shear

band, we extract a set of geometrical parameters, i.e. the Euler number and the surface area/pore volume, which are

found to be closely related to hydraulic transport behavior of porous media [14; 17; 32; 39]. The open source computer

algorithm used to extract these parameters is provided by David Legland [21; 22]. The Euler number of binary image

E is defined as,

E= N −C+H (8)

where N is the number of interconnected pores, C is the number of loops in the pore space and H is the number of

objects completely enclosed by pore space . In other words, the Euler number is a measure of connectivity which is

positive if the pores are poorly connected and negative if otherwise. A large negative Euler number indicates that the

pore space has a network-like topology and that there are more possible flow path for pore-fluid traveling from one end

to another end. In addition, tortuosity of flow channels can be measured by computing the ratio between the surface

area and the pore volume. Obviously, a high surface area/pore volume indicates that pore-fluid must travel along a

longer flow path from one end to the other.

2.3 Geometrical Enhanced lattice Boltzmann/finite element Simulation

A multi-scale lattice Boltzmann/Finite element method is used to extract geometrical features and permeability from

the granular assemblies. This hybrid method was originally proposed in [1] to estimate permeability of Castlegate

Sandstone. Sun et al 2011a [34] improved the accuracy and computation efficiency of this method by incorporating

geometrical analysis in the permeability calculations. The key to this improvement is partitioning the entire grain

assembly into unit cells where pore-scale lattice Boltzmann simulations are conducted in the connected pores of each

12 WaiChing Sun et al.

as defined by [30], are closely aligned with the principal stress directions and differ in a similar manner within and

outside the shear band. These results are further evidence that material behavior inside of the shear band has diverted

from that of material outside of the shear band.

3.2 Pore geometry and homogenized hydraulic properties of shear bands

To analyze effect of strain rotation on permeability, we located the region of grains with the largest rotation (defining

the center of the shear band) and nearby, surrounding grains within a 6mm distance. The grains with the maximum

rotation are at (20.7mm,90.1mm,5.7mm) relative to the origin shown in Fig. 2. As shown in Figure 8, this location is

approximately at the mid-plane of the shear band.

We convert the shear band grain assembly into cubic binary images of size 12mm x 12mm x 4mm. To maintain

computational efficiency, we then split the domain into nine 4mm x 4mm x 4mm unit cells, with each cell containing

about 107 particles. For comparison purposes, we also extract the pore geometry of three other adjacent 4mm x 4mm x

4mm unit cells centered at (16.7mm,25.0mm,5.7mm), (20.7mm,25.0mm,5.7mm) and (24.7mm,25.0mm,5.7mm)
and labeled them as ”host matrix" (see Figures. 2 and 8). Samples of binary images obtained from the DEM grain

assemblies are shown in Figure 10. The resolution of the binary images is 0.05mm per voxel.

Fig. 10 Binary images generated from DEM assemblies outside (left) and inside (right) shear band at shear strain εxy = 12%. Each cell

contains about 107 particles.

To ensure that this binary volume is large enough to serve as a representative elementary (porous) volume for

studying fluid flow, we follow the approach in [1; 34; 35] and compute amount of energy dissipation per unit volume

of the binary sub-volumes in various sizes, i.e.,

D =
�

V
2εi jεi jdV ; εi j =

1

2

�
vi, j + v j,i

�
(14)

where vi, j is the gradient of fluid velocity and µ is the viscosity. This energy dissipation rate is induced by prescribing

a pore pressure gradient on the top and bottom of the sub-volume. Our goal is to test whether increasing the size of the

sub-volumes would induce severe fluctuation in the dissipation rate per unit volume. If this is not the case, then the

sub-volume is considered to be large enough to be a representative elementary volume.

Figure 11 shows the normalized energy dissipation computed from 480 lattice Boltzmann simulations inside the

shear band. Different colors are used to represent the sub-volume obtained at 0, 2, 4, 6, 8, 10 and 12% shear strain. We

notice that fluctuation of energy dissipation rate is large when the numerical specimens is less than 1mm
3
, but gradually

decreases as the sample size get larger. (A 1mm
3

specimen will encompass, on average, only 1.7 particles.) When the

Binary images generated from DEM assemblies 
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(FEM) are used to estimate the effective permeability of the entire sample, accounting for the
heterogeneities implied in each subdomain. This procedure is clearly shown in Figure 6 where
the sample is decomposed into four subdomains. Permeability calculations are performed in each
subdomain by LB and then these values are used in one more macroscale simulation using FEM
to estimate the effective permeability of the entire sample.

4.1. Numerical procedures: LB and finite elements

The main features of the LB and finite element procedures used in this work are summarized in this
section for the sake of completion. In the LB procedure, the discrete distribution function fi (x, t)
is the main unknown such that the particle distribution satisfies the lattice Boltzmann equation
[12–17], i.e.

! fi
!t

+ei ·∇x fi =Ci (14)

where Ci is a collision term that accounts for the net addition of particles moving with velocity
ei due to inter-particle collisions. LB is particularly suited to handle complex geometries such as
those encountered in natural geomaterials. In addition, fluid velocity v and pressure p at lattice
node x and time t are both determined from the discrete distribution functions, i.e.

v= 1
!

"∑
i=1

fiei , p=c2!, !=
"∑

i=1
fi (15)

where " is the number of lattice directions a molecule can move, and c denotes the speed of sound,
which is treated as a constant in the LB simulations. Using a simple standard technique proposed
in [16, 18], we can reproduce nearly incompressible flows with velocities and pressures that can
be used in Equation (13) to determine the mesoscale value of permeability.

After extracting the local permeability tensors for all unit cells, we assign the numerical values of
these local permeability tensors to the corresponding Gauss points of the finite element model. The
finite element model is aimed to simulate the macroscopic diffusion of an incompressible, single-
phase pore-fluid. It is based on Darcy’s law augmented with the incompressible constraint, i.e.

∇x ·v(x)=0 (16)

v(x)=− 1
#v

k(x)·∇x p(x) (17)

where body forces are neglected and k=kmeso denotes the local permeability tensor obtained
from the mesoscale LB simulations described above. Combining Equations (16) and (17) yields a
single-phase pressure equation for steady incompressible flow, i.e.

1
#v

∇x ·(k(x)·∇x p(x))=0 (18)

Augmenting Equation (18) with the pressure prescribed on the corresponding boundaries, we
obtain the boundary value problem suitable for finite element discretization. We use the standard
Galerkin method to obtain the macroscopic pressure field.

4.2. Upscaling effective permeability

Accuracy and efficiency of the multiscale hybrid method rely crucially on the size selected for the
unit cells. If the unit cells are too large, the speed of the multiscale method decreases dramatically;
if the unit cells are too small, the multiscale method may fail, since the continuum representation
may break down [13, 14]. One way to strike some balance between accuracy and efficiency is
to choose unit cells that are just big enough as to satisfy the continuum requirements. A unit
cell that fits this description can be referred to as representative element volume (REV). While
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respectively. Furthermore, the FE and LB nodes are spaced regu-
larly on a structured grid, ensuring coincidence at the interface.

3. Lattice Boltzmann method

The lattice Boltzmann method has been widely used for hydro-
dynamic simulations of free-field flow and transport through por-
ous domains, due to its computational efficiency and amenability
to parallelisation. Several studies have coupled hydrodynamic LB
models with overlaid LB models for heat/mass transport (the so-
called double-population model [4]), for example to simulate min-
eral dissolution [5] or heat transfer in porous structures [6].

The LB method solves a discretised version of the Boltzmann
equation, tracking the evolution of particle distributions that prop-
agate locally between nodes (at coordinate locations x) where they
collide and relax towards a calculable equilibrium state in time s.

Using the single relaxation time BGK approximation [7], the
evolution of particle distribution functions fi in directions defined
by distribution vectors ei from time t ! t þ Dt, is defined by

fiðxþ ei; t þ DtÞ $ fiðx; tÞ ¼ $1
s
ðfiðx; tÞ $ f eqi ðx; tÞÞ; ð4Þ

where f eq is a truncated Maxwell–Boltzmann equilibrium distribu-
tion which is a function of the local macroscopic velocity v. Unlike
the equivalent hydrodynamic model, a diffusion LB simulation can
neglect terms Oðv2Þ and above [3], giving

f eqi ¼ uwið1þ 3ei & vÞ; ð5Þ

where the weights wi depend on the lattice geometry. In 2D prob-
lems, w ¼ 4=9, 1/9 and 1/36 for stationary, nearest-neighbour and
next-nearest-neighbour vectors, respectively. In the LB method,
macroscopic state parameters are derived from the moments of
the particle densities at each node, with the solution variable (tem-
perature in thermal conduction analyses) at each node defined by

u ¼
Xr

i¼1

fi ð6Þ

for a model with r particle density distribution vectors. We perform
simulations in 1D, 2D and 3D on the most commonly used lattices
with r ¼ 3;9 and 19 respectively, the vectors defined by

where the nodes are regularly spaced by Dx in all directions. These
models recover the diffusion equation [8], with isotropic diffusivity
given by

D ¼ ðs$ 1=2Þ
3Dt

ðDxÞ2: ð8Þ

In the benchmark example presented in Section 5, propagation is by
diffusion alone, (that is, the advective speed v ¼ 0), simplifying (5).
The method, as well as the FE–LB coupling described below, is
equally applicable to heat-transfer between FE and advective LB
overlay models.

Following the propagation of fi along ei, at the boundary of the
domain there are a number of unknown population densities
whose propagation vectors originate outside the domain. Dirichlet
boundary conditions are imposed at the edge of the domain by dis-
tributing the residual u among the unknown fi.

For advecting models (with v–0) suitable boundary conditions
can be constructed by assuming that bounceback holds in the
direction normal to the boundary [11]. In non-advecting models,
redistribution to impose a nodal value of uC at boundary C depends
only onwi. The unknown particle densities are calculated in 2D (for
a boundary where LB nodes exist in positive x) based on the resid-
ual u, u0 ¼ uC $

P
i¼3; ...; 7;9fi by

f1 ¼ 2u0

3
and f 2 ¼ f8 ¼ u0

6
: ð9Þ

4. Treatment of the FE–LB interface

Having outlined the FE and LB diffusion models, an interface
condition allowing simulations to be performed over segmented
FE–LB domains can now be described. A computational domain
comprising nodes uniformly discretised in space and time is di-
vided into FE and LB sections, with shared nodes at the interface.
Fig 1 illustrates the domain in 2D, and similar domains have been
tested in other dimensions, with the interface a single point, line or
plane in 1D, 2D or 3D, respectively.

At all non-interface nodes, the update from t ! t þ Dt occurs
as described in the previous sections. Defining the shared interface
nodes xC, calculation of uLBðxC; t þ DtÞ and uFEðxC; t þ DtÞ follows (6)
and (3) respectively, and u is updated by taking the mean as.

uðxC; t þ DtÞ ¼ uLBðxC; t þ DtÞ þ uFEðxC; t þ DtÞ
2

: ð10Þ

This can be directly imposed on the LB scheme using the boundary
condition described by (9), since Du is prescribed by (6) to update
the unknown fi.

To impose the interface condition on the FE domain,
qðxC; t þ DtÞ is calculated using a central difference around the
interface node, which extends into both domains. This is enforced
at t and t þ Dt in (3).

5. Application to a benchmark problem

The FE and LB approaches described above can be applied to any
diffusion problem. Although the authors have used the models and

interface condition to simulate mass-transport in hydrodynamic
systems (specifically a passive-tracer LB overlay coupled with FE
method), this paper demonstrates FE–LB coupling exclusively with

e1D
i ¼ 1 $1 0½ (Dx;

e2D
i ¼

1 1 0 $1 $1 $1 0 1 0
0 1 1 1 0 $1 $1 $1 0

! "
Dx; and

e3D
i ¼

0 1 0 0 $1 0 0 1 1 $1 $1 1 1 $1 $1 1 1 $1 $1
0 0 1 0 0 $1 0 0 0 0 0 1 1 1 1 $1 $1 $1 $1
0 0 0 1 0 0 $1 1 $1 1 $1 1 $1 1 $1 1 $1 1 $1

2

64

3

75Dx; ð7Þ

Fig. 1. Computational domain of a combined 2D FE–LB simulation.

4506 I.W. Haslam et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 4505–4511

W.C. Sun

The matrix form reads,
�

0 0
Bpu Ktran

pp

� �
u̇
ṗ
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Stabilization term

Rstab =

�

Ω
[τ(ηh − 1

VΩ

�

Ω
ηhdΩ)(ph − 1

VΩ

�

Ω
phdΩ)] dΩ (4.10)

Rstab =

�

Ω
[τ(ηh − 1

VΩ

�

Ω
ηhdΩ)(Ċh

L − 1

VΩ

�

Ω
Ċh
LdΩ)] dΩ (4.11)

Rstab =

�

Ω
τ ∇X ηh∇X Ċh

L dΩ (4.12)

5 Deformation Mapping

x = ϕ(Xs, t) (5.1)

Xs = ϕ−1(x, t) (5.2)

x = ϕf (Xf , t) (5.3)

y = ϕf (Y f , t) (5.4)

6 Lattice Boltzmann for diffusion

Algorithm 1 Seed-fill (node, void-flag, solid-flag)
if binary image of current node is solid (b=255) then

return
else

Assign void flag to current node
Perform Seed-fill (the west neighbor of the current node, void-flag, solid-flag)
Perform Seed-fill (the east neighbor of the current node, void-flag, solid-flag)
Perform Seed-fill (the north neighbor of the current node, void-flag, solid-flag)
Perform Seed-fill (the south neighbor of the current node, void-flag, solid-flag)
Perform Seed-fill (the upper neighbor of the current node, void-flag, solid-flag)
Perform Seed-fill (the lower neighbor of the current node, void-flag, solid-flag)

end if

f eq
i = wiρ

�
1 +

3e · v
c2

+
9(e · v)2

2c4
− 3(v)2

2c2

�
(6.1)
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See W.C Sun, J.E. Andrade, J.W. Rudnicki, A multiscale method for characterization of porous microstructures and their impact on macroscopic 
effective permeability, International Journal of Numerical Methods in Engineering, Vol. 88, No.12, 1260-1279, 2011. 
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Fig. 12 Geometrical measures and estimated permeability computed from binary images generated inside and outside shear bands. red

circles represent data from the middle plane of shear band (y =90.1mm); blue squares represent data from the lower transition zone (y

=86.1mm); green stars represent data from the upper transition (y =94.1mm); black dots represent data from the host matrix (y =20mm). The

lines are the averaged value of the unit cell data with the corresponding colors.

comparison, we also upscale the unit cell permeability by volume averaging and geometric averaging, i.e.,

k̄ =
1

V

�

B
kdV (volume averaged permeability) (16)

k̄ = exp(
1

V

�

B
log(k)dV ) (geometric averaged permeability) (17)

These two methods are often used as alternatives to the inverse problem [4; 16]. Figure 15 compares the effective

permeability calculated by finite element method, volume averaging, geometrical averaging, and the Kozeny-Carman

relation. We found that effective permeabilities obtained by geometric averaging is the closest to those inferred from

finite element solutions. On the other hand, volume averaging seems to overestimate the effective permeability at

higher porosity. This overestimation may be due to the fact that the permeability field is much more heterogeneous at

higher porosity, as shown in Figure 12,
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Fig. 1 The cumulative probability function of grain diameter of the DEM assembly.

Fig. 2 DEM assembly and loading conditions. Small boxes show locations of the 4mm unit cells used for pore-fluid analysis (Section 3.2).

was undergoing simple shear at a constant shearing rate and under constant vertical stress. Periodic boundaries were
used on all sides of the assembly during the initial compaction process [9], but the periodicity of the top and bottom
boundaries was broken at the start of shearing and replaced with thin rigid horizontal layers of conforming spheres that
were arranged along the x-z planar directions. In this manner, the top and bottom boundaries were modeled as rough
rigid platens. The four vertical sides, in x-y and y-z planar directions, remained as periodic boundaries during shear
loading. With these conditions, a shear band could develop along the full x-x width and z-z depth, while passing across
the periodic side boundaries.
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effective permeability, International Journal of Numerical Methods in Engineering, Vol. 88, No.12, 1260-1279, 2011. 
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1.  Use shortest path algorithm to determine tortuosity. 
2.  Use region growing method to distinguish connected and isolated pore space. 
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the width of the SCB, about 1 cm. They are taken from
images between 3.66 mm and 6.66 mm beneath the top band
boundary. The other three samples are from outside the band
at successively larger distances from the band boundary.
The occluded porosity is about the same, an average of 5.8%
for specimens inside the band and 6.4% for those outside.
The 7.7% connected porosity inside the band is only roughly
half of the 15% connected porosity outside. Thus, the
reduction occurs primarily in the connected porosity which
contributes to the formation of a flow barrier.

4. Macroscopic Effective Permeabilities

[16] The directional permeabilities of two hundred 0.75 ×
0.75 × 0.75 mm3 samples (half inside, half outside the band)
are calculated via lattice Boltzmann simulations. The volume
of the samples is selected based on an energy dissipation
criterion proposed by Sun et al. [2011] to minimize size ef-
fects and obtain representative permeability calculations. We
estimate an average permeability of 2.1 × 10−13 m2 inside
the band and 1.3 × 10−12 m2 outside, and a variance of 0.26
and 0.18, respectively. The increase on the ratio between
standard deviation and mean value signifies that the pore
geometry of the band is less homogeneous than the outside
matrix. The macroscopic effective permeabilities of two
2.25 mm × 2.25 mm × 6 mm samples are determined via a
lattice Boltzmann/finite element scheme [White et al., 2006;
Sun et al. 2011]. Figures 2c and 2d show the magnitude of the
velocity field generated from the lattice Boltzmann method
by imposing a pore pressure gradient on two opposite faces
of the samples. The solid grains are plotted in gray color
whereas the blue shaded region represents occurrence of
fluid flow. Higher intensity of the blue color indicates higher
fluid flux. Figures 2c and 2d confirm that fluid flow inside a
SCB is confined to only a small portion of the entire pore
space, whereas the fluid flow in the outside matrix distributes
more evenly over the specimen. This finding is consistent

with the higher connected/occluded porosity ratio inside
SCB. The effective permeability is obtained according to,

kij ¼ "!v

p;j

1
VW

Z

W
vi ~xð ÞdW ð2Þ

where mv is the dynamic viscosity of the fluid occupying the
spatial domain of the porous medium W.
[17] The effective permeabilities reported above based

on lattice Boltzmann/finite element simulations, pertain to
the direction normal to the SCB. The 0.77 order of magnitude
difference is close to the 1.1 order permeability reduction
predicted from the modified Kozeny‐Carman equation
[Carman, 1956] using connected porosities " f, which reads

kin
kout

¼ #out
#in

" f
in

" f
out

 !3
1" " f

out

1" " f
in

 !2

ð3Þ

Nevertheless, the effective permeability reduction obtained
from multiscale simulations and the modified Kozeny‐
Carman equation are both less than the several orders of
magnitude inferred for compaction bands in laboratory
sandstone specimens [Holcomb and Olsson, 2003; Vajdova
et al., 2004] and the 2.5 order of magnitude permeability
reductions inferred by Keehm et al. [2006]. Presumably, the
larger permeability reduction for the laboratory specimens is
due to more intense comminution in lab specimens compared
to compaction bands collected in the field (see Figures 1c and
1d). The estimates of Keehm et al. [2006], and similar
estimates by Solum et al. [2010] are based on pore volume
reconstructions from two‐dimensional images. As mentioned
earlier, this seems likely to overestimate the reduction in
permeability. Whether the difference in methodology is suf-
ficient to account for the order of magnitude difference is
unclear but illustrates the need for further studies of this type.
[18] The procedure used here also makes it possible to

estimate the permeability parallel to the band. We find that
the permeability in this direction is roughly the same as
parallel to the band, with a 0.74 reduction of effective per-
meability along the axis parallel to the band. This nearly
isotropic transport property is consistent with the orientation
of maximum compressive principal stress (45–50 degree to
the bands) inferred by Eichhubl et al. [2010] based on field
structural and microtextural observations. Furthermore, the
results suggest that reduction of connected pore space and
increases of geometrical tortuosities also decrease perme-
ability parallel to the band. These mechanisms seem to be less
likely, than, for example, grain crushing and comminution to
have a strong directional dependence. This is an important
issue since deformation bands that have experienced rela-
tively large shear (compared with compaction) may develop
through‐going slip surfaces. This could increase the perme-
ability in that direction and create a preferential flow paths.

5. Conclusion

[19] Using a computationally efficient method, we com-
pare macroscopic permeabilities and microstructural attri-
butes of a shear‐enhanced compaction band and host rock.
Our results reveal that increased tortuosity and elimination
of connected pore space, not simply a reduction in total
porosity, are the major factors causing reduced permeability.
Furthermore, the results suggest that permeability is reduced

Figure 3. Occluded and connected porosity of 6 samples
taken inside/outside the shear enhanced compaction band
in the Aztec Sandstone specimen. Sample labeled as SCB
(OUTSIDE) are taken inside (outside) the shear enhanced
compaction band.
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See W.C. Sun, J.W. Rudnicki, J.E. Andrade and P. Eichhubl, Connecting microstructural attributes and permeability from 3-D tomographic 
images of in situ compaction bands using multi-scale computation, Geophysical Research Letter, doi : 10.1029/2011GL047683, 2011.  



Conclusion	
  

1.  Mul(scale	
  geometrical	
  analysis	
  and	
  flow	
  simula(on	
  indicates	
  
that	
  	
  increased	
  tortuosity,	
  isolated	
  pore	
  space	
  and	
  reduc(on	
  
in	
  porosity	
  leads	
  to	
  the	
  permeability	
  reduc(on	
  in	
  compac(on	
  
band	
  in	
  Aztec	
  sandstone	
  specimen.	
  	
  

2.  Discrete	
  element	
  simula(ons	
  suggest	
  that	
  increased	
  
porosity,	
  more	
  interconnected	
  pore	
  space	
  (as	
  indicated	
  by	
  
the	
  increased	
  Euler	
  number),	
  and	
  less	
  tortuous	
  flow	
  paths	
  
(as	
  indicated	
  by	
  the	
  decrease	
  in	
  surface	
  area/volume)	
  leads	
  
to	
  the	
  permeability	
  increase	
  inside	
  dilatant	
  shear	
  band	
  

39	
  



Concurrent	
  Domain	
  Coupling	
  Method	
  	
  

40	
  



Overview	
  of	
  Domain	
  overlapped	
  method	
  

§  New	
  Contribu(on	
  	
  
1.  Extension	
  to	
  large	
  deforma(on	
  

problems	
  (completed)	
  	
  and	
  
mul(physics	
  problems	
  (work-­‐in-­‐
progress).	
  

2.  Introduce	
  coupling	
  between	
  local	
  and	
  
nonlocal	
  cons(tu(ve	
  laws	
  

3.  Introduce	
  inf-­‐sup	
  tests	
  to	
  analyze	
  
stability	
  of	
  the	
  energy	
  blending	
  
domain	
  overlapped	
  method	
  

Figure from Richard A. Regueiro  

between the radius of the hole and the length of the plate, one can approxi-
mately notice the well-known stress concentration factor 3 analytically obtained
for an infinite plate.

3.3 Slant cracked plate under tension

The second 2-D test aims at illustrating both the accuracy and the effectiveness
of the Arlequin approach to locally change a global model. The mecanical test
is depicted in figure 9 where f = 100 MPa, a = 1 mm and β = 37◦. It consists
in an inclined crack in a plate with plane stress conditions. This is a kind of
benchmark for which engineering quantities of interest are known analytically.
Indeed the expressions of the energy release rate G and the first and second
intensity factors KI and KII are respectively given by (29), (30) and (31). The
Young modulus and the Poisson coefficient are here taken to 200 GPa and 0.3,
respectively.

!

a

20 a

40
 a

f

Figure 9: Slant cracked plate

G =
f2

E
πa cos2 β (29)

KI = f
√

πa cos2 β (30)

KII = f
√

πa sinβ cos β (31)

This case has been treated in the Arlequin framework by superposing a very
local cracked model to the global plate. The used meshes for the global model
and the local cracked one are depicted by figure 10 where the tinted area stands
for the choosen gluing zone.

Figure 10: Meshes of the plate and the crack
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where Φint
0 and Φext

0 are the internal and external energy potential. W (F , z) is the Helmholtz

free-energy density that covers characteristics of incremental energy storage and dissipation.

z is a collection of internal variables.

The main departure of the Arlequin formulation is the introduction of partitions of unity

to the Helmholtz free-energy density and external work density. Augmented with the La-

grange multipliers used to enforce compatibility, the total free energy is modified as a three-

field energy functional,

Φ[ϕ,ϕ�
,φ] =Φint

[ϕ,ϕ�
]− Φext

[ϕ,ϕ�
] + Λ[ϕ,ϕ�

,φ] (2.8)

Φint
[ϕ,ϕ�

] =

�

B
αW (F , z) + (1− α)W �

(F �
, z�

) dV (2.9)

Φext
[ϕ,ϕ�

] =

�

B
βB ·ϕ+ (1− β)B� ·ϕ�

dV

+

�

∂TB
βT ·ϕ dS +

�

∂TB
(1− β)T � ·ϕ�

dS (2.10)

The additional energy function Λ[ϕ,ϕ�
,φ] is introduced to minimize the compatibility error

measured by either the L
2
or H

1
norms between the coarse and fine domain , i.e.,

Λ[ϕ,ϕ�
,φ] =

�

Bc

φ · (ϕ−ϕ�
) + κl2 Gradφ : (Gradϕ−Gradϕ�

) dV (2.11)

where κ is a non-negative dimensional parameter corresponding to the compatibility error

to be minimized. κ = 0 if L
2
error is minimized and κ = 1 if H

1
error is minimized. l has

a dimension of length and is introduced in [9] so that the unit is consistent. α : B → [0, 1]

and β : B → [0, 1] are the weighting functions of the Helmholtz free-energy density and

the external work density. Both weighting functions hold the following properties in the

non-overlapping domain,

α(X) = β(X) =

�
1 X ∈ B \ Bc

0 X ∈ B� \ Bc (2.12)

In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with k-

continuous derivatives where k is a natural number. As pointed out by [9, 10], the valid choice

of the weighting functions depends on how the compatibility is enforced in the overlapping

domain.

2.3 Variational Statement

Assume that ϕ ∈ U := (W
1
2 (B))3, ϕ� ∈ U

�
:= (W

1
2 (B�

))
3
and φ ∈ V := (W

1
2 (Bc

))
3
in

which W
1
2 (B) is the Sobolev space of square-integrable functions with square-integrable first

derivatives. The functional (2.8) is optimized by applying Gateaux variations with respect

to the independent fields ϕ, ϕ�
and φ. Define test functions corresponding to these fields as
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2 Finite Element Formulation

2.1 Domain Decomposition

Consider a body B partitioned into two parts B and B� such that B = B ∪ B� and a portion

of the partitioned body parts Bc = B ∩B� is overlapped. The B is the domain that occupies

an (usually larger) portion of the body and but associated with fewer degree of freedoms per

volume and hence we refer it as the coarse domain herein. In contrary, B� is the domain that

occupies an (usually smaller) portion of the body where important mechanism may occur

and hence is modeled by a more sophisticated constitutive law and/or meshed with more

degree of freedoms and hence we refer it as the fine domain herein.

The Dirichlet (displacement) boundary of the boundary value problem is the union of

the partitioned Dirichlet boundaries which reads,

∂ϕB = ∂ϕB ∪ ∂ϕ�B�
(2.1)

On the other hand, the two partitioned body may contain overlapping Dirichlet boundary

∂ϕBc, which reads,

∂ϕBc
= ∂ϕB ∩ ∂ϕ�B�

(2.2)

The Von Neumann (traction) boundary of the boundary value problem reads

∂TB = ∂TB ∪ ∂T �B�
(2.3)

whereas the overlapping Von Neumann boundaries are the interact of the partition bound-

aries, i.e.,

∂TBc
= ∂TB ∩ ∂T �B�

(2.4)

For consistency, we denotes (·) and (·)� as quantities obtained from body B and B� respectively

in the remaining content.

2.2 Arlequin Formulation

Consider a body B ⊂ R3 undergoing a motion described by the mapping x = ϕ(X, t) :

B × [t1, t2] → R3, with the deformation gradient defined by F := Gradϕ. x ∈ S is point in

the current configuration S = ϕ(B).
Assume that the boundary ∂B, with unit normal N , is the union of a displacement

boundary ∂ϕB, where boundary displacements χ : ∂ϕB × [t1, t2] → R3 are prescribed, and a

traction boundary ∂TB, where tractions T : ∂TB× [t1, t2] → R3 are applied (∂ϕB∩∂TB = ∅).
Let alsoB : B×[t1, t2] → R3 be the body force multiplied by the mass density in the reference

configuration. Furthermore, for every t ∈ [t1, t2] introduce the total free energy functional

Φ0[ϕ] = Φint
0 [ϕ]− Φext

0 [ϕ] (2.5)

Φint
0 [ϕ] =

�

B
W (F , z) dV (2.6)

Φext
0 [ϕ] =

�

B
B ·ϕ dV +

�

∂TB
T ·ϕ dS (2.7)
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where Φint
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2 Finite Element Formulation

2.1 Domain Decomposition

Consider a body B partitioned into two parts B and B� such that B = B ∪ B� and a portion

of the partitioned body parts Bc = B ∩B� is overlapped. The B is the domain that occupies

an (usually larger) portion of the body and but associated with fewer degree of freedoms per

volume and hence we refer it as the coarse domain herein. In contrary, B� is the domain that

occupies an (usually smaller) portion of the body where important mechanism may occur

and hence is modeled by a more sophisticated constitutive law and/or meshed with more

degree of freedoms and hence we refer it as the fine domain herein.

The Dirichlet (displacement) boundary of the boundary value problem is the union of

the partitioned Dirichlet boundaries which reads,

∂ϕB = ∂ϕB ∪ ∂ϕ�B�
(2.1)

On the other hand, the two partitioned body may contain overlapping Dirichlet boundary

∂ϕBc, which reads,

∂ϕBc
= ∂ϕB ∩ ∂ϕ�B�

(2.2)

The Von Neumann (traction) boundary of the boundary value problem reads

∂TB = ∂TB ∪ ∂T �B�
(2.3)

whereas the overlapping Von Neumann boundaries are the interact of the partition bound-

aries, i.e.,

∂TBc
= ∂TB ∩ ∂T �B�

(2.4)

For consistency, we denotes (·) and (·)� as quantities obtained from body B and B� respectively

in the remaining content.

2.2 Arlequin Formulation

Consider a body B ⊂ R3 undergoing a motion described by the mapping x = ϕ(X, t) :

B × [t1, t2] → R3, with the deformation gradient defined by F := Gradϕ. x ∈ S is point in

the current configuration S = ϕ(B).
Assume that the boundary ∂B, with unit normal N , is the union of a displacement

boundary ∂ϕB, where boundary displacements χ : ∂ϕB × [t1, t2] → R3 are prescribed, and a

traction boundary ∂TB, where tractions T : ∂TB× [t1, t2] → R3 are applied (∂ϕB∩∂TB = ∅).
Let alsoB : B×[t1, t2] → R3 be the body force multiplied by the mass density in the reference

configuration. Furthermore, for every t ∈ [t1, t2] introduce the total free energy functional
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2 Finite Element Formulation

2.1 Domain Decomposition

Consider a body B partitioned into two parts B and B� such that B = B ∪ B� and a portion

of the partitioned body parts Bc = B ∩B� is overlapped. The B is the domain that occupies

an (usually larger) portion of the body and but associated with fewer degree of freedoms per

volume and hence we refer it as the coarse domain herein. In contrary, B� is the domain that

occupies an (usually smaller) portion of the body where important mechanism may occur

and hence is modeled by a more sophisticated constitutive law and/or meshed with more

degree of freedoms and hence we refer it as the fine domain herein.

The Dirichlet (displacement) boundary of the boundary value problem is the union of

the partitioned Dirichlet boundaries which reads,
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On the other hand, the two partitioned body may contain overlapping Dirichlet boundary

∂ϕBc, which reads,
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(2.2)

The Von Neumann (traction) boundary of the boundary value problem reads
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(2.3)

whereas the overlapping Von Neumann boundaries are the interact of the partition bound-

aries, i.e.,

∂TBc
= ∂TB ∩ ∂T �B�

(2.4)

For consistency, we denotes (·) and (·)� as quantities obtained from body B and B� respectively

in the remaining content.

2.2 Arlequin Formulation

Consider a body B ⊂ R3 undergoing a motion described by the mapping x = ϕ(X, t) :

B × [t1, t2] → R3, with the deformation gradient defined by F := Gradϕ. x ∈ S is point in

the current configuration S = ϕ(B).
Assume that the boundary ∂B, with unit normal N , is the union of a displacement

boundary ∂ϕB, where boundary displacements χ : ∂ϕB × [t1, t2] → R3 are prescribed, and a

traction boundary ∂TB, where tractions T : ∂TB× [t1, t2] → R3 are applied (∂ϕB∩∂TB = ∅).
Let alsoB : B×[t1, t2] → R3 be the body force multiplied by the mass density in the reference

configuration. Furthermore, for every t ∈ [t1, t2] introduce the total free energy functional

Φ0[ϕ] = Φint
0 [ϕ]− Φext

0 [ϕ] (2.5)

Φint
0 [ϕ] =

�

B
W (F , z) dV (2.6)

Φext
0 [ϕ] =

�

B
B ·ϕ dV +

�

∂TB
T ·ϕ dS (2.7)
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where Φint
0 and Φext

0 are the internal and external energy potential. W (F , z) is the Helmholtz

free-energy density that covers characteristics of incremental energy storage and dissipation.

z is a collection of internal variables.

The main departure of the Arlequin formulation is the introduction of partitions of unity

to the Helmholtz free-energy density and external work density. Augmented with the La-

grange multipliers used to enforce compatibility, the total free energy is modified as a three-

field energy functional,

Φ[ϕ,ϕ�
,φ] =Φint

[ϕ,ϕ�
]− Φext

[ϕ,ϕ�
] + Λ[ϕ,ϕ�

,φ] (2.8)

Φint
[ϕ,ϕ�

] =

�

B
αW (F , z) + (1− α)W �

(F �
, z�

) dV (2.9)

Φext
[ϕ,ϕ�

] =

�

B
βB ·ϕ+ (1− β)B� ·ϕ�

dV

+

�

∂TB
βT ·ϕ dS +

�

∂TB
(1− β)T � ·ϕ�

dS (2.10)

The additional energy function Λ[ϕ,ϕ�
,φ] is introduced to minimize the compatibility error

measured by either the L
2
or H

1
norms between the coarse and fine domain , i.e.,

Λ[ϕ,ϕ�
,φ] =

�

Bc

φ · (ϕ−ϕ�
) + κl2 Gradφ : (Gradϕ−Gradϕ�

) dV (2.11)

where κ is a non-negative dimensional parameter corresponding to the compatibility error

to be minimized. κ = 0 if L
2
error is minimized and κ = 1 if H

1
error is minimized. l has

a dimension of length and is introduced in [9] so that the unit is consistent. α : B → [0, 1]

and β : B → [0, 1] are the weighting functions of the Helmholtz free-energy density and

the external work density. Both weighting functions hold the following properties in the

non-overlapping domain,

α(X) = β(X) =

�
1 X ∈ B \ Bc

0 X ∈ B� \ Bc (2.12)

In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with k-

continuous derivatives where k is a natural number. As pointed out by [9, 10], the valid choice

of the weighting functions depends on how the compatibility is enforced in the overlapping

domain.

2.3 Variational Statement

Assume that ϕ ∈ U := (W
1
2 (B))3, ϕ� ∈ U

�
:= (W

1
2 (B�

))
3
and φ ∈ V := (W

1
2 (Bc

))
3
in

which W
1
2 (B) is the Sobolev space of square-integrable functions with square-integrable first

derivatives. The functional (2.8) is optimized by applying Gateaux variations with respect

to the independent fields ϕ, ϕ�
and φ. Define test functions corresponding to these fields as
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2 Finite Element Formulation

2.1 Domain Decomposition

Consider a body B partitioned into two parts B and B� such that B = B ∪ B� and a portion

of the partitioned body parts Bc = B ∩B� is overlapped. The B is the domain that occupies

an (usually larger) portion of the body and but associated with fewer degree of freedoms per

volume and hence we refer it as the coarse domain herein. In contrary, B� is the domain that

occupies an (usually smaller) portion of the body where important mechanism may occur

and hence is modeled by a more sophisticated constitutive law and/or meshed with more

degree of freedoms and hence we refer it as the fine domain herein.

The Dirichlet (displacement) boundary of the boundary value problem is the union of

the partitioned Dirichlet boundaries which reads,

∂ϕB = ∂ϕB ∪ ∂ϕ�B�
(2.1)
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(2.2)
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(2.3)

whereas the overlapping Von Neumann boundaries are the interact of the partition bound-

aries, i.e.,

∂TBc
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(2.4)

For consistency, we denotes (·) and (·)� as quantities obtained from body B and B� respectively

in the remaining content.

2.2 Arlequin Formulation

Consider a body B ⊂ R3 undergoing a motion described by the mapping x = ϕ(X, t) :

B × [t1, t2] → R3, with the deformation gradient defined by F := Gradϕ. x ∈ S is point in

the current configuration S = ϕ(B).
Assume that the boundary ∂B, with unit normal N , is the union of a displacement

boundary ∂ϕB, where boundary displacements χ : ∂ϕB × [t1, t2] → R3 are prescribed, and a

traction boundary ∂TB, where tractions T : ∂TB× [t1, t2] → R3 are applied (∂ϕB∩∂TB = ∅).
Let alsoB : B×[t1, t2] → R3 be the body force multiplied by the mass density in the reference

configuration. Furthermore, for every t ∈ [t1, t2] introduce the total free energy functional

Φ0[ϕ] = Φint
0 [ϕ]− Φext

0 [ϕ] (2.5)

Φint
0 [ϕ] =

�

B
W (F , z) dV (2.6)

Φext
0 [ϕ] =
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B
B ·ϕ dV +
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∂TB
T ·ϕ dS (2.7)
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2 Finite Element Formulation

In this section, we derive the finite element formulation of the overlapping domain problem

by applying partition of unity on the incremental energy functional.

2.1 Domain Partitions

Consider a body B partitioned into two parts B and �B such that B = B ∪ �B and a portion

of the partitioned body parts Bc = B ∩ �B is overlapped, as shown in Figure 2.1. The B
is the part that occupies an (usually larger) portion of the body and but associated with

fewer degree of freedoms per volume and hence we refer it as the coarse domain herein.

In contrary, �B is the domain that occupies an (usually smaller) portion of the body where

important mechanism may occur and hence is modeled by a more sophisticated constitutive

law and/or meshed with more degree of freedoms and hence we refer it as the fine domain

herein.

T �B�

−ϕ�) +

· (ϕ−
partitioned into two parts B

−ϕ�) +!"""""#"T �B�

partitioned into two parts B· (ϕ−!"""""#"

such that B = B ∪ B�

is the domain that occupies

∂ϕB = ∂ϕB ∪ ∂ϕ�B�

= ∂ϕB ∪

∪ ∂ϕ�B�

Figure 2.1: Sub-domains B and �B of the dissipative solid body B subjected to deformation

φ and �φ.

The Dirichlet (displacement) boundary of the boundary value problem is the union of

the partitioned Dirichlet boundaries, i.e., ∂ϕB = ∂ϕB ∪ ∂�ϕ �B. On the other hand, the two

partitioned body may contain overlapping Dirichlet boundary ∂ϕBc, i.e., ∂ϕBc = ∂ϕB∩∂�ϕ �B.
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In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with

k-continuous derivatives where k is a natural number. As pointed out by [17, 18], the

valid choice of the weighting functions depends on how the compatibility is enforced in the

overlapping domain.

2.3 Variational Statement

Assume that ϕ ∈ U := (W 1
2 (B))3, �ϕ ∈ �U := (W 1

2 (
�B))3 and φ ∈ V := (W 1

2 (Bc
))

3
in

which W 1
2 (B) is the Sobolev space of square-integrable functions with square-integrable first

derivatives. The functional (2.1) is optimized by applying Gâteaux variations with respect

to the independent fields ϕ, �ϕ and φ. Define test functions corresponding to these fields as

ξ ∈ U , �ξ ∈ �U and η ∈ V , with ξ = 0 on ∂ϕB and �ξ = 0 on ∂�ϕ �B. The Gâteaux variations

follow as

DΦ[ϕ, �ϕ,φ](ξ) =
�

B
αP : Grad ξ dV − βB · ξ dV −

�

∂TB
βT · ξ dS

+

�

Bc

φ · ξ + κl2 Gradφ : Grad ξ dV = 0

DΦ[ϕ, �ϕ,φ](�ξ) =
�

B
(1− α)�P : Grad�ξ dV − (1− β) �B · �ξ dV

−
�

∂TB
(1− β)�T · �ξ dS −

�

Bc

φ · �ϕ+ κl2 Gradφ : Grad�ξ dV = 0

DΦ[ϕ, �ϕ,φ](η) =
�

Bc

η · (ϕ− �ϕ) + κl2 Gradη : (Gradϕ−Grad �ϕ) dV = 0

(2.4)

Here we assume that the mechanical responses of the partitioned bodies B and �B can both

be sufficiently described by standard dissipative solid models such that P = ∂W/∂F and

�P = ∂�W/∂ �F where P and �P are the first Piola Kirchhoff stress corresponding to the

mapping ϕ and ϕ respectively. The corresponding Euler-Lagrange equations of (2.1) in the

non-overlapping domains are simply the balance of linear momentum equation corresponding

to the coarse and fine mapping from material to current configurations.

DivP +B = 0 in B \ Bc

PN = T on ∂TB \ ∂TBc
(2.5)

Div �P + �B = 0 in �B \ Bc

�PN = �T on ∂ �T
�B \ ∂TBc

(2.6)

In the overlapping domain, the Euler-Lagrange equations read,

Div(αP ) + βB − φ+ κl2 DivGradφ = 0 in Bc

Div((1− α)P ) + (1− β)B + φ− κl2 DivGradφ = 0 in Bc

(ϕ− �ϕ)− κl2 DivGrad(ϕ−ϕ) = 0 in Bc

(αP + (1− α)�P )N − βT + (1− β)�T = 0 on ∂TBc

(2.7)
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2 Finite Element Formulation

In this section, we derive the finite element formulation of the overlapping domain problem

by applying partition of unity on the incremental energy functional.

2.1 Domain Partitions

Consider a body B partitioned into two parts B and �B such that B = B ∪ �B and a portion

of the partitioned body parts Bc = B ∩ �B is overlapped, as shown in Figure 2.1. The B
is the part that occupies an (usually larger) portion of the body and but associated with

fewer degree of freedoms per volume and hence we refer it as the coarse domain herein.

In contrary, �B is the domain that occupies an (usually smaller) portion of the body where

important mechanism may occur and hence is modeled by a more sophisticated constitutive

law and/or meshed with more degree of freedoms and hence we refer it as the fine domain

herein.

T �B�

−ϕ�) +

· (ϕ−
partitioned into two parts B

−ϕ�) +!"""""#"T �B�

partitioned into two parts B· (ϕ−!"""""#"

such that B = B ∪ B�

is the domain that occupies

∂ϕB = ∂ϕB ∪ ∂ϕ�B�

= ∂ϕB ∪

∪ ∂ϕ�B�

Figure 2.1: Sub-domains B and �B of the dissipative solid body B subjected to deformation

φ and �φ.

The Dirichlet (displacement) boundary of the boundary value problem is the union of

the partitioned Dirichlet boundaries, i.e., ∂ϕB = ∂ϕB ∪ ∂�ϕ �B. On the other hand, the two

partitioned body may contain overlapping Dirichlet boundary ∂ϕBc, i.e., ∂ϕBc = ∂ϕB∩∂�ϕ �B.
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important mechanism may occur and hence is modeled by a more sophisticated constitutive
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φ and �φ.

The Dirichlet (displacement) boundary of the boundary value problem is the union of

the partitioned Dirichlet boundaries, i.e., ∂ϕB = ∂ϕB ∪ ∂�ϕ �B. On the other hand, the two

partitioned body may contain overlapping Dirichlet boundary ∂ϕBc, i.e., ∂ϕBc = ∂ϕB∩∂�ϕ �B.
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In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with

k-continuous derivatives where k is a natural number. As pointed out by [17, 18], the

valid choice of the weighting functions depends on how the compatibility is enforced in the

overlapping domain.

2.3 Variational Statement

Assume that ϕ ∈ U := (W 1
2 (B))3, �ϕ ∈ �U := (W 1

2 (
�B))3 and φ ∈ V := (W 1

2 (Bc
))

3
in

which W 1
2 (B) is the Sobolev space of square-integrable functions with square-integrable first

derivatives. The functional (2.1) is optimized by applying Gâteaux variations with respect

to the independent fields ϕ, �ϕ and φ. Define test functions corresponding to these fields as

ξ ∈ U , �ξ ∈ �U and η ∈ V , with ξ = 0 on ∂ϕB and �ξ = 0 on ∂�ϕ �B. The Gâteaux variations

follow as

DΦ[ϕ, �ϕ,φ](ξ) =
�

B
αP : Grad ξ dV − βB · ξ dV −

�

∂TB
βT · ξ dS

+

�

Bc

φ · ξ + κl2 Gradφ : Grad ξ dV = 0

DΦ[ϕ, �ϕ,φ](�ξ) =
�

B
(1− α)�P : Grad�ξ dV − (1− β) �B · �ξ dV

−
�

∂TB
(1− β)�T · �ξ dS −

�

Bc

φ · �ϕ+ κl2 Gradφ : Grad�ξ dV = 0

DΦ[ϕ, �ϕ,φ](η) =
�

Bc

η · (ϕ− �ϕ) + κl2 Gradη : (Gradϕ−Grad �ϕ) dV = 0

(2.4)

Here we assume that the mechanical responses of the partitioned bodies B and �B can both

be sufficiently described by standard dissipative solid models such that P = ∂W/∂F and

�P = ∂�W/∂ �F where P and �P are the first Piola Kirchhoff stress corresponding to the

mapping ϕ and ϕ respectively. The corresponding Euler-Lagrange equations of (2.1) in the

non-overlapping domains are simply the balance of linear momentum equation corresponding

to the coarse and fine mapping from material to current configurations.

DivP +B = 0 in B \ Bc

PN = T on ∂TB \ ∂TBc
(2.5)

Div �P + �B = 0 in �B \ Bc

�PN = �T on ∂ �T
�B \ ∂TBc

(2.6)

In the overlapping domain, the Euler-Lagrange equations read,

Div(αP ) + βB − φ+ κl2 DivGradφ = 0 in Bc

Div((1− α)P ) + (1− β)B + φ− κl2 DivGradφ = 0 in Bc

(ϕ− �ϕ)− κl2 DivGrad(ϕ−ϕ) = 0 in Bc

(αP + (1− α)�P )N − βT + (1− β)�T = 0 on ∂TBc

(2.7)
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In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with
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valid choice of the weighting functions depends on how the compatibility is enforced in the
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In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with

k-continuous derivatives where k is a natural number. As pointed out by [17, 18], the

valid choice of the weighting functions depends on how the compatibility is enforced in the

overlapping domain.
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Assume that ϕ ∈ U := (W 1
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Figure 2.1: Sub-domains B and �B of the dissipative solid body B subjected to deformation

φ and �φ.

traction boundary ∂TB, where tractions T : ∂TB× [t1, t2] → R3
are applied (∂ϕB∩∂TB = ∅).

Let also B : B × [t1, t2] → R3
be the body force multiplied by the mass density in the

reference configuration. The main departure of the domain coupling formulation is the

introduction of partitions of unity to the Helmholtz free-energy density and external work

density. Augmented with the Lagrange multipliers used to enforce compatibility, the total

free energy is a three-field energy functional,

Φ[ϕ, �ϕ,φ] =Φ
int
[ϕ, �ϕ]− Φ

ext
[ϕ, �ϕ] + Λ[ϕ, �ϕ,φ]

Φ
int
[ϕ, �ϕ] =

�

B
αW (F ,Z) + (1− α)�W (�F , �Z) dV

Φ
ext

[ϕ, �ϕ] =
�

B
βB ·ϕ+ (1− β) �B · �ϕdV

+

�

∂TB
βT ·ϕ dS +

�

∂TB
(1− β)�T · �ϕ dS

(2.1)

where Φ
int
0 and Φ

ext
0 are the internal and external energy potential. W (F ,Z) is the Helmholtz

free-energy density that covers characteristics of incremental energy storage and dissipation.

Z is a collection of internal variables. The additional energy density function Λ[ϕ, �ϕ,φ]
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where Φint
0 and Φext

0 are the internal and external energy potential. W (F , z) is the Helmholtz

free-energy density that covers characteristics of incremental energy storage and dissipation.

z is a collection of internal variables.

The main departure of the Arlequin formulation is the introduction of partitions of unity

to the Helmholtz free-energy density and external work density. Augmented with the La-

grange multipliers used to enforce compatibility, the total free energy is modified as a three-

field energy functional,

Φ[ϕ,ϕ�
,φ] =Φint

[ϕ,ϕ�
]− Φext

[ϕ,ϕ�
] + Λ[ϕ,ϕ�

,φ] (2.8)

Φint
[ϕ,ϕ�

] =

�

B
αW (F , z) + (1− α)W �

(F �
, z�

) dV (2.9)

Φext
[ϕ,ϕ�

] =

�

B
βB ·ϕ+ (1− β)B� ·ϕ�

dV

+

�

∂TB
βT ·ϕ dS +

�

∂TB
(1− β)T � ·ϕ�

dS (2.10)

The additional energy function Λ[ϕ,ϕ�
,φ] is introduced to minimize the compatibility error

measured by either the L
2
or H

1
norms between the coarse and fine domain , i.e.,

Λ[ϕ,ϕ�
,φ] =

�

Bc

φ · (ϕ−ϕ�
) + κl2 Gradφ : (Gradϕ−Gradϕ�

) dV (2.11)

where κ is a non-negative dimensional parameter corresponding to the compatibility error

to be minimized. κ = 0 if L
2
error is minimized and κ = 1 if H

1
error is minimized. l has

a dimension of length and is introduced in [9] so that the unit is consistent. α : B → [0, 1]

and β : B → [0, 1] are the weighting functions of the Helmholtz free-energy density and

the external work density. Both weighting functions hold the following properties in the

non-overlapping domain,

α(X) = β(X) =

�
1 X ∈ B \ Bc

0 X ∈ B� \ Bc (2.12)

In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with k-

continuous derivatives where k is a natural number. As pointed out by [9, 10], the valid choice

of the weighting functions depends on how the compatibility is enforced in the overlapping

domain.

2.3 Variational Statement

Assume that ϕ ∈ U := (W
1
2 (B))3, ϕ� ∈ U

�
:= (W

1
2 (B�

))
3
and φ ∈ V := (W

1
2 (Bc

))
3
in

which W
1
2 (B) is the Sobolev space of square-integrable functions with square-integrable first

derivatives. The functional (2.8) is optimized by applying Gateaux variations with respect

to the independent fields ϕ, ϕ�
and φ. Define test functions corresponding to these fields as
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2 Finite Element Formulation

2.1 Domain Decomposition

Consider a body B partitioned into two parts B and B� such that B = B ∪ B� and a portion

of the partitioned body parts Bc = B ∩B� is overlapped. The B is the domain that occupies

an (usually larger) portion of the body and but associated with fewer degree of freedoms per

volume and hence we refer it as the coarse domain herein. In contrary, B� is the domain that

occupies an (usually smaller) portion of the body where important mechanism may occur

and hence is modeled by a more sophisticated constitutive law and/or meshed with more

degree of freedoms and hence we refer it as the fine domain herein.

The Dirichlet (displacement) boundary of the boundary value problem is the union of

the partitioned Dirichlet boundaries which reads,

∂ϕB = ∂ϕB ∪ ∂ϕ�B�
(2.1)

On the other hand, the two partitioned body may contain overlapping Dirichlet boundary

∂ϕBc, which reads,

∂ϕBc
= ∂ϕB ∩ ∂ϕ�B�

(2.2)

The Von Neumann (traction) boundary of the boundary value problem reads

∂TB = ∂TB ∪ ∂T �B�
(2.3)

whereas the overlapping Von Neumann boundaries are the interact of the partition bound-

aries, i.e.,

∂TBc
= ∂TB ∩ ∂T �B�

(2.4)

For consistency, we denotes (·) and (·)� as quantities obtained from body B and B� respectively

in the remaining content.

2.2 Arlequin Formulation

Consider a body B ⊂ R3 undergoing a motion described by the mapping x = ϕ(X, t) :

B × [t1, t2] → R3, with the deformation gradient defined by F := Gradϕ. x ∈ S is point in

the current configuration S = ϕ(B).
Assume that the boundary ∂B, with unit normal N , is the union of a displacement

boundary ∂ϕB, where boundary displacements χ : ∂ϕB × [t1, t2] → R3 are prescribed, and a

traction boundary ∂TB, where tractions T : ∂TB× [t1, t2] → R3 are applied (∂ϕB∩∂TB = ∅).
Let alsoB : B×[t1, t2] → R3 be the body force multiplied by the mass density in the reference

configuration. Furthermore, for every t ∈ [t1, t2] introduce the total free energy functional

Φ0[ϕ] = Φint
0 [ϕ]− Φext

0 [ϕ] (2.5)

Φint
0 [ϕ] =

�

B
W (F , z) dV (2.6)

Φext
0 [ϕ] =

�

B
B ·ϕ dV +

�

∂TB
T ·ϕ dS (2.7)
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where Φint
0 and Φext

0 are the internal and external energy potential. W (F , z) is the Helmholtz

free-energy density that covers characteristics of incremental energy storage and dissipation.

z is a collection of internal variables.
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2 Finite Element Formulation

2.1 Domain Decomposition

Consider a body B partitioned into two parts B and B� such that B = B ∪ B� and a portion

of the partitioned body parts Bc = B ∩B� is overlapped. The B is the domain that occupies

an (usually larger) portion of the body and but associated with fewer degree of freedoms per

volume and hence we refer it as the coarse domain herein. In contrary, B� is the domain that

occupies an (usually smaller) portion of the body where important mechanism may occur

and hence is modeled by a more sophisticated constitutive law and/or meshed with more

degree of freedoms and hence we refer it as the fine domain herein.

The Dirichlet (displacement) boundary of the boundary value problem is the union of

the partitioned Dirichlet boundaries which reads,

∂ϕB = ∂ϕB ∪ ∂ϕ�B�
(2.1)

On the other hand, the two partitioned body may contain overlapping Dirichlet boundary

∂ϕBc, which reads,

∂ϕBc
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(2.2)

The Von Neumann (traction) boundary of the boundary value problem reads

∂TB = ∂TB ∪ ∂T �B�
(2.3)

whereas the overlapping Von Neumann boundaries are the interact of the partition bound-

aries, i.e.,

∂TBc
= ∂TB ∩ ∂T �B�

(2.4)

For consistency, we denotes (·) and (·)� as quantities obtained from body B and B� respectively

in the remaining content.

2.2 Arlequin Formulation

Consider a body B ⊂ R3 undergoing a motion described by the mapping x = ϕ(X, t) :

B × [t1, t2] → R3, with the deformation gradient defined by F := Gradϕ. x ∈ S is point in

the current configuration S = ϕ(B).
Assume that the boundary ∂B, with unit normal N , is the union of a displacement

boundary ∂ϕB, where boundary displacements χ : ∂ϕB × [t1, t2] → R3 are prescribed, and a

traction boundary ∂TB, where tractions T : ∂TB× [t1, t2] → R3 are applied (∂ϕB∩∂TB = ∅).
Let alsoB : B×[t1, t2] → R3 be the body force multiplied by the mass density in the reference
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where Φint
0 and Φext

0 are the internal and external energy potential. W (F , z) is the Helmholtz

free-energy density that covers characteristics of incremental energy storage and dissipation.

z is a collection of internal variables.

The main departure of the Arlequin formulation is the introduction of partitions of unity

to the Helmholtz free-energy density and external work density. Augmented with the La-

grange multipliers used to enforce compatibility, the total free energy is modified as a three-
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Λ[ϕ,ϕ�
,φ] =
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where κ is a non-negative dimensional parameter corresponding to the compatibility error

to be minimized. κ = 0 if L
2
error is minimized and κ = 1 if H

1
error is minimized. l has

a dimension of length and is introduced in [9] so that the unit is consistent. α : B → [0, 1]

and β : B → [0, 1] are the weighting functions of the Helmholtz free-energy density and

the external work density. Both weighting functions hold the following properties in the
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continuous derivatives where k is a natural number. As pointed out by [9, 10], the valid choice

of the weighting functions depends on how the compatibility is enforced in the overlapping

domain.

2.3 Variational Statement

Assume that ϕ ∈ U := (W
1
2 (B))3, ϕ� ∈ U

�
:= (W

1
2 (B�

))
3
and φ ∈ V := (W

1
2 (Bc

))
3
in

which W
1
2 (B) is the Sobolev space of square-integrable functions with square-integrable first

derivatives. The functional (2.8) is optimized by applying Gateaux variations with respect

to the independent fields ϕ, ϕ�
and φ. Define test functions corresponding to these fields as

5

!"""""#"

W. Sun, A. Mota Domain Coupling for Large Deformation Strain Localization

2 Finite Element Formulation

2.1 Domain Decomposition

Consider a body B partitioned into two parts B and B� such that B = B ∪ B� and a portion

of the partitioned body parts Bc = B ∩B� is overlapped. The B is the domain that occupies

an (usually larger) portion of the body and but associated with fewer degree of freedoms per

volume and hence we refer it as the coarse domain herein. In contrary, B� is the domain that

occupies an (usually smaller) portion of the body where important mechanism may occur

and hence is modeled by a more sophisticated constitutive law and/or meshed with more

degree of freedoms and hence we refer it as the fine domain herein.

The Dirichlet (displacement) boundary of the boundary value problem is the union of

the partitioned Dirichlet boundaries which reads,

∂ϕB = ∂ϕB ∪ ∂ϕ�B�
(2.1)

On the other hand, the two partitioned body may contain overlapping Dirichlet boundary

∂ϕBc, which reads,

∂ϕBc
= ∂ϕB ∩ ∂ϕ�B�

(2.2)

The Von Neumann (traction) boundary of the boundary value problem reads

∂TB = ∂TB ∪ ∂T �B�
(2.3)

whereas the overlapping Von Neumann boundaries are the interact of the partition bound-

aries, i.e.,

∂TBc
= ∂TB ∩ ∂T �B�

(2.4)

For consistency, we denotes (·) and (·)� as quantities obtained from body B and B� respectively

in the remaining content.

2.2 Arlequin Formulation

Consider a body B ⊂ R3 undergoing a motion described by the mapping x = ϕ(X, t) :

B × [t1, t2] → R3, with the deformation gradient defined by F := Gradϕ. x ∈ S is point in

the current configuration S = ϕ(B).
Assume that the boundary ∂B, with unit normal N , is the union of a displacement

boundary ∂ϕB, where boundary displacements χ : ∂ϕB × [t1, t2] → R3 are prescribed, and a

traction boundary ∂TB, where tractions T : ∂TB× [t1, t2] → R3 are applied (∂ϕB∩∂TB = ∅).
Let alsoB : B×[t1, t2] → R3 be the body force multiplied by the mass density in the reference

configuration. Furthermore, for every t ∈ [t1, t2] introduce the total free energy functional

Φ0[ϕ] = Φint
0 [ϕ]− Φext

0 [ϕ] (2.5)

Φint
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B ·ϕ dV +
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∂TB
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2 Finite Element Formulation

In this section, we derive the finite element formulation of the overlapping domain problem

by applying partition of unity on the incremental energy functional.

2.1 Domain Partitions

Consider a body B partitioned into two parts B and �B such that B = B ∪ �B and a portion

of the partitioned body parts Bc = B ∩ �B is overlapped, as shown in Figure 2.1. The B
is the part that occupies an (usually larger) portion of the body and but associated with

fewer degree of freedoms per volume and hence we refer it as the coarse domain herein.

In contrary, �B is the domain that occupies an (usually smaller) portion of the body where

important mechanism may occur and hence is modeled by a more sophisticated constitutive

law and/or meshed with more degree of freedoms and hence we refer it as the fine domain

herein.

T �B�

−ϕ�) +

· (ϕ−
partitioned into two parts B

−ϕ�) +!"""""#"T �B�

partitioned into two parts B· (ϕ−!"""""#"

such that B = B ∪ B�

is the domain that occupies

∂ϕB = ∂ϕB ∪ ∂ϕ�B�

= ∂ϕB ∪

∪ ∂ϕ�B�

Figure 2.1: Sub-domains B and �B of the dissipative solid body B subjected to deformation

φ and �φ.

The Dirichlet (displacement) boundary of the boundary value problem is the union of

the partitioned Dirichlet boundaries, i.e., ∂ϕB = ∂ϕB ∪ ∂�ϕ �B. On the other hand, the two

partitioned body may contain overlapping Dirichlet boundary ∂ϕBc, i.e., ∂ϕBc = ∂ϕB∩∂�ϕ �B.
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In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with

k-continuous derivatives where k is a natural number. As pointed out by [17, 18], the

valid choice of the weighting functions depends on how the compatibility is enforced in the

overlapping domain.

2.3 Variational Statement

Assume that ϕ ∈ U := (W 1
2 (B))3, �ϕ ∈ �U := (W 1

2 (
�B))3 and φ ∈ V := (W 1

2 (Bc
))

3
in

which W 1
2 (B) is the Sobolev space of square-integrable functions with square-integrable first

derivatives. The functional (2.1) is optimized by applying Gâteaux variations with respect

to the independent fields ϕ, �ϕ and φ. Define test functions corresponding to these fields as

ξ ∈ U , �ξ ∈ �U and η ∈ V , with ξ = 0 on ∂ϕB and �ξ = 0 on ∂�ϕ �B. The Gâteaux variations

follow as

DΦ[ϕ, �ϕ,φ](ξ) =
�

B
αP : Grad ξ dV − βB · ξ dV −

�

∂TB
βT · ξ dS

+

�

Bc

φ · ξ + κl2 Gradφ : Grad ξ dV = 0

DΦ[ϕ, �ϕ,φ](�ξ) =
�

B
(1− α)�P : Grad�ξ dV − (1− β) �B · �ξ dV

−
�

∂TB
(1− β)�T · �ξ dS −

�

Bc

φ · �ϕ+ κl2 Gradφ : Grad�ξ dV = 0

DΦ[ϕ, �ϕ,φ](η) =
�

Bc

η · (ϕ− �ϕ) + κl2 Gradη : (Gradϕ−Grad �ϕ) dV = 0

(2.4)

Here we assume that the mechanical responses of the partitioned bodies B and �B can both

be sufficiently described by standard dissipative solid models such that P = ∂W/∂F and

�P = ∂�W/∂ �F where P and �P are the first Piola Kirchhoff stress corresponding to the

mapping ϕ and ϕ respectively. The corresponding Euler-Lagrange equations of (2.1) in the

non-overlapping domains are simply the balance of linear momentum equation corresponding

to the coarse and fine mapping from material to current configurations.

DivP +B = 0 in B \ Bc

PN = T on ∂TB \ ∂TBc
(2.5)

Div �P + �B = 0 in �B \ Bc

�PN = �T on ∂ �T
�B \ ∂TBc

(2.6)

In the overlapping domain, the Euler-Lagrange equations read,

Div(αP ) + βB − φ+ κl2 DivGradφ = 0 in Bc

Div((1− α)P ) + (1− β)B + φ− κl2 DivGradφ = 0 in Bc

(ϕ− �ϕ)− κl2 DivGrad(ϕ−ϕ) = 0 in Bc

(αP + (1− α)�P )N − βT + (1− β)�T = 0 on ∂TBc

(2.7)
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2 Finite Element Formulation

In this section, we derive the finite element formulation of the overlapping domain problem

by applying partition of unity on the incremental energy functional.

2.1 Domain Partitions

Consider a body B partitioned into two parts B and �B such that B = B ∪ �B and a portion

of the partitioned body parts Bc = B ∩ �B is overlapped, as shown in Figure 2.1. The B
is the part that occupies an (usually larger) portion of the body and but associated with

fewer degree of freedoms per volume and hence we refer it as the coarse domain herein.

In contrary, �B is the domain that occupies an (usually smaller) portion of the body where

important mechanism may occur and hence is modeled by a more sophisticated constitutive

law and/or meshed with more degree of freedoms and hence we refer it as the fine domain

herein.
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Figure 2.1: Sub-domains B and �B of the dissipative solid body B subjected to deformation

φ and �φ.

The Dirichlet (displacement) boundary of the boundary value problem is the union of

the partitioned Dirichlet boundaries, i.e., ∂ϕB = ∂ϕB ∪ ∂�ϕ �B. On the other hand, the two

partitioned body may contain overlapping Dirichlet boundary ∂ϕBc, i.e., ∂ϕBc = ∂ϕB∩∂�ϕ �B.
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In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with

k-continuous derivatives where k is a natural number. As pointed out by [17, 18], the

valid choice of the weighting functions depends on how the compatibility is enforced in the

overlapping domain.

2.3 Variational Statement

Assume that ϕ ∈ U := (W 1
2 (B))3, �ϕ ∈ �U := (W 1

2 (
�B))3 and φ ∈ V := (W 1

2 (Bc
))

3
in

which W 1
2 (B) is the Sobolev space of square-integrable functions with square-integrable first

derivatives. The functional (2.1) is optimized by applying Gâteaux variations with respect

to the independent fields ϕ, �ϕ and φ. Define test functions corresponding to these fields as

ξ ∈ U , �ξ ∈ �U and η ∈ V , with ξ = 0 on ∂ϕB and �ξ = 0 on ∂�ϕ �B. The Gâteaux variations

follow as

DΦ[ϕ, �ϕ,φ](ξ) =
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B
αP : Grad ξ dV − βB · ξ dV −

�

∂TB
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Here we assume that the mechanical responses of the partitioned bodies B and �B can both

be sufficiently described by standard dissipative solid models such that P = ∂W/∂F and

�P = ∂�W/∂ �F where P and �P are the first Piola Kirchhoff stress corresponding to the

mapping ϕ and ϕ respectively. The corresponding Euler-Lagrange equations of (2.1) in the

non-overlapping domains are simply the balance of linear momentum equation corresponding
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DivP +B = 0 in B \ Bc
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(2.5)
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�B \ ∂TBc

(2.6)
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(2.7)
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Figure 2.1: Sub-domains B and �B of the dissipative solid body B subjected to deformation

φ and �φ.

traction boundary ∂TB, where tractions T : ∂TB× [t1, t2] → R3
are applied (∂ϕB∩∂TB = ∅).

Let also B : B × [t1, t2] → R3
be the body force multiplied by the mass density in the

reference configuration. The main departure of the domain coupling formulation is the

introduction of partitions of unity to the Helmholtz free-energy density and external work

density. Augmented with the Lagrange multipliers used to enforce compatibility, the total

free energy is a three-field energy functional,

Φ[ϕ, �ϕ,φ] =Φ
int
[ϕ, �ϕ]− Φ

ext
[ϕ, �ϕ] + Λ[ϕ, �ϕ,φ]

Φ
int
[ϕ, �ϕ] =

�

B
αW (F ,Z) + (1− α)�W (�F , �Z) dV

Φ
ext

[ϕ, �ϕ] =
�

B
βB ·ϕ+ (1− β) �B · �ϕdV

+

�

∂TB
βT ·ϕ dS +

�

∂TB
(1− β)�T · �ϕ dS

(2.1)

where Φ
int
0 and Φ

ext
0 are the internal and external energy potential. W (F ,Z) is the Helmholtz

free-energy density that covers characteristics of incremental energy storage and dissipation.

Z is a collection of internal variables. The additional energy density function Λ[ϕ, �ϕ,φ]
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where Φint
0 and Φext

0 are the internal and external energy potential. W (F , z) is the Helmholtz

free-energy density that covers characteristics of incremental energy storage and dissipation.

z is a collection of internal variables.

The main departure of the Arlequin formulation is the introduction of partitions of unity

to the Helmholtz free-energy density and external work density. Augmented with the La-

grange multipliers used to enforce compatibility, the total free energy is modified as a three-

field energy functional,

Φ[ϕ,ϕ�
,φ] =Φint

[ϕ,ϕ�
]− Φext

[ϕ,ϕ�
] + Λ[ϕ,ϕ�

,φ] (2.8)

Φint
[ϕ,ϕ�

] =

�

B
αW (F , z) + (1− α)W �

(F �
, z�

) dV (2.9)

Φext
[ϕ,ϕ�

] =

�

B
βB ·ϕ+ (1− β)B� ·ϕ�

dV

+

�

∂TB
βT ·ϕ dS +

�

∂TB
(1− β)T � ·ϕ�

dS (2.10)

The additional energy function Λ[ϕ,ϕ�
,φ] is introduced to minimize the compatibility error

measured by either the L
2
or H

1
norms between the coarse and fine domain , i.e.,

Λ[ϕ,ϕ�
,φ] =

�

Bc

φ · (ϕ−ϕ�
) + κl2 Gradφ : (Gradϕ−Gradϕ�

) dV (2.11)

where κ is a non-negative dimensional parameter corresponding to the compatibility error

to be minimized. κ = 0 if L
2
error is minimized and κ = 1 if H

1
error is minimized. l has

a dimension of length and is introduced in [9] so that the unit is consistent. α : B → [0, 1]

and β : B → [0, 1] are the weighting functions of the Helmholtz free-energy density and

the external work density. Both weighting functions hold the following properties in the

non-overlapping domain,

α(X) = β(X) =

�
1 X ∈ B \ Bc

0 X ∈ B� \ Bc (2.12)

In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with k-

continuous derivatives where k is a natural number. As pointed out by [9, 10], the valid choice

of the weighting functions depends on how the compatibility is enforced in the overlapping

domain.

2.3 Variational Statement

Assume that ϕ ∈ U := (W
1
2 (B))3, ϕ� ∈ U

�
:= (W

1
2 (B�

))
3
and φ ∈ V := (W

1
2 (Bc

))
3
in

which W
1
2 (B) is the Sobolev space of square-integrable functions with square-integrable first

derivatives. The functional (2.8) is optimized by applying Gateaux variations with respect

to the independent fields ϕ, ϕ�
and φ. Define test functions corresponding to these fields as
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2 Finite Element Formulation

2.1 Domain Decomposition

Consider a body B partitioned into two parts B and B� such that B = B ∪ B� and a portion

of the partitioned body parts Bc = B ∩B� is overlapped. The B is the domain that occupies

an (usually larger) portion of the body and but associated with fewer degree of freedoms per

volume and hence we refer it as the coarse domain herein. In contrary, B� is the domain that

occupies an (usually smaller) portion of the body where important mechanism may occur

and hence is modeled by a more sophisticated constitutive law and/or meshed with more

degree of freedoms and hence we refer it as the fine domain herein.

The Dirichlet (displacement) boundary of the boundary value problem is the union of

the partitioned Dirichlet boundaries which reads,

∂ϕB = ∂ϕB ∪ ∂ϕ�B�
(2.1)

On the other hand, the two partitioned body may contain overlapping Dirichlet boundary

∂ϕBc, which reads,

∂ϕBc
= ∂ϕB ∩ ∂ϕ�B�

(2.2)

The Von Neumann (traction) boundary of the boundary value problem reads

∂TB = ∂TB ∪ ∂T �B�
(2.3)

whereas the overlapping Von Neumann boundaries are the interact of the partition bound-

aries, i.e.,

∂TBc
= ∂TB ∩ ∂T �B�

(2.4)

For consistency, we denotes (·) and (·)� as quantities obtained from body B and B� respectively

in the remaining content.

2.2 Arlequin Formulation

Consider a body B ⊂ R3 undergoing a motion described by the mapping x = ϕ(X, t) :

B × [t1, t2] → R3, with the deformation gradient defined by F := Gradϕ. x ∈ S is point in

the current configuration S = ϕ(B).
Assume that the boundary ∂B, with unit normal N , is the union of a displacement

boundary ∂ϕB, where boundary displacements χ : ∂ϕB × [t1, t2] → R3 are prescribed, and a

traction boundary ∂TB, where tractions T : ∂TB× [t1, t2] → R3 are applied (∂ϕB∩∂TB = ∅).
Let alsoB : B×[t1, t2] → R3 be the body force multiplied by the mass density in the reference

configuration. Furthermore, for every t ∈ [t1, t2] introduce the total free energy functional

Φ0[ϕ] = Φint
0 [ϕ]− Φext

0 [ϕ] (2.5)

Φint
0 [ϕ] =

�

B
W (F , z) dV (2.6)

Φext
0 [ϕ] =

�

B
B ·ϕ dV +

�

∂TB
T ·ϕ dS (2.7)
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The additional energy function Λ[ϕ,ϕ�
,φ] is introduced to minimize the compatibility error
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2
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1
norms between the coarse and fine domain , i.e.,
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) + κl2 Gradφ : (Gradϕ−Gradϕ�
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where κ is a non-negative dimensional parameter corresponding to the compatibility error
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2
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1
error is minimized. l has

a dimension of length and is introduced in [9] so that the unit is consistent. α : B → [0, 1]

and β : B → [0, 1] are the weighting functions of the Helmholtz free-energy density and

the external work density. Both weighting functions hold the following properties in the

non-overlapping domain,

α(X) = β(X) =

�
1 X ∈ B \ Bc

0 X ∈ B� \ Bc (2.12)

In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with k-

continuous derivatives where k is a natural number. As pointed out by [9, 10], the valid choice

of the weighting functions depends on how the compatibility is enforced in the overlapping

domain.

2.3 Variational Statement

Assume that ϕ ∈ U := (W
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to the independent fields ϕ, ϕ�
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2 Finite Element Formulation
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The Von Neumann (traction) boundary of the boundary value problem reads

∂TB = ∂TB ∪ ∂T �B�
(2.3)
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where Φint
0 and Φext

0 are the internal and external energy potential. W (F , z) is the Helmholtz

free-energy density that covers characteristics of incremental energy storage and dissipation.

z is a collection of internal variables.
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∂ϕBc
= ∂ϕB ∩ ∂ϕ�B�

(2.2)

The Von Neumann (traction) boundary of the boundary value problem reads

∂TB = ∂TB ∪ ∂T �B�
(2.3)

whereas the overlapping Von Neumann boundaries are the interact of the partition bound-

aries, i.e.,

∂TBc
= ∂TB ∩ ∂T �B�

(2.4)

For consistency, we denotes (·) and (·)� as quantities obtained from body B and B� respectively

in the remaining content.

2.2 Arlequin Formulation

Consider a body B ⊂ R3 undergoing a motion described by the mapping x = ϕ(X, t) :

B × [t1, t2] → R3, with the deformation gradient defined by F := Gradϕ. x ∈ S is point in

the current configuration S = ϕ(B).
Assume that the boundary ∂B, with unit normal N , is the union of a displacement

boundary ∂ϕB, where boundary displacements χ : ∂ϕB × [t1, t2] → R3 are prescribed, and a

traction boundary ∂TB, where tractions T : ∂TB× [t1, t2] → R3 are applied (∂ϕB∩∂TB = ∅).
Let alsoB : B×[t1, t2] → R3 be the body force multiplied by the mass density in the reference

configuration. Furthermore, for every t ∈ [t1, t2] introduce the total free energy functional

Φ0[ϕ] = Φint
0 [ϕ]− Φext

0 [ϕ] (2.5)

Φint
0 [ϕ] =

�

B
W (F , z) dV (2.6)

Φext
0 [ϕ] =

�

B
B ·ϕ dV +

�

∂TB
T ·ϕ dS (2.7)
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2 Finite Element Formulation

In this section, we derive the finite element formulation of the overlapping domain problem

by applying partition of unity on the incremental energy functional.

2.1 Domain Partitions

Consider a body B partitioned into two parts B and �B such that B = B ∪ �B and a portion

of the partitioned body parts Bc = B ∩ �B is overlapped, as shown in Figure 2.1. The B
is the part that occupies an (usually larger) portion of the body and but associated with

fewer degree of freedoms per volume and hence we refer it as the coarse domain herein.

In contrary, �B is the domain that occupies an (usually smaller) portion of the body where

important mechanism may occur and hence is modeled by a more sophisticated constitutive

law and/or meshed with more degree of freedoms and hence we refer it as the fine domain

herein.
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Figure 2.1: Sub-domains B and �B of the dissipative solid body B subjected to deformation

φ and �φ.

The Dirichlet (displacement) boundary of the boundary value problem is the union of

the partitioned Dirichlet boundaries, i.e., ∂ϕB = ∂ϕB ∪ ∂�ϕ �B. On the other hand, the two

partitioned body may contain overlapping Dirichlet boundary ∂ϕBc, i.e., ∂ϕBc = ∂ϕB∩∂�ϕ �B.
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In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with

k-continuous derivatives where k is a natural number. As pointed out by [17, 18], the

valid choice of the weighting functions depends on how the compatibility is enforced in the

overlapping domain.

2.3 Variational Statement

Assume that ϕ ∈ U := (W 1
2 (B))3, �ϕ ∈ �U := (W 1

2 (
�B))3 and φ ∈ V := (W 1

2 (Bc
))

3
in

which W 1
2 (B) is the Sobolev space of square-integrable functions with square-integrable first

derivatives. The functional (2.1) is optimized by applying Gâteaux variations with respect

to the independent fields ϕ, �ϕ and φ. Define test functions corresponding to these fields as

ξ ∈ U , �ξ ∈ �U and η ∈ V , with ξ = 0 on ∂ϕB and �ξ = 0 on ∂�ϕ �B. The Gâteaux variations

follow as

DΦ[ϕ, �ϕ,φ](ξ) =
�

B
αP : Grad ξ dV − βB · ξ dV −

�

∂TB
βT · ξ dS

+

�

Bc

φ · ξ + κl2 Gradφ : Grad ξ dV = 0

DΦ[ϕ, �ϕ,φ](�ξ) =
�

B
(1− α)�P : Grad�ξ dV − (1− β) �B · �ξ dV

−
�

∂TB
(1− β)�T · �ξ dS −

�

Bc

φ · �ϕ+ κl2 Gradφ : Grad�ξ dV = 0

DΦ[ϕ, �ϕ,φ](η) =
�

Bc

η · (ϕ− �ϕ) + κl2 Gradη : (Gradϕ−Grad �ϕ) dV = 0

(2.4)

Here we assume that the mechanical responses of the partitioned bodies B and �B can both

be sufficiently described by standard dissipative solid models such that P = ∂W/∂F and

�P = ∂�W/∂ �F where P and �P are the first Piola Kirchhoff stress corresponding to the

mapping ϕ and ϕ respectively. The corresponding Euler-Lagrange equations of (2.1) in the

non-overlapping domains are simply the balance of linear momentum equation corresponding

to the coarse and fine mapping from material to current configurations.

DivP +B = 0 in B \ Bc

PN = T on ∂TB \ ∂TBc
(2.5)

Div �P + �B = 0 in �B \ Bc

�PN = �T on ∂ �T
�B \ ∂TBc

(2.6)

In the overlapping domain, the Euler-Lagrange equations read,

Div(αP ) + βB − φ+ κl2 DivGradφ = 0 in Bc

Div((1− α)P ) + (1− β)B + φ− κl2 DivGradφ = 0 in Bc

(ϕ− �ϕ)− κl2 DivGrad(ϕ−ϕ) = 0 in Bc

(αP + (1− α)�P )N − βT + (1− β)�T = 0 on ∂TBc

(2.7)
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2 Finite Element Formulation

In this section, we derive the finite element formulation of the overlapping domain problem

by applying partition of unity on the incremental energy functional.

2.1 Domain Partitions

Consider a body B partitioned into two parts B and �B such that B = B ∪ �B and a portion

of the partitioned body parts Bc = B ∩ �B is overlapped, as shown in Figure 2.1. The B
is the part that occupies an (usually larger) portion of the body and but associated with

fewer degree of freedoms per volume and hence we refer it as the coarse domain herein.

In contrary, �B is the domain that occupies an (usually smaller) portion of the body where

important mechanism may occur and hence is modeled by a more sophisticated constitutive

law and/or meshed with more degree of freedoms and hence we refer it as the fine domain

herein.
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The Dirichlet (displacement) boundary of the boundary value problem is the union of

the partitioned Dirichlet boundaries, i.e., ∂ϕB = ∂ϕB ∪ ∂�ϕ �B. On the other hand, the two

partitioned body may contain overlapping Dirichlet boundary ∂ϕBc, i.e., ∂ϕBc = ∂ϕB∩∂�ϕ �B.
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In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with

k-continuous derivatives where k is a natural number. As pointed out by [17, 18], the

valid choice of the weighting functions depends on how the compatibility is enforced in the

overlapping domain.

2.3 Variational Statement

Assume that ϕ ∈ U := (W 1
2 (B))3, �ϕ ∈ �U := (W 1

2 (
�B))3 and φ ∈ V := (W 1

2 (Bc
))

3
in

which W 1
2 (B) is the Sobolev space of square-integrable functions with square-integrable first

derivatives. The functional (2.1) is optimized by applying Gâteaux variations with respect

to the independent fields ϕ, �ϕ and φ. Define test functions corresponding to these fields as

ξ ∈ U , �ξ ∈ �U and η ∈ V , with ξ = 0 on ∂ϕB and �ξ = 0 on ∂�ϕ �B. The Gâteaux variations

follow as

DΦ[ϕ, �ϕ,φ](ξ) =
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B
αP : Grad ξ dV − βB · ξ dV −
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∂TB
βT · ξ dS

+
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φ · ξ + κl2 Gradφ : Grad ξ dV = 0
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(1− α)�P : Grad�ξ dV − (1− β) �B · �ξ dV

−
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�
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be sufficiently described by standard dissipative solid models such that P = ∂W/∂F and

�P = ∂�W/∂ �F where P and �P are the first Piola Kirchhoff stress corresponding to the

mapping ϕ and ϕ respectively. The corresponding Euler-Lagrange equations of (2.1) in the

non-overlapping domains are simply the balance of linear momentum equation corresponding

to the coarse and fine mapping from material to current configurations.

DivP +B = 0 in B \ Bc

PN = T on ∂TB \ ∂TBc
(2.5)

Div �P + �B = 0 in �B \ Bc
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�B \ ∂TBc
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Div((1− α)P ) + (1− β)B + φ− κl2 DivGradφ = 0 in Bc
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Figure 2.1: Sub-domains B and �B of the dissipative solid body B subjected to deformation

φ and �φ.

traction boundary ∂TB, where tractions T : ∂TB× [t1, t2] → R3
are applied (∂ϕB∩∂TB = ∅).

Let also B : B × [t1, t2] → R3
be the body force multiplied by the mass density in the

reference configuration. The main departure of the domain coupling formulation is the

introduction of partitions of unity to the Helmholtz free-energy density and external work

density. Augmented with the Lagrange multipliers used to enforce compatibility, the total

free energy is a three-field energy functional,

Φ[ϕ, �ϕ,φ] =Φ
int
[ϕ, �ϕ]− Φ

ext
[ϕ, �ϕ] + Λ[ϕ, �ϕ,φ]

Φ
int
[ϕ, �ϕ] =

�

B
αW (F ,Z) + (1− α)�W (�F , �Z) dV

Φ
ext

[ϕ, �ϕ] =
�

B
βB ·ϕ+ (1− β) �B · �ϕdV

+

�

∂TB
βT ·ϕ dS +

�

∂TB
(1− β)�T · �ϕ dS

(2.1)

where Φ
int
0 and Φ

ext
0 are the internal and external energy potential. W (F ,Z) is the Helmholtz

free-energy density that covers characteristics of incremental energy storage and dissipation.

Z is a collection of internal variables. The additional energy density function Λ[ϕ, �ϕ,φ]
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where Φint
0 and Φext

0 are the internal and external energy potential. W (F , z) is the Helmholtz

free-energy density that covers characteristics of incremental energy storage and dissipation.

z is a collection of internal variables.

The main departure of the Arlequin formulation is the introduction of partitions of unity

to the Helmholtz free-energy density and external work density. Augmented with the La-

grange multipliers used to enforce compatibility, the total free energy is modified as a three-

field energy functional,

Φ[ϕ,ϕ�
,φ] =Φint

[ϕ,ϕ�
]− Φext

[ϕ,ϕ�
] + Λ[ϕ,ϕ�

,φ] (2.8)

Φint
[ϕ,ϕ�

] =

�

B
αW (F , z) + (1− α)W �

(F �
, z�

) dV (2.9)

Φext
[ϕ,ϕ�

] =

�

B
βB ·ϕ+ (1− β)B� ·ϕ�

dV

+

�

∂TB
βT ·ϕ dS +

�

∂TB
(1− β)T � ·ϕ�

dS (2.10)

The additional energy function Λ[ϕ,ϕ�
,φ] is introduced to minimize the compatibility error

measured by either the L
2
or H

1
norms between the coarse and fine domain , i.e.,

Λ[ϕ,ϕ�
,φ] =

�

Bc

φ · (ϕ−ϕ�
) + κl2 Gradφ : (Gradϕ−Gradϕ�

) dV (2.11)

where κ is a non-negative dimensional parameter corresponding to the compatibility error

to be minimized. κ = 0 if L
2
error is minimized and κ = 1 if H

1
error is minimized. l has

a dimension of length and is introduced in [9] so that the unit is consistent. α : B → [0, 1]

and β : B → [0, 1] are the weighting functions of the Helmholtz free-energy density and

the external work density. Both weighting functions hold the following properties in the

non-overlapping domain,

α(X) = β(X) =

�
1 X ∈ B \ Bc

0 X ∈ B� \ Bc (2.12)

In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with k-

continuous derivatives where k is a natural number. As pointed out by [9, 10], the valid choice

of the weighting functions depends on how the compatibility is enforced in the overlapping

domain.

2.3 Variational Statement

Assume that ϕ ∈ U := (W
1
2 (B))3, ϕ� ∈ U

�
:= (W

1
2 (B�

))
3
and φ ∈ V := (W

1
2 (Bc

))
3
in

which W
1
2 (B) is the Sobolev space of square-integrable functions with square-integrable first

derivatives. The functional (2.8) is optimized by applying Gateaux variations with respect

to the independent fields ϕ, ϕ�
and φ. Define test functions corresponding to these fields as
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2 Finite Element Formulation

2.1 Domain Decomposition

Consider a body B partitioned into two parts B and B� such that B = B ∪ B� and a portion

of the partitioned body parts Bc = B ∩B� is overlapped. The B is the domain that occupies

an (usually larger) portion of the body and but associated with fewer degree of freedoms per

volume and hence we refer it as the coarse domain herein. In contrary, B� is the domain that

occupies an (usually smaller) portion of the body where important mechanism may occur

and hence is modeled by a more sophisticated constitutive law and/or meshed with more

degree of freedoms and hence we refer it as the fine domain herein.

The Dirichlet (displacement) boundary of the boundary value problem is the union of

the partitioned Dirichlet boundaries which reads,

∂ϕB = ∂ϕB ∪ ∂ϕ�B�
(2.1)

On the other hand, the two partitioned body may contain overlapping Dirichlet boundary

∂ϕBc, which reads,

∂ϕBc
= ∂ϕB ∩ ∂ϕ�B�

(2.2)

The Von Neumann (traction) boundary of the boundary value problem reads

∂TB = ∂TB ∪ ∂T �B�
(2.3)

whereas the overlapping Von Neumann boundaries are the interact of the partition bound-

aries, i.e.,

∂TBc
= ∂TB ∩ ∂T �B�

(2.4)

For consistency, we denotes (·) and (·)� as quantities obtained from body B and B� respectively

in the remaining content.

2.2 Arlequin Formulation

Consider a body B ⊂ R3 undergoing a motion described by the mapping x = ϕ(X, t) :

B × [t1, t2] → R3, with the deformation gradient defined by F := Gradϕ. x ∈ S is point in

the current configuration S = ϕ(B).
Assume that the boundary ∂B, with unit normal N , is the union of a displacement

boundary ∂ϕB, where boundary displacements χ : ∂ϕB × [t1, t2] → R3 are prescribed, and a

traction boundary ∂TB, where tractions T : ∂TB× [t1, t2] → R3 are applied (∂ϕB∩∂TB = ∅).
Let alsoB : B×[t1, t2] → R3 be the body force multiplied by the mass density in the reference

configuration. Furthermore, for every t ∈ [t1, t2] introduce the total free energy functional

Φ0[ϕ] = Φint
0 [ϕ]− Φext

0 [ϕ] (2.5)

Φint
0 [ϕ] =

�

B
W (F , z) dV (2.6)

Φext
0 [ϕ] =

�

B
B ·ϕ dV +

�

∂TB
T ·ϕ dS (2.7)
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where Φint
0 and Φext

0 are the internal and external energy potential. W (F , z) is the Helmholtz

free-energy density that covers characteristics of incremental energy storage and dissipation.

z is a collection of internal variables.

The main departure of the Arlequin formulation is the introduction of partitions of unity

to the Helmholtz free-energy density and external work density. Augmented with the La-

grange multipliers used to enforce compatibility, the total free energy is modified as a three-

field energy functional,

Φ[ϕ,ϕ�
,φ] =Φint

[ϕ,ϕ�
]− Φext

[ϕ,ϕ�
] + Λ[ϕ,ϕ�

,φ] (2.8)

Φint
[ϕ,ϕ�

] =

�

B
αW (F , z) + (1− α)W �

(F �
, z�

) dV (2.9)

Φext
[ϕ,ϕ�

] =

�

B
βB ·ϕ+ (1− β)B� ·ϕ�

dV

+

�

∂TB
βT ·ϕ dS +

�

∂TB
(1− β)T � ·ϕ�

dS (2.10)

The additional energy function Λ[ϕ,ϕ�
,φ] is introduced to minimize the compatibility error

measured by either the L
2
or H

1
norms between the coarse and fine domain , i.e.,

Λ[ϕ,ϕ�
,φ] =

�

Bc

φ · (ϕ−ϕ�
) + κl2 Gradφ : (Gradϕ−Gradϕ�

) dV (2.11)

where κ is a non-negative dimensional parameter corresponding to the compatibility error

to be minimized. κ = 0 if L
2
error is minimized and κ = 1 if H

1
error is minimized. l has

a dimension of length and is introduced in [9] so that the unit is consistent. α : B → [0, 1]

and β : B → [0, 1] are the weighting functions of the Helmholtz free-energy density and

the external work density. Both weighting functions hold the following properties in the

non-overlapping domain,

α(X) = β(X) =

�
1 X ∈ B \ Bc

0 X ∈ B� \ Bc (2.12)

In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with k-

continuous derivatives where k is a natural number. As pointed out by [9, 10], the valid choice

of the weighting functions depends on how the compatibility is enforced in the overlapping

domain.

2.3 Variational Statement

Assume that ϕ ∈ U := (W
1
2 (B))3, ϕ� ∈ U

�
:= (W

1
2 (B�

))
3
and φ ∈ V := (W

1
2 (Bc

))
3
in

which W
1
2 (B) is the Sobolev space of square-integrable functions with square-integrable first

derivatives. The functional (2.8) is optimized by applying Gateaux variations with respect

to the independent fields ϕ, ϕ�
and φ. Define test functions corresponding to these fields as

5

!"""""#"

W. Sun, A. Mota Domain Coupling for Large Deformation Strain Localization

2 Finite Element Formulation

2.1 Domain Decomposition

Consider a body B partitioned into two parts B and B� such that B = B ∪ B� and a portion

of the partitioned body parts Bc = B ∩B� is overlapped. The B is the domain that occupies

an (usually larger) portion of the body and but associated with fewer degree of freedoms per

volume and hence we refer it as the coarse domain herein. In contrary, B� is the domain that

occupies an (usually smaller) portion of the body where important mechanism may occur

and hence is modeled by a more sophisticated constitutive law and/or meshed with more

degree of freedoms and hence we refer it as the fine domain herein.

The Dirichlet (displacement) boundary of the boundary value problem is the union of

the partitioned Dirichlet boundaries which reads,

∂ϕB = ∂ϕB ∪ ∂ϕ�B�
(2.1)

On the other hand, the two partitioned body may contain overlapping Dirichlet boundary

∂ϕBc, which reads,

∂ϕBc
= ∂ϕB ∩ ∂ϕ�B�

(2.2)

The Von Neumann (traction) boundary of the boundary value problem reads

∂TB = ∂TB ∪ ∂T �B�
(2.3)

whereas the overlapping Von Neumann boundaries are the interact of the partition bound-

aries, i.e.,

∂TBc
= ∂TB ∩ ∂T �B�

(2.4)

For consistency, we denotes (·) and (·)� as quantities obtained from body B and B� respectively

in the remaining content.

2.2 Arlequin Formulation

Consider a body B ⊂ R3 undergoing a motion described by the mapping x = ϕ(X, t) :

B × [t1, t2] → R3, with the deformation gradient defined by F := Gradϕ. x ∈ S is point in

the current configuration S = ϕ(B).
Assume that the boundary ∂B, with unit normal N , is the union of a displacement

boundary ∂ϕB, where boundary displacements χ : ∂ϕB × [t1, t2] → R3 are prescribed, and a

traction boundary ∂TB, where tractions T : ∂TB× [t1, t2] → R3 are applied (∂ϕB∩∂TB = ∅).
Let alsoB : B×[t1, t2] → R3 be the body force multiplied by the mass density in the reference

configuration. Furthermore, for every t ∈ [t1, t2] introduce the total free energy functional

Φ0[ϕ] = Φint
0 [ϕ]− Φext

0 [ϕ] (2.5)

Φint
0 [ϕ] =

�

B
W (F , z) dV (2.6)

Φext
0 [ϕ] =

�

B
B ·ϕ dV +

�

∂TB
T ·ϕ dS (2.7)
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where Φint
0 and Φext

0 are the internal and external energy potential. W (F , z) is the Helmholtz

free-energy density that covers characteristics of incremental energy storage and dissipation.

z is a collection of internal variables.

The main departure of the Arlequin formulation is the introduction of partitions of unity
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] + Λ[ϕ,ϕ�

,φ] (2.8)
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�

B
αW (F , z) + (1− α)W �

(F �
, z�

) dV (2.9)

Φext
[ϕ,ϕ�

] =

�

B
βB ·ϕ+ (1− β)B� ·ϕ�

dV

+

�

∂TB
βT ·ϕ dS +

�

∂TB
(1− β)T � ·ϕ�

dS (2.10)

The additional energy function Λ[ϕ,ϕ�
,φ] is introduced to minimize the compatibility error

measured by either the L
2
or H

1
norms between the coarse and fine domain , i.e.,

Λ[ϕ,ϕ�
,φ] =

�

Bc

φ · (ϕ−ϕ�
) + κl2 Gradφ : (Gradϕ−Gradϕ�

) dV (2.11)

where κ is a non-negative dimensional parameter corresponding to the compatibility error

to be minimized. κ = 0 if L
2
error is minimized and κ = 1 if H

1
error is minimized. l has

a dimension of length and is introduced in [9] so that the unit is consistent. α : B → [0, 1]

and β : B → [0, 1] are the weighting functions of the Helmholtz free-energy density and

the external work density. Both weighting functions hold the following properties in the

non-overlapping domain,

α(X) = β(X) =

�
1 X ∈ B \ Bc

0 X ∈ B� \ Bc (2.12)

In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with k-

continuous derivatives where k is a natural number. As pointed out by [9, 10], the valid choice

of the weighting functions depends on how the compatibility is enforced in the overlapping

domain.

2.3 Variational Statement

Assume that ϕ ∈ U := (W
1
2 (B))3, ϕ� ∈ U

�
:= (W

1
2 (B�

))
3
and φ ∈ V := (W

1
2 (Bc

))
3
in

which W
1
2 (B) is the Sobolev space of square-integrable functions with square-integrable first

derivatives. The functional (2.8) is optimized by applying Gateaux variations with respect

to the independent fields ϕ, ϕ�
and φ. Define test functions corresponding to these fields as

5

!"""""#"

W. Sun, A. Mota Domain Coupling for Large Deformation Strain Localization

2 Finite Element Formulation

2.1 Domain Decomposition

Consider a body B partitioned into two parts B and B� such that B = B ∪ B� and a portion

of the partitioned body parts Bc = B ∩B� is overlapped. The B is the domain that occupies

an (usually larger) portion of the body and but associated with fewer degree of freedoms per

volume and hence we refer it as the coarse domain herein. In contrary, B� is the domain that

occupies an (usually smaller) portion of the body where important mechanism may occur

and hence is modeled by a more sophisticated constitutive law and/or meshed with more

degree of freedoms and hence we refer it as the fine domain herein.
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traction boundary ∂TB, where tractions T : ∂TB× [t1, t2] → R3 are applied (∂ϕB∩∂TB = ∅).
Let alsoB : B×[t1, t2] → R3 be the body force multiplied by the mass density in the reference

configuration. Furthermore, for every t ∈ [t1, t2] introduce the total free energy functional
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∂TB
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2 Finite Element Formulation

In this section, we derive the finite element formulation of the overlapping domain problem

by applying partition of unity on the incremental energy functional.

2.1 Domain Partitions

Consider a body B partitioned into two parts B and �B such that B = B ∪ �B and a portion

of the partitioned body parts Bc = B ∩ �B is overlapped, as shown in Figure 2.1. The B
is the part that occupies an (usually larger) portion of the body and but associated with

fewer degree of freedoms per volume and hence we refer it as the coarse domain herein.

In contrary, �B is the domain that occupies an (usually smaller) portion of the body where

important mechanism may occur and hence is modeled by a more sophisticated constitutive

law and/or meshed with more degree of freedoms and hence we refer it as the fine domain

herein.

T �B�

−ϕ�) +

· (ϕ−
partitioned into two parts B

−ϕ�) +!"""""#"T �B�

partitioned into two parts B· (ϕ−!"""""#"

such that B = B ∪ B�

is the domain that occupies

∂ϕB = ∂ϕB ∪ ∂ϕ�B�

= ∂ϕB ∪

∪ ∂ϕ�B�

Figure 2.1: Sub-domains B and �B of the dissipative solid body B subjected to deformation

φ and �φ.

The Dirichlet (displacement) boundary of the boundary value problem is the union of

the partitioned Dirichlet boundaries, i.e., ∂ϕB = ∂ϕB ∪ ∂�ϕ �B. On the other hand, the two

partitioned body may contain overlapping Dirichlet boundary ∂ϕBc, i.e., ∂ϕBc = ∂ϕB∩∂�ϕ �B.
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In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with

k-continuous derivatives where k is a natural number. As pointed out by [17, 18], the

valid choice of the weighting functions depends on how the compatibility is enforced in the

overlapping domain.

2.3 Variational Statement

Assume that ϕ ∈ U := (W 1
2 (B))3, �ϕ ∈ �U := (W 1

2 (
�B))3 and φ ∈ V := (W 1

2 (Bc
))

3
in

which W 1
2 (B) is the Sobolev space of square-integrable functions with square-integrable first

derivatives. The functional (2.1) is optimized by applying Gâteaux variations with respect

to the independent fields ϕ, �ϕ and φ. Define test functions corresponding to these fields as

ξ ∈ U , �ξ ∈ �U and η ∈ V , with ξ = 0 on ∂ϕB and �ξ = 0 on ∂�ϕ �B. The Gâteaux variations

follow as

DΦ[ϕ, �ϕ,φ](ξ) =
�

B
αP : Grad ξ dV − βB · ξ dV −

�

∂TB
βT · ξ dS

+

�

Bc

φ · ξ + κl2 Gradφ : Grad ξ dV = 0

DΦ[ϕ, �ϕ,φ](�ξ) =
�

B
(1− α)�P : Grad�ξ dV − (1− β) �B · �ξ dV

−
�

∂TB
(1− β)�T · �ξ dS −

�

Bc

φ · �ϕ+ κl2 Gradφ : Grad�ξ dV = 0

DΦ[ϕ, �ϕ,φ](η) =
�

Bc

η · (ϕ− �ϕ) + κl2 Gradη : (Gradϕ−Grad �ϕ) dV = 0

(2.4)

Here we assume that the mechanical responses of the partitioned bodies B and �B can both

be sufficiently described by standard dissipative solid models such that P = ∂W/∂F and

�P = ∂�W/∂ �F where P and �P are the first Piola Kirchhoff stress corresponding to the

mapping ϕ and ϕ respectively. The corresponding Euler-Lagrange equations of (2.1) in the

non-overlapping domains are simply the balance of linear momentum equation corresponding

to the coarse and fine mapping from material to current configurations.

DivP +B = 0 in B \ Bc

PN = T on ∂TB \ ∂TBc
(2.5)

Div �P + �B = 0 in �B \ Bc

�PN = �T on ∂ �T
�B \ ∂TBc

(2.6)

In the overlapping domain, the Euler-Lagrange equations read,

Div(αP ) + βB − φ+ κl2 DivGradφ = 0 in Bc

Div((1− α)P ) + (1− β)B + φ− κl2 DivGradφ = 0 in Bc

(ϕ− �ϕ)− κl2 DivGrad(ϕ−ϕ) = 0 in Bc

(αP + (1− α)�P )N − βT + (1− β)�T = 0 on ∂TBc

(2.7)
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2 Finite Element Formulation

In this section, we derive the finite element formulation of the overlapping domain problem

by applying partition of unity on the incremental energy functional.

2.1 Domain Partitions

Consider a body B partitioned into two parts B and �B such that B = B ∪ �B and a portion

of the partitioned body parts Bc = B ∩ �B is overlapped, as shown in Figure 2.1. The B
is the part that occupies an (usually larger) portion of the body and but associated with

fewer degree of freedoms per volume and hence we refer it as the coarse domain herein.

In contrary, �B is the domain that occupies an (usually smaller) portion of the body where

important mechanism may occur and hence is modeled by a more sophisticated constitutive

law and/or meshed with more degree of freedoms and hence we refer it as the fine domain

herein.
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such that B = B ∪ B�

is the domain that occupies

∂ϕB = ∂ϕB ∪ ∂ϕ�B�

= ∂ϕB ∪

∪ ∂ϕ�B�

Figure 2.1: Sub-domains B and �B of the dissipative solid body B subjected to deformation

φ and �φ.

The Dirichlet (displacement) boundary of the boundary value problem is the union of

the partitioned Dirichlet boundaries, i.e., ∂ϕB = ∂ϕB ∪ ∂�ϕ �B. On the other hand, the two

partitioned body may contain overlapping Dirichlet boundary ∂ϕBc, i.e., ∂ϕBc = ∂ϕB∩∂�ϕ �B.
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In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with

k-continuous derivatives where k is a natural number. As pointed out by [17, 18], the

valid choice of the weighting functions depends on how the compatibility is enforced in the

overlapping domain.

2.3 Variational Statement

Assume that ϕ ∈ U := (W 1
2 (B))3, �ϕ ∈ �U := (W 1

2 (
�B))3 and φ ∈ V := (W 1

2 (Bc
))

3
in

which W 1
2 (B) is the Sobolev space of square-integrable functions with square-integrable first

derivatives. The functional (2.1) is optimized by applying Gâteaux variations with respect

to the independent fields ϕ, �ϕ and φ. Define test functions corresponding to these fields as

ξ ∈ U , �ξ ∈ �U and η ∈ V , with ξ = 0 on ∂ϕB and �ξ = 0 on ∂�ϕ �B. The Gâteaux variations

follow as

DΦ[ϕ, �ϕ,φ](ξ) =
�

B
αP : Grad ξ dV − βB · ξ dV −

�

∂TB
βT · ξ dS

+

�

Bc
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In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with

k-continuous derivatives where k is a natural number. As pointed out by [17, 18], the

valid choice of the weighting functions depends on how the compatibility is enforced in the

overlapping domain.

2.3 Variational Statement

Assume that ϕ ∈ U := (W 1
2 (B))3, �ϕ ∈ �U := (W 1

2 (
�B))3 and φ ∈ V := (W 1

2 (Bc
))

3
in

which W 1
2 (B) is the Sobolev space of square-integrable functions with square-integrable first

derivatives. The functional (2.1) is optimized by applying Gâteaux variations with respect

to the independent fields ϕ, �ϕ and φ. Define test functions corresponding to these fields as

ξ ∈ U , �ξ ∈ �U and η ∈ V , with ξ = 0 on ∂ϕB and �ξ = 0 on ∂�ϕ �B. The Gâteaux variations

follow as

DΦ[ϕ, �ϕ,φ](ξ) =
�

B
αP : Grad ξ dV − βB · ξ dV −

�

∂TB
βT · ξ dS

+

�

Bc

φ · ξ + κl2 Gradφ : Grad ξ dV = 0

DΦ[ϕ, �ϕ,φ](�ξ) =
�

B
(1− α)�P : Grad�ξ dV − (1− β) �B · �ξ dV
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�

∂TB
(1− β)�T · �ξ dS −

�

Bc
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�

Bc
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(2.4)

Here we assume that the mechanical responses of the partitioned bodies B and �B can both

be sufficiently described by standard dissipative solid models such that P = ∂W/∂F and
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(ϕ− �ϕ)− κl2 DivGrad(ϕ−ϕ) = 0 in Bc

(αP + (1− α)�P )N − βT + (1− β)�T = 0 on ∂TBc

(2.7)
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Figure 2.1: Sub-domains B and �B of the dissipative solid body B subjected to deformation

φ and �φ.

traction boundary ∂TB, where tractions T : ∂TB× [t1, t2] → R3
are applied (∂ϕB∩∂TB = ∅).
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int
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ext
[ϕ, �ϕ] + Λ[ϕ, �ϕ,φ]

Φ
int
[ϕ, �ϕ] =

�

B
αW (F ,Z) + (1− α)�W (�F , �Z) dV

Φ
ext

[ϕ, �ϕ] =
�

B
βB ·ϕ+ (1− β) �B · �ϕdV

+

�

∂TB
βT ·ϕ dS +

�

∂TB
(1− β)�T · �ϕ dS

(2.1)

where Φ
int
0 and Φ

ext
0 are the internal and external energy potential. W (F ,Z) is the Helmholtz

free-energy density that covers characteristics of incremental energy storage and dissipation.

Z is a collection of internal variables. The additional energy density function Λ[ϕ, �ϕ,φ]
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is introduced to minimize the compatibility error measured by either the L2 or H
1
norm

between the coarse and fine domains , i.e.,
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�

Bc
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2
Gradφ : (Gradϕ−Grad �ϕ) dV (2.2)
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to be minimized. κ = 0 if L2 error is minimized and κ = 1 if H
1
error is minimized. l

has a dimension of length and is introduced in [19] so that the units in (2.2) are consistent.

α : B → [0, 1] and β : B → [0, 1] are the weighting functions of the Helmholtz free-energy

density and the external work density. Both weighting functions hold the following properties

in the non-overlapping domain,

α(X) = β(X) =

�
1 X ∈ B \ Bc

0 X ∈ �B \ Bc (2.3)

In the overlapping domain, α(X) and β(X) may be chosen as constant or functions with

k-continuous derivatives where k is a natural number. As pointed out by [19, 20], the

valid choice of the weighting functions depends on how the compatibility is enforced in the
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2.3 Variational Statement
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2 (B))3, �ϕ ∈ �U := (W

1
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1
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3
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Here we assume that the mechanical responses of the partitioned bodies B and �B can both

be sufficiently described by standard dissipative solid models such that P = ∂W/∂F and

�P = ∂�W/∂ �F where P and �P are the first Piola Kirchhoff stress corresponding to the
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Notice that the nodal values of the test functions ξa, �ξα and λA are arbitrary. The only

unknowns in the discrete variational statement are the nodal values of ϕa, �ϕa and φa. Thus,

constitutes a system of nonlinear algebraic equations, i.e., Ra[ϕh,φh] = 0 ; �Ra[�ϕh,φh] =

0 ; Rc
a[ϕh, �ϕh] = 0.

2.5 Linearization

To obtain solutions from the nonlinear discrete variational statement, one may apply Newton

method or other related linearization based techniques so that incremental solutions can be

sought from the directional derivative of the residuals at each incremental step. Assuming

that all loads are conservative, the best linear approximation of the residual at (ϕn, �ϕn,φn)

reads,

Ra[ϕn+1,φn+1] ≈ Ra[ϕn,φn] +DϕRa[ϕn,φn] ·∆ϕ+DφRa[ϕn,φn] ·∆φ

�Rα[�ϕn+1,φn+1] ≈ �Ra[�ϕn,φn] +D�ϕ �Ra[�ϕn,φn] ·∆�ϕ+Dφ
�Ra[�ϕn,φo] ·∆φ

Rc
a[ϕn+1, �ϕn+1] ≈ Rc

a[ϕn, �ϕn] +DϕR
c
a[ϕn, �ϕn] ·∆ϕ+D�ϕR

c
a[ϕn, �ϕn] ·∆�ϕ

(2.11)

where ∆ϕ and ∆�ϕ denote the linear incremental displacement from ϕn(B) to ϕn+1(B), and
from �ϕn(

�B) to �ϕn+1(
�B) respectively. The directional derivative with respect to ϕn, �ϕn and

φn reads,

DRa[ϕn,φn] ·∆ϕ = Kab ·∆ϕb

D �Rα[�ϕn,φn] ·∆�ϕ = �Kαβ ·∆�ϕβ

DRa[ϕn,φn] ·∆φ = Cab ·∆φb

D �Rα[�ϕn,φn] ·∆φ = −�Cαb ·∆φb

DRc
a[ϕn, �ϕn] ·∆ϕ = Cab ·∆ϕb

DRc
a[ϕn, �ϕn] ·∆�ϕ = −�Caβ ·∆�ϕβ

(2.12)

where

Kab :=

�

B
GradNa : αC : GradNb dV

�Kαβ :=

�

B
GradNα : (1− α)�C : GradNβ dV

Cab := Cba =

�

Bc

NaNb ·+κl2 GradNa : GradNb dV

�Cαb :=

�

Bc

λαNb + κl2 Gradλα : GradNb dV

(2.13)

The two-point tensors C = ∂2W/∂F ∂F and �C = ∂2�W/∂ �F ∂ �F are the first tangential

tensors evaluated in configurations ϕn(B) and �ϕn(
�B) respectively. Hence, the linearized
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discrete equation (2.11) can be written in terms of blocked matrices, i.e.,




Kab 0aβ Cab

0bα
�Kαβ −�Cαb

Cba −�Cβa 0ab








∆ϕb

∆�ϕβ

∆φb



 =




F a

�F α

0a



 (2.14)

where F a = −Ra[ϕn,φn] and �F α = −�Rα[ϕn, �ϕn].

3 Numerical Stability

A necessary (but not sufficient) condition to obtain converged solution for the nonlinear field
equation is that its corresponding linearized field equation must be stable. Stability of the
linearized equations requires fulfilling the coercivity condition. In addition, if solutions are
composed of multiple type of fields as expressed in (2.14), then the selected finite dimensional
space of the trial function and solution fields must also satisfy the inf-sup condition. [2, 4,
12, 13].

The objective of this section is to describe a numerical procedure to check whether for-
mulation in Section 2.3 is stable for the selected space U, �U and V .

3.1 Static Condensation of the Linearized Three-Field Equation

To simplify the analysis of the inf-sup condition, we first condense the linearized three-field
equation (2.14) into two-field problems. There are two possible ways to condense the three-
field problem. The first way is to eliminate the coarse scale incremental displacement ∆ϕ
such that �

�Kαβ −�Caβ

−�Cβa CamK
−1
mnCnb

� �
∆�ϕβ

∆φb

�
=

�
�F α

−CamK
−1
mbF b

�
(3.1)

This static condensation procedure is only valid when Kab is invertible. This is true when
appropriate boundary condition is prescribed in the coarse domain such that to all rigid
body modes in the coarse domain are eliminated. Furthermore, C must remain positive
definiteness everywhere in B.

Alternatively, one may eliminate the fine incremental displacement field and obtain a
two-field linearized field equation which reads,

�
Kab Cab

Cba
�Caα

�K
−1

αβ
�Cβb

� �
∆ϕb

∆φb

�
=

�
F a

�Caα
�K

−1

αβ
�F β

�
(3.2)

This static condensation procedure requires that �Kαβ is invertible. This is true when appro-
priate boundary condition is prescribed in the fine domain such that all rigid body modes in
the fine domain are elimianted. Furthermore, the tangential tensor �C must remain positive
definiteness everywhere in �B. Generally speaking, if the multiscale boundary value problem
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is the mesh size of the coarse

domain.

deformation, the analytical solution of this problem reads,

u(x) = dx=L

�
x

L
(6.2)

Due to the vanishing cross section area at the origin, the origin x = 0 is a singular point at

which the onset of strain localization first occur. If strain localization occurs, then the con-

stitutive response will exhibit mesh-dependence unless a regularization limiter is introduced.

To validate the implementation and check whether mesh-dependence is cured by the

overlapping regularized and non-regularized domains, an isotropic damage model with no

inherent length scale is used [18]. This damage model postulate a Helmholtz free-energy

function in coupled form,

W (C, ζ) = (1− ζ)Wo(C) (6.3)

where C = F TF is the right Cauchy-Green tensor and Wo(C) ≥ 0 is the Helmholtz free-

energy of the undamaged material. For one-dimensional problem, Wo takes the following
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Figure 6.5: Displacement fields obtained from L2 coupling with constant weighing function
(α = 0.5) and varying mesh ratio.

form,

Wo(
dϕ

dX
) =

1

2
Ē
�
((
dϕ

dX
)−2 + (

dϕ

dX
)2 − 2

�
(6.4)
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undergoing small deformation, the analytical solution of this problem reads,

u(x) = dx=L

�
x

L
(6.4)

To verify the implementation, we solve this problem with L = 1, Ao = 1, E = 1. The

overlapped domain is located at x ∈ [1/3, 2/3] and the coarse and fine strain energy functional

are evenly partitioned in the coupling zone. Figure 6.11 show the a series of finite element

solutions obtained from the same coarse mesh in x ∈ [0, 2/3], but with a fine mesh with

varying refinement level. The solutions, as shown in Figure 6.11, converge to the analytical

solution.

Notice that, due to the vanishing cross section area at the origin, the origin x = 0 is a

singular point at which the onset of strain localization first occurs.

To further validate the implementation and check whether mesh-dependence is cured by

the overlapping regularized and non-regularized domains, an isotropic damage model with

no inherent length scale is used [21]. This damage model postulates a Helmholtz free-energy

function in coupled form,

W (C, ζ) = (1− ζ)Wo(C) (6.5)

where C = F TF is the right Cauchy-Green tensor and Wo(C) ≥ 0 is the Helmholtz free-

energy of the undamaged material. For one-dimensional problems, Wo is rewritten as,

Wo(
dϕ

dX
) =

1

2
Ē
�
((
dϕ

dX
)
−2

+ (
dϕ

dX
)
2 − 2

�
(6.6)

where Ē is the longitudinal modulus. The parameter ζ ∈ [0, 1] is the damage variable, which

depends on a phenomenological variable q, i.e.,

ζ = ζ(q) = ζ∞[1− exp(−q/ς)] q(t) = max
s∈[0,t]

Wo(s) (6.7)

where ζ∞ is the maximum possible damage and ς is the damage saturated parameter. Notice

that when the damage variable ζ = 1, the static governing equation changes from elliptic

to hyperbolic and thus introduces mesh dependence [9]. Using the nonlocal regularization

technique in Section 4, this mesh dependence can be cured by replacing ζ by the nonlocal

counterpart, i.e.,

q̄ =
1

vol(D)

�

D

q dV =
1

vol(D)

�

LD

qA(X) dX (6.8)

where LD is a length scale parameter and A(X) is the cross section area.

6.3.1 Regularized and non-regularized solutions

We introduce a numerical example in which the nonlocal regularization is only applied to

the fine domain, while coarse domain is modeled by a conventional damage model. In

particular, we set the length scalar parameter LDto be 0.1m, while the coarse mesh length hc

is 0.05m. The fine mesh length hf
varies from hc

to hc/10. The overlapping domain is located
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in strain is less severe comparing to the L2 coupling results shown in 6.2, although, there are
two small spikes in strain at the entry and exit of the coupling zone.
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Figure 6.1: Displacement, strain and Lagrangian multiplier obtained via L2 coupling and
constant weighting function.
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Figure 6.2: Displacement, strain and Lagrangian multiplier obtained via H
1 coupling and

constant weighting function.

Next, we repeat the same calculations but replacing the constant weighting function with
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Figure 6.3: Displacement, strain and Lagrangian multiplier obtained via L2 coupling and
linear weighting function.

The inf-sup tests is conducted as follows. First, we compute the matrices C↓, C↑, K↓,
K↑ and Q↑. Then, we solve the two generalized eigenvalue problems as defined in (3.18)
and (3.19). In the first test (3.18), existence of a positive inf-sup value β is guaranteed if the
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Figure 6.4: Displacement, strain and Lagrangian multiplier obtained via H
1 coupling and

linear weighting function.

smallest eigenvalue remains positive and is not approaching zero during refinement.
Figure 6.6 demonstrates the smallest eigenvalue of the generalized eigenvalue problem

defined in (3.18). Notice that, although the eigenvalue corresponding to the H
1 coupling

problem does decrease as the mesh becomes finer, it remains positive and is not vanished.
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discrete equation (2.11) can be written in terms of blocked matrices, i.e.,




Kab 0aβ Cab

0bα
�Kαβ −�Cαb

Cba −�Cβa 0ab








∆ϕb

∆�ϕβ

∆φb



 =




F a

�F α

0a



 (2.14)

where F a = −Ra[ϕn,φn] and �F α = −�Rα[ϕn, �ϕn].

3 Numerical Stability

A necessary (but not sufficient) condition to obtain converged solution for the nonlinear field
equation is that its corresponding linearized field equation must be stable. Stability of the
linearized equations requires fulfilling the coercivity condition. In addition, if solutions are
composed of multiple type of fields as expressed in (2.14), then the selected finite dimensional
space of the trial function and solution fields must also satisfy the inf-sup condition. [2, 4,
12, 13].

The objective of this section is to describe a numerical procedure to check whether for-
mulation in Section 2.3 is stable for the selected space U, �U and V .

3.1 Static Condensation of the Linearized Three-Field Equation

To simplify the analysis of the inf-sup condition, we first condense the linearized three-field
equation (2.14) into two-field problems. There are two possible ways to condense the three-
field problem. The first way is to eliminate the coarse scale incremental displacement ∆ϕ
such that �

�Kαβ −�Caβ

−�Cβa CamK
−1
mnCnb

� �
∆�ϕβ

∆φb

�
=

�
�F α

−CamK
−1
mbF b

�
(3.1)

This static condensation procedure is only valid when Kab is invertible. This is true when
appropriate boundary condition is prescribed in the coarse domain such that to all rigid
body modes in the coarse domain are eliminated. Furthermore, C must remain positive
definiteness everywhere in B.

Alternatively, one may eliminate the fine incremental displacement field and obtain a
two-field linearized field equation which reads,

�
Kab Cab

Cba
�Caα

�K
−1

αβ
�Cβb

� �
∆ϕb

∆φb

�
=

�
F a

�Caα
�K

−1

αβ
�F β

�
(3.2)

This static condensation procedure requires that �Kαβ is invertible. This is true when appro-
priate boundary condition is prescribed in the fine domain such that all rigid body modes in
the fine domain are elimianted. Furthermore, the tangential tensor �C must remain positive
definiteness everywhere in �B. Generally speaking, if the multiscale boundary value problem
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defined in (2.5)–(2.7) is well-posed, then at least one of the square matrices �Kαβ or Kab will

be nonsingular. Hence, at least one of the static condensation procedures in (3.1) and (3.2)

is valid.

3.2 Discrete Inf-sup Condition in Euclidean Space

Following the approach in [12], and in the spirit of [4, 14], we present a simple way to check

whether a particular choice of finite dimensional spaces of the configuration mappings U ,

�U and Lagrangian multiplier V is stable. As mentioned previously, the test is by no mean

to supersede the analytical proof of the stability of the nonlinear boundary value problem.

Instead, our goal here is to provide some practical instrument to check whether spurious

mode exists in each incremental step.

The key step to simplifying the analysis is by taking advantage of the fact that the spaces

U , �U and V are all finite dimensional and spanned by either Na or λα. Hence, by passing from

our functional space to RN
(N=number of degree of freedom), we may use linear algebra to

test whether inf-sup condition is hold for a particular choice of U , �U and V .

Here we adopt the approach in [12] in which the finite element spaces U , �U and V are

equipped with the following energy norms,

||ξ||2U =

�

Bc

Grad ξ : αC : Grad ξ dV

||�ξ||2�U =

�

Bc

Grad�ξ : (1− α)�C : Grad�ξ dV

||η||2V =

�

Bc

Gradη : C−1
: Gradη dV

(3.3)

where C and �C are positive definite four-order tensors possessing major symmetry and α ∈
]0, 1[. In order to obtain stable solution for the linearized field equation (2.14) , two inf-sup

conditions must be satisfied, i.e.,

inf
η∈V

sup

ξ∈U

�
Bc η · ξ + κl2 Gradη : Grad ξ dV

||ξ||U ||η||V
≥ β > 0 (3.4)

inf
η∈V

sup
�ξ∈�U

�
Bc η · �ξ + κl2 Gradη : Grad�ξ dV

||�ξ||�U ||η||V
≥ γ > 0 (3.5)

where β and γ are positive constants. Now, notice that we may construct a one-to-one

mapping from U to Euclidean space RNU , i.e.,

υ ≡ (υ1, υ2, ......υNU
) ↔

NU�

a=1

υaNa (3.6)

where υ ∈ RNU and NU is the dimension of the space U . Similarly, one-to-one mappings can

be constructed between �U and RN�U ,

10
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problem. Instead, our goal here is to provide some practical instrument to check whether

spurious mode exists in each incremental step.

The key step to simplifying the analysis is by taking advantage of the fact that the spaces

U , U �
and V are all finite dimensional and spanned by either Na or λα. Hence, by passing

from our functional space to RN
(N=number of degree of freedom), we may use linear algebra

to test whether inf-sup condition is hold for a particular choice of U , U �
and V .

Here we adopt the approach in [8] in which the finite element spaces U , U �
and V are

equipped with the following energy norms,

||ξ||2U =

�

Bc

Grad ξ : αC : Grad ξ dV (3.3)

||ξ�||2U � =

�

Bc

Grad ξ� : (1− α)C�
: Grad ξ� dV (3.4)

||η||2V =

�

Bc

Gradη : C−1
: Gradη dV (3.5)

where C and C �
are positive definite four-order tensor possessing major symmetry.

In order to obtain stable solution for the linearized field equation as expected in (2.35) ,

two inf-sup conditions must be satisfied, i.e.,

inf
η∈V

sup

ξ∈U

�
Bc η · ξ + κl2 Gradη : Grad ξ dV

||ξ||U ||η||V
≥ β > 0 (3.6)

inf
η∈V

sup

ξ�∈U �

�
Bc η · ξ� + κl2 Gradη : Grad ξ� dV

||ξ�||U � ||η||V
≥ γ > 0 (3.7)

where β and γ are positive constant. Now, notice that we may construct a one-to-one

mapping from U to Euclidean space RNU , i.e.,

υ ≡ (υ1, υ2, ......υNU
) ↔

NU�

a=1

υaNa (3.8)

where ∈ RNU and NU is the dimension of the space U . Similarly, one-to-one mappings can

be constructed between U �
and RNU� ,

υ� ≡ (υ�
1, υ

�
2, ......υ

�
NU� ) ↔

NU��

α=1

υ�
αλα (3.9)

as well as between V and RNV , i.e,

θ ≡ (θ1, θ12, ......θNV ) ↔
NV�

a=1

θaNa (3.10)
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where υ ∈ RNU� and NU � is the dimension of the space U � ; θ ∈ RNV and NV is the dimension

of the space V . By mapping the functional spaces U , U � and V into the Euclidean spaces

RNU , RNU� and RNV , the inf-sup condition expressed in (3.6) and (3.7) can be rewritten in

terms of vectors and matrices, i.e.,

inf
θ∈RNV

sup
υ �=0

θaCabυb
�
θmQmnθn

�1/2�
υrKrsυs

�1/2
≥ β > 0 (3.11)

inf
θ∈RNV

sup
υ� �=0

θaC
�
abυ

�
b�

θmQmnθn

�1/2�
υ�

rK
�
rsυ

�
s

�1/2
≥ γ > 0 (3.12)

where matrices Q is corresponding to the energy norms defined in (3.5) accordingly,i.e.,

Qmn =

�

Bc

GradNm : C−1
: GradNn dV (3.13)

3.3 Discrete Inf-sup Test in Euclidean Space

Once the inf-sup condition is expressed in Euclidean spaces, we may check whether the

existence of β in (3.11) by simplifying expression in (3.11). Similar approach was previously

used in [8], in which for domain decomposition problem.

First, we re-express the supremum in (3.11) by changing the basis functions such that

S(υ) = sup
θ �=0

θaCabυb
�
υmKmnυn

�1/2
= sup

z �=0

θaCam(Kmb)
−1/2zb

�
zszs

�1/2
(3.14)

where za := K
1/2
ab υb and both z and υ spans the same Euclidean space RNU , i.e., span(z) =

span(υ) = RNU . Notice that the supremum is located at za = K
1/2
amCmbθb, i.e.,

S(υ) =
�
θaCamK

−1
mnCnbθb

�1/2
(3.15)

which can be proved by finding the root of the following equation,

d

dzr

θaCam(Kmb)
−1/2zb√

zszs
= 0 (3.16)

By substituting (3.15) into the discrete inf-sup condition (3.11) and squaring both sides, we

rewritethe inf-sup condition (3.11) as the following,

θaCamK
−1
mnCnbθb ≥ β2θaQabθb ∀θ ∈ RNV (3.17)

The existence of the positive constant β is therefore guaranteed if the smallest eigenvalue of

the following generalized eigenvalue problem is larger than zero,

(CamK
−1
mnCnb − λQab)θb = 0 (3.18)
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�υ ≡ (�υ1, �υ2, ......�υN�U
) ↔

N�U�

α=1

�υαλα (3.7)

as well as between V and RNV , i.e,

θ ≡ (θ1, θ12, ......θNV ) ↔
NV�

a=1

θaNa (3.8)

where υ ∈ RN�U and N�U is the dimension of the space �U ; θ ∈ RNV and NV is the dimension

of the space V . By mapping the function spaces U , �U and V into the Euclidean spaces RNU ,

RN�U and RNV , the inf-sup condition expressed in (3.4) and (3.5) can be rewritten in terms

of vectors and matrices, i.e.,

inf
θ∈RNV

sup
υ �=0

θaCabυb
�
θmQmnθn

�1/2�
υrKrsυs

�1/2
≥ β > 0 (3.9)

inf
θ∈RNV

sup
�υ �=0

θa
�Cab�υb

�
θmQmnθn

�1/2�
�υr

�Krs�υs

�1/2
≥ γ > 0 (3.10)

where matrices Q is corresponding to the energy norms defined in (3.3) accordingly,i.e.,

Qmn =

�

Bc

GradNm : C−1
: GradNn dV (3.11)

3.3 Discrete Inf-sup Test in Euclidean Space

Once the inf-sup condition is expressed in Euclidean spaces, we may check the existence of

β defined in (3.9) with the Euclidean spaces. Similar approach was previously used in [12]

for domain decomposition problems with mortar.

First, we re-express the supremum in (3.9) by changing the basis functions such that

S(υ) = sup
θ �=0

θaCabυb
�
υmKmnυn

�1/2
= sup

z �=0

θaCam(Kmb)
−1/2zb

�
zszs

�1/2
(3.12)

where za := K
1/2
ab υb and both z and υ spans the same Euclidean space RNU , i.e., span(z) =

span(υ) = RNU . Notice that the supremum is located at za = K
1/2
amCmbθb, i.e.,

S(υ) =
�
θaCamK

−1
mnCnbθb

�1/2
(3.13)
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which can be proved by finding the root of the following equation,

d

dzr

θaCam(Kmb)
−1/2

zb√
zszs

= 0 (3.14)

By substituting (3.13) into the discrete inf-sup condition (3.9) and squaring both sides, we

rewritethe inf-sup condition (3.9) as the following,

θaCamK
−1
mnCnbθb ≥ β2

θaQabθb ∀θ ∈ RNV (3.15)

The existence of the positive constant β is therefore guaranteed if the smallest eigenvalue of

the following generalized eigenvalue problem is larger than zero,

(CamK
−1
mnCnb − λQab)θb = 0 (3.16)

where it is trivial that λ is in fact the largest possible value for β to remains satisfying the

inequality expressed in (3.16).

The eigenvalue problem corresponding to the existence of γ can be obtained via similar

procedure. The resultant generalized eigenvalue problem reads,

(�Caα
�K

−1

αβ
�Cβb − �λQab)θb = 0 (3.17)

Notice that both inf-sup tests presented in (3.16) and (3.17) can be easily generalized for

different normed space chosen for the Lagrange multiplier. The only required change is to

replace the Q matrix by a new matrix corresponding to the respective norm.

4 Nonlocal Regularization in Fine Scale

Due to the loss of ellipticity, partial differential equation may exhibit mesh-dependence in the

softening regime. This non-physical dependence on mesh size can be cured by introducing

length scale(s) through regularization procedures [6, 11, 16, 28]. Here we adopt a variational

approach proposed by [21] to regularize the PDE. For completeness, we briefly outline the

method here.

Consider a dissipative solid of which the history dependent behavior is described by

internal variable set Z. A gradient regularization can be derived from the Taylor series

about the centroid of a domain D which reads,

Z = Z0 +
∂Z

∂X
(X0) · (X −X0) +

1

2
(X −X0) ·

∂2
Z

∂X2 (X0) · (X −X0) + · · · (4.1)

The key of the approach in [21] is to find a nonlocal integral expression that is equivalence

to (4.1), i.e.,

Z̄ = Z0 +
1

2 vol(D)

∂2
Z

∂X2 (X0) :

�

D

(X −X0)⊗ (X −X0) dV + · · ·

= Z0 +∇2
Z(X0) : H(D) + · · · (4.2)
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inf
θ∈RNV

sup
υ �=0

θaCabυb
�
θmQmnθn

�1/2�
υrKrsυs

�1/2
≥ β > 0 (3.11)

inf
θ∈RNV

sup
υ� �=0

θaC
�
abυ

�
b�

θmQmnθn

�1/2�
υ�

rK
�
rsυ

�
s

�1/2
≥ γ > 0 (3.12)

where matrices Q is corresponding to the energy norms defined in (3.5) accordingly,i.e.,

Qmn =

�

Bc

GradNm : C−1
: GradNn dV (3.13)
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θ �=0
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υmKmnυn

�1/2
= sup

z �=0

θaCam(Kmb)
−1/2zb

�
zszs
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where za := K
1/2
ab υb and both z and υ spans the same Euclidean space RNU , i.e., span(z) =

span(υ) = RNU . Notice that the supremum is located at za = K
1/2
amCmbθb, i.e.,

S(υ) =
�
θaCamK

−1
mnCnbθb

�1/2
(3.15)

which can be proved by finding the root of the following equation,

d

dzr

θaCam(Kmb)
−1/2zb√

zszs
= 0 (3.16)

By substituting (3.15) into the discrete inf-sup condition (3.11) and squaring both sides, we

rewritethe inf-sup condition (3.11) as the following,

θaCamK
−1
mnCnbθb ≥ β2θaQabθb ∀θ ∈ RNV (3.17)

The existence of the positive constant β is therefore guaranteed if the smallest eigenvalue of

the following generalized eigenvalue problem is larger than zero,

(CamK
−1
mnCnb − λQab)θb = 0 (3.18)

12

W. Sun, A. Mota Domain Coupling for Large Deformation Strain Localization

where it is easy to see that λ is in fact the largest possible value for β to remains satisfying

the inequality expressed in (3.18).

The eigenvalue problem corresponding to the existence of γ can be obtained via similar

procedure. The resultant generalized eigenvalue problem reads,

(C
�
aαK

�
αβ

−1
C

�
βb − λ�Qab)θb = 0 (3.19)

Notice that both inf-sup tests presented in (3.18) and (3.19) can be easily generalized for

different normed space of the Lagrangian multiplier. The only required change is to replace

the Q matrix by a new matrix corresponding to the respective norm.

4 Nonlocal Regularization in Fine Scale

Due to the loss of ellipticity, partial differential equation may exhibit mesh-dependence in the

softening regime. This non-physical dependence on mesh size can be cured by introducing

length scale through regularization procedures [5, 9, 15, 27].

Here we adopt a variational approach proposed by [18] to regularize the PDE. For com-

pleteness, we briefly outline the method here.

Consider a dissipative solid of which the history dependent behavior is described by

internal variable set Z. A gradient regularization can be derived from the Taylor series

about the centroid of a domain D which reads,

Z = Z0 +
∂Z

∂X
(X0) · (X −X0) +

1

2
(X −X0) ·

∂2
Z

∂X2 (X0) · (X −X0) + · · · (4.1)

The key of the approach in [18] is to find a nonlocal integral expression that is equivalence

to (4.1), i.e.,

Z̄ = Z0 +
1

2 vol(D)

∂2
Z

∂X2 (X0) :

�

D

(X −X0)⊗ (X −X0) dV + · · · (4.2)

= Z0 +∇2
Z(X0) : H(D) + · · · (4.3)

where Z̄ is the volume averaged of the internal variable Z over domain D, i.e.,

Z̄ =
1

vol(D)

�

D

Z dV, (4.4)

vol(•) :=
�

(•)
dV, (4.5)

The resultant Z̄ is constant within the domain D. D are non-overlapped partitions of the

fine domain which defines the length scale of the problem. The history-dependent behavior

in the fine domain is then computed with the nonlocal Z̄ instead of Z.

Notice that the domain overlap coupling method proposed in this paper is independent

of the particular regularization procedure used in the formulation.

13

Inf-sup Test 1 

Inf-sup Test 2 

W. Sun, A. Mota Domain Coupling for Large Deformation Strain Localization

3 Numerical Stability

A necessary (but not sufficient) condition to obtain converged solution for the nonlinear

field equation is that its linearized field equation must be stable. Stability of the linearized

equations requires fulfilling the coercivity condition. In addition, if solutions are composed of

multiple type of fields as expressed in (2.35), then the selected finite dimensional space of the

trial function and solution fields must also satisfy both the inf-sup condition. [2, 3, 10, 11].

The objective of this section is to describe a general procedure to check whether formu-

lation in Section 2.3 is stable for the selected space U,U �
and V .

3.1 Static Condensation of the Linearized Three-Field Equation

To simplify the analysis of the inf-sup condition, we first condense the linearized three-field

equation (2.35) into two-field problems. There are two possible ways to condense the three-

field problem. The first way is to eliminate the coarse scale incremental displacement ∆ϕ
such that �

K �
αβ −C �

aβ

−C �
βa CamK

−1
mnCnb

� �
∆ϕ�

β

∆φb

�
=

�
F �

α

−CamK
−1
mbF b

�
(3.1)

This static condensation procedure is only valid when Kab is invertible. This is true when

appropriate boundary condition is prescribed in the coarse domain such that to all rigid

body modes in the coarse domain are eliminated. Furthermore, C must remain positive

definiteness everywhere in B.
Alternatively, one may eliminate the fine incremental displacement field and obtain a

two-field linearized field equation which reads,

�
Kab Cab

Cba C �
aαK

�
αβ

−1C �
βb

� �
∆ϕb

∆φb

�
=

�
F a

C �
aαK

�
αβ

−1F �
β

�
(3.2)

This static condensation procedure requires that K �
αβ is invertible. This is true when appro-

priate boundary condition is prescribed in the fine domain such that all rigid body modes in

the fine domain are elimianted. Furthermore, the tangential tensor C�
must remain positive

definiteness everywhere in B�
. Generally speaking, if the multiscale boundary value problem

defined in (2.16)–(2.16) is well-posed, then at least one of the square matrices K �
αβ or Kab

will be nonsingular. Hence, at least one of the static condensation procedures in (3.1) and

(3.2) is valid.

3.2 Discrete Inf-sup Condition in Euclidean Space

Following the approach in [10], and in the spirit of [3, 12], we present a simple way to check

whether a particular choice of finite dimensional spaces of the configuration mappings U ,

U �
and Lagrangian multiplier V is reliable or not. As mentioned previously, the test is by

no mean to supersede the analytical proof of the stability of the nonlinear boundary value
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Conclusions	
  

1.  If	
  coarse	
  and	
  fine	
  meshes	
  are	
  conformal,	
  then	
  no	
  search	
  
algorithm	
  is	
  needed	
  and	
  hence	
  the	
  implementa(on	
  
becomes	
  much	
  simpler.	
  	
  

2.  Numerical	
  study	
  demonstrates	
  that	
  H1	
  coupling	
  eliminates	
  
spurious	
  paMern	
  exhibi(ng	
  in	
  L2	
  coupling.	
  This	
  finding	
  is	
  
consistent	
  with	
  the	
  inf-­‐sup	
  condi(on.	
  	
  

3.  Localiza(on	
  limiter	
  can	
  be	
  used	
  in	
  a	
  small	
  domain	
  via	
  DOC	
  
coupling	
  to	
  enhance	
  computa(onal	
  efficiency.	
  	
  

4.  Numerical	
  examples	
  seem	
  to	
  suggest	
  that	
  a	
  more	
  even	
  
par((on	
  (e.g.	
  half	
  and	
  half)	
  or	
  higher	
  order	
  weighted	
  
par((on	
  in	
  energy	
  leads	
  to	
  more	
  stable	
  and	
  compa(ble	
  
solu(ons	
  in	
  overlapped	
  domain.	
  	
  



On-­‐going	
  Challenges	
  
1.  How	
  thermal	
  and	
  pore-­‐fluid	
  diffusion	
  affects	
  

mechanical	
  stability,	
  strain	
  localiza(on	
  and	
  	
  
fracture	
  process	
  at	
  various	
  temporal	
  scales	
  (e.g.	
  
undrained	
  vs.	
  drained,	
  isothermal	
  vs.	
  adiaba(c)?	
  	
  

2.  How	
  to	
  homogenize	
  or	
  properly	
  take	
  account	
  of	
  
the	
  couplings	
  of	
  	
  various	
  physical	
  processes	
  at	
  
different	
  spa(al	
  scales	
  (e.g.	
  anisotropy	
  of	
  
diffusivity	
  induced	
  by	
  deforma(on,	
  yield	
  surface	
  
size	
  changes	
  by	
  heat)	
  ?	
  	
  

3.  How	
  to	
  model	
  fully	
  coupled	
  thermo-­‐hydro-­‐
mechanical–chemical	
  (THMC)	
  effect	
  
(biodegrada(on,	
  Calcite	
  forma(on,	
  dissolving	
  
solid,	
  	
  fate	
  of	
  fracking	
  water)?	
  	
  

4.  Will	
  fluid	
  injec(on	
  mobilize	
  exis(ng	
  fault	
  systems?	
  
5.  Valida(ons	
  of	
  numerical	
  modeling?	
  Comparisons	
  

with	
  other	
  THM	
  code,	
  centrifuge	
  models,	
  field	
  
studies	
  (In	
  Salah	
  Project)?	
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ψa = 1 ψa = 0

∇2ψa = 0

0

0

0

0
(a) (b) (c) (d) 

Figure 4. For a polyhedron with planar faces, the harmonic shape functions can be obtained
hierarchically [14]. (a–c) For a given vertex a (red circle) the harmonic shape function ψa is obtained by first
solving ∇2ψa = 0 each edge with appropriate end conditions of 0 or 1. These are simply linear functions.
These edge solutions then become boundary conditions for solving ∇2ψa = 0 on each face. Any face not
attached to vertex a is assigned ψa = 0 on the entire face. (d) These face solutions then become boundary

conditions for solving ∇2ψa = 0 in the interior of the polyhedron.

barycentric coordinates. For polyhedra with planar faces, Joshi [14] prescribed a hierarchical
construction of the three-dimensional shape function by first solving Eq. (14) on each edge (1D)
with boundary conditions of 1 if the edge end-point is vertex a or 0 if not (the solution of which is
just a linear function), then using these edge solutions to provide boundary conditions for solving
Eq. (14) on each face (2D), and finally using these face solutions as boundary conditions for solving
Eq. (14) in the volume (3D). With this construction, note that ψa is identically zero on all faces not
attached to vertex a. This procedure is illustrated in Figure 4. This procedure is repeated for each
shape function. Joshi [14] provides a constructive proof that these shape functions form a partition-
of-unity and reproduce space. These shape functions possess the Kronecker-delta property at the
vertices. Since Eq. (14) is an elliptic operator and the boundary conditions are in the range [0, 1], the
shape functions are non-negative [22]. Furthermore, the harmonic shape functions do not possess
local minima or maxima on the interior of the element [22]. In summary,

1. The polyhedral shape functions form a partition-of-unity,

Nv�

a=1

ψa(X) = 1 , X ∈ Ωe . (15)

2. The polyhedral shape functions reproduce linear fields,

Nv�

a=1

ψa(X)Xa = X , X ∈ Ωe . (16)

3. The polyhedral shape functions possess the Kronecker-delta property at the vertices,

ψa(Xb) = δab , a, b ∈ {1, . . . , Nv} . (17)

4. The polyhedral shape functions are non-negative,

ψa(X) ≥ 0 , X ∈ Ωe , a ∈ {1, . . . , Nv} . (18)

Note that, as with the hexahedral shape functions, the shape functions on each face of a polyhedron
depend only upon the vertices of that face. Thus, two polyhedral elements that share the same face
are compatible.

For non-planar faces, Joshi’s construction is modified as follows. Consider the shape function
ψa(X) corresponding to vertex (node) a. Instead of constructing harmonic functions on each face,
the triangular subdivision introduced in Section 3 is used on each face. The shape function values on
each edge are prescribed as in the case with planar faces. The shape function values on any face not
attached to vertex a are identically zero. For any face attached to vertex a, the shape function value

Copyright c� 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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pressure field within the fracture.  This pressure is 
applied to the solid surface as a traction boundary 
condition.  This coupled fluid-structure problem is 
assumed to be quasi-static and is solved using a multi-
level dynamic-relaxation scheme.    

Our computational approach for modeling discrete 
fracture growth is similar to that of the combined 
discrete-element finite-element method (see, for 
example, [6,7]).  Also, our approach for modeling fluid 
flow with the fractures is similar to that present in the 
commercial software Abaqus [8] and Elfen [9].  Our 
main point of departure is through the use of random 
meshes and polyhedral finite elements. 

Section 2 of this paper gives a more detailed description 
of the computational method for modeling pervasive 
fracture.   Section 3 describes the randomly close-packed 
Voronoi tessellation and recent tools that have been 
developed to facilitate its generation for complex shapes.  
Section 4 describes the computational method for 
modeling fluid flow within the fracture network.  
Section 5 gives an overview of the numerical approach 
for solving the coupled fluid-structure problem.  
Section 6 gives several two-dimensional examples.  
Section 7 gives a summary of progress toward a three-
dimensional implementation.  Section 8 gives a 
summary and future work. 

2. COMPUTATIONAL FRACTURE 
APPROACH 
Several computational fracture methods strive to model 
unrestricted fracture growth in a continuum, e.g. 
XFEM [10].  However, the goal of unrestricted fracture 
growth quickly becomes computationally infeasible 
when considering pervasive fracture processes in which 
multiple fractures are present and intersecting.  Figure 1 
gives three examples of unrestricted fracture processes in 
a continuum.  Figure 1(a) shows two fractures initiating 
from a surface and approaching each other at an 
arbitrarily small angle.  Figure 1(b) shows three fractures 
initiating from a surface, then intersecting and forming 
an arbitrarily small fragment.  Figure 1(c) shows one 
fracture initiating from a surface with arbitrary 
branching, self-intersection, and initiation away from the 
surface.  In order to enable robust simulations of 
pervasive fracture processes, the allowable fracture paths 
must be restricted to some degree.  This may be thought 
of as regularizing the pervasive fracture problem by 
discretizing the space of all possible fracture paths. 

   
     (a)           (b)           (c) 
Figure 1.  Examples of fracture processes in a continuum in 
which unrestricted fracture growth can lead to (a) arbitrarily 
small angles, (b) arbitrarily small fragments, and (c) arbitrary 
initiation and branching. 

One approach to regularizing the pervasive fracture 
problem is to only allow fracture surfaces to form at the 
inter-element faces of a finite-element mesh (see 
Figure 2).  At the inception of material softening leading 
to fracture the connectivity of the mesh is modified to 
reflect a new surface, and a cohesive traction with a 
softening behavior is dynamically inserted.  The 
restriction of only allowing new surfaces to form at 
inter-element faces provides the necessary regularization 
of the resulting domain and surface topologies to obtain 
a robust simulation.  This approach has been advocated 
by Bishop [3] to model dynamic pervasive fracture 
processes.  Figure 3 shows the simulation of a rigid 
sphere impacting a quasi-brittle material using this 
approach.   

 
Figure 2.  Dynamic mesh connectivity to reflect new fracture 
surfaces. 

 
Figure 3.   Pervasive-fracture simulation of a rigid sphere 
impacting a quasi-brittle structure. 

To ameliorate the restriction of only allowing new 
surfaces to form at inter-element faces and the inherent 
directional bias, an unstructured random mesh should be 
used to discretize the domain into finite elements.  While 
the question of which type of random mesh is optimal is 
an area of active research, we adopt here the randomly 
close-packed (RCP) Voronoi tessellation advocated by 
Bishop [3].  This type of tessellation is described in 
more detail in Section 3.  The RCP Voronoi tessellation, 
or mesh, provides a random face network for 
representing fracture surfaces as well as the subsequent 
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Figure 5. One-dimensional, six-element example of the partition of a mesh in the synchronous and
asynchronous cases. Naturally, the synchronous case assigns the same number of elements to each
processor. In contrast, the asynchronous one also assigns roughly the same number of elemental
updates to each processor, achieved only by way of a different number of elements in each subdomain:

(a) synchronous algorithm; and (b) asynchronous algorithm.

of the algorithm is generally maximized, or the execution time minimized, when each one of
the identical processors is responsible for performing roughly the same amount of computations.
Simultaneously, the number and length of messages sent between processors should be minimized.

When synchronous explicit algorithms for elastodynamics are adopted the load balancing is
traditionally achieved by virtue of partitioning the mesh into groups with roughly the same num-
ber of elements, and such that the number of shared degrees of freedom between processors is
minimized. The analysis is different with asynchronous algorithms, since every element is entrusted
with a different computational load. Elements having smaller time steps need to be updated more
often than elements with larger time steps, and hence require a larger computational load. The size
of the element and its dilatational sound speed are central to determine an element’s computational
load—notwithstanding, they are not the only ones. Different material throughout the domain may
occasionally have constitutive models of disparate complexity, and ensuing computational loads.

Given a partition of the mesh, the total computational load Cp(Tp) attendant to Tp, the set of
elements in subdomain p, is given by

Cp(Tp) ∝ ∑

K∈Tp

CK

!tK
(7)

where CK is the computational load of updating element K , and the factor 1/!tK accounts for
the relative number of updates element K needs in any fixed, large enough time interval. The
objective is then to partition the mesh such that each subdomain has approximately the same value
of Cp. An example showing a comparison between two resulting partitions of a one-dimensional,
six-element mesh in the synchronous and asynchronous case is shown in Figure 5.

As very often done, the distribution of elements across processors is accomplished through
a graph partitioning algorithm. Nonetheless, before discussing about it, we shall describe a
communication mechanism that mimics the postal mail system, and enables the efficient
implementation of PAVI.

Copyright 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 70:291–321
DOI: 10.1002/nme

Usage of polyhedral finite element to eliminate 
mesh bias for fracture process (Bishop, IJNME, 
2013) 

Enabling asynchronous variational integrator 
for domain coupling methods 
(Lew, Marsden, Ortiz and West, 2003) 
  

•  Hydraulic Fracture 
•   injection induced seismic event 
•  Numerical modeling of rainfall instability 
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A multiscale analysis of shear bands 5

2.2 Geometrical analysis on pore geometry of simulated assembly

To analyze how grain rearrangement affects the hydraulic property of the assembly, we convert portions of the 3D DEM

assembly into 3D discrete binary images. The binary images are collections of binary voxels which signal whether a

cubic volume is occupied by solid (b=255) or by void (b=0). The union of void voxels can be used as the simulation

domain for lattice Boltzmann flow problem. In addition, binary images can be analyzed with software designed for

tomographic images, such as ImageJ [32].

We use a simple computer algorithm called seed-fill to create the binary images of the DEM assemblies. As the

name implies, the seed-fill algorithm is used to grow the region from a seed such that the "flag" or "identification" of

the seed can be propagated in a confined object. The seeds we used in the problem are the centroids of the spherical

particles. To obtain the binary image of the DEM assemblies, we confine the growing of the seeds by preventing them

from growing outside the spherical particles. The pseudo-code used to create binary image goes as follows, noting that

Algorithm 1 Seed-fill (node, void-flag, solid-flag)

if the current node is not a void then
return

else
search the spherical particle closest to the current node

Compute Euclidean distance between current node and the centroid of the closest spherical particle

if Euclidean distance �= radius of the closest spherical particle then
Perform Flood-fill (the west neighbor of the current node, void-flag, solid-flag)

Perform Flood-fill (the east neighbor of the current node, void-flag, solid-flag)

Perform Flood-fill (the north neighbor of the current node, void-flag, solid-flag)

Perform Flood-fill (the south neighbor of the current node, void-flag, solid-flag)

Perform Flood-fill (the upper neighbor of the current node, void-flag, solid-flag)

Perform Flood-fill (the lower neighbor of the current node, void-flag, solid-flag)

end if
end if

the algorithm is recursive. A similar algorithm has been used in [35] to determine the connected/isolated porosity of

Aztec sandstone. To quantitatively compare the geometrical features of the pore space inside and outside the shear

band, we extract a set of geometrical parameters, i.e. the Euler number and the surface area/pore volume, which are

found to be closely related to hydraulic transport behavior of porous media [14; 17; 32; 39]. The open source computer

algorithm used to extract these parameters is provided by David Legland [21; 22]. The Euler number of binary image

E is defined as,

E= N −C+H (8)

where N is the number of interconnected pores, C is the number of loops in the pore space and H is the number of

objects completely enclosed by pore space . In other words, the Euler number is a measure of connectivity which is

positive if the pores are poorly connected and negative if otherwise. A large negative Euler number indicates that the

pore space has a network-like topology and that there are more possible flow path for pore-fluid traveling from one end

to another end. In addition, tortuosity of flow channels can be measured by computing the ratio between the surface

area and the pore volume. Obviously, a high surface area/pore volume indicates that pore-fluid must travel along a

longer flow path from one end to the other.

2.3 Geometrical Enhanced lattice Boltzmann/finite element Simulation

A multi-scale lattice Boltzmann/Finite element method is used to extract geometrical features and permeability from

the granular assemblies. This hybrid method was originally proposed in [1] to estimate permeability of Castlegate

Sandstone. Sun et al 2011a [34] improved the accuracy and computation efficiency of this method by incorporating

geometrical analysis in the permeability calculations. The key to this improvement is partitioning the entire grain

assembly into unit cells where pore-scale lattice Boltzmann simulations are conducted in the connected pores of each

12 WaiChing Sun et al.

as defined by [30], are closely aligned with the principal stress directions and differ in a similar manner within and

outside the shear band. These results are further evidence that material behavior inside of the shear band has diverted

from that of material outside of the shear band.

3.2 Pore geometry and homogenized hydraulic properties of shear bands

To analyze effect of strain rotation on permeability, we located the region of grains with the largest rotation (defining

the center of the shear band) and nearby, surrounding grains within a 6mm distance. The grains with the maximum

rotation are at (20.7mm,90.1mm,5.7mm) relative to the origin shown in Fig. 2. As shown in Figure 8, this location is

approximately at the mid-plane of the shear band.

We convert the shear band grain assembly into cubic binary images of size 12mm x 12mm x 4mm. To maintain

computational efficiency, we then split the domain into nine 4mm x 4mm x 4mm unit cells, with each cell containing

about 107 particles. For comparison purposes, we also extract the pore geometry of three other adjacent 4mm x 4mm x

4mm unit cells centered at (16.7mm,25.0mm,5.7mm), (20.7mm,25.0mm,5.7mm) and (24.7mm,25.0mm,5.7mm)
and labeled them as ”host matrix" (see Figures. 2 and 8). Samples of binary images obtained from the DEM grain

assemblies are shown in Figure 10. The resolution of the binary images is 0.05mm per voxel.

Fig. 10 Binary images generated from DEM assemblies outside (left) and inside (right) shear band at shear strain εxy = 12%. Each cell

contains about 107 particles.

To ensure that this binary volume is large enough to serve as a representative elementary (porous) volume for

studying fluid flow, we follow the approach in [1; 34; 35] and compute amount of energy dissipation per unit volume

of the binary sub-volumes in various sizes, i.e.,

D =
�

V
2εi jεi jdV ; εi j =

1

2

�
vi, j + v j,i

�
(14)

where vi, j is the gradient of fluid velocity and µ is the viscosity. This energy dissipation rate is induced by prescribing

a pore pressure gradient on the top and bottom of the sub-volume. Our goal is to test whether increasing the size of the

sub-volumes would induce severe fluctuation in the dissipation rate per unit volume. If this is not the case, then the

sub-volume is considered to be large enough to be a representative elementary volume.

Figure 11 shows the normalized energy dissipation computed from 480 lattice Boltzmann simulations inside the

shear band. Different colors are used to represent the sub-volume obtained at 0, 2, 4, 6, 8, 10 and 12% shear strain. We

notice that fluctuation of energy dissipation rate is large when the numerical specimens is less than 1mm
3
, but gradually

decreases as the sample size get larger. (A 1mm
3

specimen will encompass, on average, only 1.7 particles.) When the

Binary images generated from DEM assemblies 
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Applying the chain rule and through some algebra,

we obtain the following expression,

Dφf

Dt
=

Ks

Ks + pf

�
DB

Dt
(log J +

pf

Ks
)

�

+
Ks

Ks + pf

�
B

J

DJ
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�
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For simplicity, we may consider only the case

where pf << Ks such that,

Dφf
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The material time derivative of the apparent pore-

fluid density reads,
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where M is the Biot’s modulus defined as [31],

M =
KsKf

Kf (B − φf ) +Ksφf
(24)

Finally, for completeness of presentation, we as-

sume that the flow inside the porous media is

sufficiently slow such that Darcy’s law is valid. In

this case, Darcy’s flow can be used as constitu-

tive model to relate relative flow vector with pore

pressure. In the current configuration, the balance

of linear momentum if the fluid phase may be

written as,

−∇x pf + ρfG− k−1 ·w = ρfaf
(25)

where k is the permeability tensor divided by the

viscosity, af is the acceleration of the fluid con-

stituent. Rearranging (25), the Eulerian relative

flow vector w reads,

1

ρf
w = k ·

�
−∇x pf + ρf (G− af )

�
(26)

Assume that the inertial force is negligible, af = 0.

By applying Piola transformation of the relative

flow vector and pulling back the permeability

tensor, Darcy’s law can be expressed in the La-

grangian configuration. The relative flow vector

therefore reads,

1

ρf
W = K · (−∇X pf + ρfF

T ·G) (27)

where K = JF−1 · k · F -T
. Combining (13), (23)

and (27), we obtain the strong form of the balance

of mass equation,

DB

Dt
(log J+

pf

Ks
)+

B

J

DJ

Dt
+

1

M

Dpf

Dt
+∇X ·Q = 0

(28)

where Q = (1/ρf )W . Notice that if both con-

stituents are incompressible, then B = 1 and

1/M = 0. Applying the Piola transform, (28) re-

duces to the form identical to the one in [6],

∇x·v +∇x· q = 0 (29)

where q = (1/ρf )w.

Remark 1 Armero derived a quadratic potential

to characterize the reversible response of the sat-

urated pore space by assuming that the change

of fluid constent is small in [2]. In a special case

where Biot’s coefficient remains unchanged, (28)

is identical to Equation (3.36) of [2].

3 Stabilized Variational Formulation

In this section, we consider the stabilized varia-

tional form required for the equal-order displacement-

pressure paired finite element model with assumed

deformation gradient. We first define the standard

weak form of the poromechanics problem based on

the balance law derived in Section 2. By applying

a multiplicative split, we introduce the assumed

deformation gradient suitable for the poromechan-

ics problem. To prevent spurious modes due to the

usage of equal-order interpolation and assumed

deformation gradient, we introduce a stabilization

mechanism into the weighted-residual statement

of the momentum and mass balance equation. A

simple scheme for choosing the stabilization pa-

rameters is also presented.

3.1 Galerkin Form

Our objective is to derive a weighted-residual state-

ment suitable for a total Lagrangian scheme. We

first specify the appropriate boundary and ini-

tial conditions. Following the standard line, we

consider a domain B whose boundary ∂B is the
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. Combining (13), (23)
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where Q = (1/ρf )W . Notice that if both con-

stituents are incompressible, then B = 1 and

1/M = 0. Applying the Piola transform, (28) re-

duces to the form identical to the one in [6],

∇x·v +∇x· q = 0 (29)

where q = (1/ρf )w.

Remark 1 Armero derived a quadratic potential

to characterize the reversible response of the sat-

urated pore space by assuming that the change

of fluid constent is small in [2]. In a special case

where Biot’s coefficient remains unchanged, (28)

is identical to Equation (3.36) of [2].

3 Stabilized Variational Formulation

In this section, we consider the stabilized varia-

tional form required for the equal-order displacement-

pressure paired finite element model with assumed

deformation gradient. We first define the standard

weak form of the poromechanics problem based on

the balance law derived in Section 2. By applying

a multiplicative split, we introduce the assumed

deformation gradient suitable for the poromechan-

ics problem. To prevent spurious modes due to the

usage of equal-order interpolation and assumed

deformation gradient, we introduce a stabilization

mechanism into the weighted-residual statement

of the momentum and mass balance equation. A

simple scheme for choosing the stabilization pa-

rameters is also presented.

3.1 Galerkin Form

Our objective is to derive a weighted-residual state-

ment suitable for a total Lagrangian scheme. We

first specify the appropriate boundary and ini-

tial conditions. Following the standard line, we

consider a domain B whose boundary ∂B is the
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where Q = (1/ρf )W . Notice that if both constituents are incompressible, then B = 1 and 1/M = 0.
Applying the Piola transform, (31) reduces to the form identical to that seen in [6],

∇x· v +∇x· q = 0 (30)

where q = (1/ρf )w.

αK

J

DJ

Dt
− αm

Dp
f

Dt
− Cd

Dθ

Dt
+∇X ·Qθ = 0 (31)

Qθ = −Kθ ·∇X
θ (32)

Kθ = JF−1 · kθ · F−T
(33)

Remark 1 Armero derived a quadratic potential to characterize the reversible response of the saturated

pore space by assuming that the change of fluid content is small in [2]. In a special case where Biot’s

coefficient remains unchanged, (31) is identical to Equation (3.36) of [2].

3 Stabilized Variational Formulation

In this section, we consider the stabilized variational form required for the equal-order displacement-

pressure paired finite element model with assumed deformation gradient. We first define the standard

weak form of the poromechanics problem based on the balance law derived in Section 2. By applying

a multiplicative split, we introduce the assumed deformation gradient suitable for the poromechanics

problem. To prevent spurious modes due to the usage of equal-order interpolation and assumed deformation

gradient, we introduce a stabilization mechanism into the weighted-residual statement of the momentum

and mass balance equations. A simple scheme for choosing the stabilization parameters is also presented.

3.1 Galerkin Form

Our objective is to derive a weighted-residual statement suitable for a total Lagrangian scheme. We first

specify the appropriate boundary and initial conditions. Following the standard line, we consider a domain

B whose boundary ∂B is the direct sum of the Dirichlet and Von Neumann boundaries, i.e.,

∂B = ∂Bu ∪ ∂Bt = ∂Bp ∪ ∂Bq (34)

∅ = ∂Bu ∩ ∂Bt = ∂Bp ∩ ∂Bq (35)

where ∂Bu is the solid displacement boundary, ∂Bt is the solid traction boundary, ∂Bp is the pore pressure

boundary, ∂Bq is the pore-fluid flux boundary. The boundary conditions are prescribed as

u = u on ∂Bu (36)

N · P = t on ∂Bt (37)

p
f = p on ∂Bp (38)

−N ·Q = Q on ∂BQ (39)

In addition, we consider the trial space for the weak form which reads,

Vu = {u : B → R3|u ∈ [H1(B)]3,u|∂Bu = u} (40)

Vp = {pf : B → R|pf ∈ H
1(B), pf |∂Bp = p} (41)
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The mapping of the solid and fluid constituent is illustrated in Figure ??. Unlike the single phase continua,
multiphase continua are mixtures of constituents that are not bound to move under the same trajectories.
Therefore, if a control mass of solid particles is defined in a solid phase material configuration, then
the volume occupied by the same control mass of solid particles may contain pore-fluid which does not
belong to the solid phase material configuration. However, since the constitutive response of the solid
skeleton must be modeled in a well defined and measurable control mass at a continuum level [12], the
finite strain poromechanics problem is formulated on the trajectory of the solid constituent only. The
pore-fluid motion is accounted indirectly by modeling the relative motion between the fluid flow and the
solid skeleton through constitutive models such as Darcy’s law. For brevity, we drop the designation of
the solid phase s, such that x = ϕs(X, t) = ϕ(X, t).

2.2 Balance of Linear Momentum

Provided that a macroscopic representation of the solid-fluid interaction in porous media is valid, the
total Cauchy stress of the porous media is the sum of the solid and fluid phase macroscopic Cauchy stress
if the meniscus effect is neglected, i.e.,

σ = σs + σf = φsσs + φfσf (3)

where σs and σf are the intrinsic partial stress defined in the volume of the solid grains V s and pores V f

respectively. The total stress is the volume averaged stress defined in the volume V = V s + V f , assuming
that homogenization is valid. Since pore-fluid does not provide any shear resistance, the fluid phase
Cauchy stress is isotropic and holds the following relation with the macroscopic pore pressure pf , i.e.,

pfI = −σf ; pf = −1
3
tr(σf ) ; pf = − 1

3φf
tr(φfσf ) (4)

On the other hand, the Cauchy stress of the solid phase comes from the deformation of the solid skeleton
(i.e., the effective stress σ� ) and the stress exerted on the skeleton due to the compression of the fluid
(i.e., K/Ksp

f ),

σs = σ� +
K
Ks

pfI (5)

This definition is from [32], which assumes that the non-uniform localization of stress at the grain scale,
grain crushing, and damage are all insignificant to the skeleton (cf. [59] p.8-11). By substituting (4) and
(5) into (3), the total Cauchy stress now reads,

σ = σ� −BpfI (6)

where B is the Biot’s coefficient defined as [32],

B = 1− K
Ks

(7)

We will adopt the total first Piola-Kirchhoff stress P as the stress measure for the total Lagrangian
formulation. The total first Piola-Kirchhoff stress is obtained through the Piola transformation [6; 47].
For elastic porous media, the total first Piola-Kirchhoff stress can be determined from the deformation
gradient F and the pore pressure pf , i.e.,

P (F , pf ) = P �(F )− JBpfF−T (8)

where J is the determinant of the deformation gradient F . Notice that the effective first Piola-Kirchhoff
stress, P �, does not depend on the pore pressure pf . On the other hand, if the constitutive response is
path-dependent, then we assume that the following relation holds,

P (F , z, pf , θ) = P �(F , z, θ)− JBpfF−T (9)

where z is a set of internal variables. Notice that the effective first Piola-Kirchhoff stress defined in (9) is
also decoupled from the pore-fluid response. Hence, this assumption enables us to use any single-phase
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where Q = (1/ρf )W . Notice that if both constituents are incompressible, then B = 1 and 1/M = 0.
Applying the Piola transform, (31) reduces to the form identical to that seen in [6],

∇x· v +∇x· q = 0 (30)

where q = (1/ρf )w.

αK
J

DJ
Dt

− αm
Dpf

Dt
− Cd

Dθ
Dt

+∇X ·Qθ = 0 (31)

Qθ = −Kθ ·∇X θ (32)

Kθ = JF−1 · kθ · F−T
(33)

ψ(F , z, θ) = Û(J) + Ŵ (b̄e) + K̂(z) + M̂(J, θ) (34)

P � =
∂ψ(F , z, θ)

∂F
(35)

Remark 1 Armero derived a quadratic potential to characterize the reversible response of the saturated

pore space by assuming that the change of fluid content is small in [2]. In a special case where Biot’s

coefficient remains unchanged, (31) is identical to Equation (3.36) of [2].

3 Stabilized Variational Formulation

In this section, we consider the stabilized variational form required for the equal-order displacement-

pressure paired finite element model with assumed deformation gradient. We first define the standard

weak form of the poromechanics problem based on the balance law derived in Section 2. By applying

a multiplicative split, we introduce the assumed deformation gradient suitable for the poromechanics

problem. To prevent spurious modes due to the usage of equal-order interpolation and assumed deformation

gradient, we introduce a stabilization mechanism into the weighted-residual statement of the momentum

and mass balance equations. A simple scheme for choosing the stabilization parameters is also presented.

3.1 Galerkin Form

Our objective is to derive a weighted-residual statement suitable for a total Lagrangian scheme. We first

specify the appropriate boundary and initial conditions. Following the standard line, we consider a domain

B whose boundary ∂B is the direct sum of the Dirichlet and Von Neumann boundaries, i.e.,

∂B = ∂Bu ∪ ∂Bt = ∂Bp ∪ ∂Bq (36)

∅ = ∂Bu ∩ ∂Bt = ∂Bp ∩ ∂Bq (37)

where ∂Bu is the solid displacement boundary, ∂Bt is the solid traction boundary, ∂Bp is the pore pressure

boundary, ∂Bq is the pore-fluid flux boundary. The boundary conditions are prescribed as

u = u on ∂Bu (38)

N · P = t on ∂Bt (39)

pf = p on ∂Bp (40)

−N ·Q = Q on ∂BQ (41)
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where Ra, R
�
α and Rc

a are the residuals of the nonlinear algebraic equations constituted by
the discrete variational statement (2.20)-(2.22), i.e.,

Ra[ϕh,φh] =

�

B
αP : GradNa dV − βBNa dV

+

��

Bc

NaNb ·+κl2 GradNa : GradNb dV

�
φb

−
�

∂TB
βT ·Na dS (2.23)

R�
α[ϕ

�
h,φh] =

�

B
(1− α)P � : Gradλα dV − (1− β)B�λα dV

−
��

Bc

λαNb + κl2 Gradλα : GradNb dV

�
φb

−
�

∂TB
(1− β)T � · λα dS (2.24)

Rc
a[ϕh,ϕ

�
h] =

��

Bc

NaNb + κl2 GradNa : GradNb dV

�
ϕb

−
��

Bc

Naλβ + κl2 GradNa : Gradλβ dV

�
ϕ�

β (2.25)

Notice that the nodal values of the test functions ξa, ξ
�
α and λA are arbitrary. The only

unknowns in the discrete variational statement are the nodal values of ϕa, ϕ
�
a and φa. Thus,

constitutes a system of nonlinear algebraic equations, i.e., Ra[ϕh,φh] = 0 ; R�
a[ϕ

�
h,φh] =

0 ; Rc
a[ϕh,ϕ

�
h] = 0.

2.5 Linearization

To obtain solutions from the nonlinear discrete variational statement, one may apply Newton
method or other related linearization based techniques so that incremental solutions can be
sought from the directional derivative of the residuals at each incremental step. Assuming
that all loads are conservative, the best linear approximation of the residual at (ϕn,ϕ

�
n,φn)

reads,

Ra[ϕn+1,φn+1] ≈ Ra[ϕn,φn] +DϕRa[ϕn,φn] ·∆ϕ+DφRa[ϕn,φn] ·∆φ (2.26)

R�
α[ϕ

�
n+1,φn+1] ≈ R�

a[ϕ
�
n,φn] +Dϕ�R�

a[ϕ
�
n,φn] ·∆ϕ� +DφR

�
a[ϕ

�
n,φo] ·∆φ (2.27)

Rc
a[ϕn+1,ϕ

�
n+1] ≈ Rc

a[ϕn,ϕ
�
n] +DϕR

c
a[ϕn,ϕ

�
n] ·∆ϕ+Dϕ�Rc

a[ϕn,ϕ
�
n] ·∆ϕ� (2.28)

where ∆ϕ and ∆ϕ� denote the linear incremental displacement from ϕn(B) to ϕn+1(B), and
from ϕ�

n(B�) to ϕ�
n+1(B�) respectively. By assuming that the Gateaux derivative coincides

with the Fréchet derivative, we provide the detailed expression of the directional Fréchet
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Drucker-Prager type, then the diffusivity c can be
expressed as,

c =
k

µ

M
�
H

H + νβM � ;M
� =

M(K + 4G/3)

K + 4G/3 +B2M
(65)

where H, ν and β are the hardening modulus,
dilatancy factor and the frictional parameter de-
termined from the constitutive model. For brevity,
the derivation of (64) will not be repeated here.
Interested readers please refer to [23; 24; 27] for
details.

Equations taking the form of (64) can be dis-
cretized in time and that leads to a modified
Helmholtz operator in space [15], which reads,

p̂n+1 + ϑc∆t
∂
2

∂x2
p̂n+1 = p̂n − (1− ϑ)c∆t

∂
2

∂x2
p̂n

(66)

where ϑ ∈ [0, 1] is the scalar parameter of the gen-
eralized trapezoid rule. Without introducing any
boundary conditions, (66) has an exact solution
that reads,

p̂(x) = exp(±x/

√
ϑc∆t) (67)

Notice that the finite element approximate growth
and decay rate of the solution can be determined
by assuming that xA = Ah such that,

p̂A = exp(±(h/(
√
ϑc∆t)h)A (68)

where
√
ϑc∆t)h is the approximate growth/decay

rate of the finite element solution. Obviously the
finite element solution may exhibit spurious oscil-
lation if

√
ϑc∆t)h is complex valued, as pointed

out in [15]. To determine the range of the stabi-
lization parameters that prevent

√
ϑc∆t)h being

complex valued, we consider a simple case in which
piecewise-linear finite elements are of uniform size
h. As a result, we may construct a three-node
stencil via the standard Galerkin method, i.e.,

− p̂A−1 + 2p̂A − p̂A−1

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (69)

Next, we add the stabilization terms defined in
(56) and (59) into (66). By assembling the effective
stiffness matrices of the L2 projection stabilization
term, we obtain,

−p̂A−1 +2p̂A − p̂A−1

+ h2

12ϑc∆t [(2− γ)p̂A−1

+(8 + 2γ)p̂A + (2− γ)p̂A+1] = 0 (70)

where γ is the stabilization parameter for the
pressure projection term. On the other hand, the
pore pressure gradient stabilized three node pencil
reads,

(1 + βkh) (−p̂A−1 + 2p̂A − p̂A−1)

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (71)

where β is the stabilization parameter for the
gradient stabilization term. By comparing (70)
and (71), one may show that the L

2 projection
stabilization and gradient stabilization can become
identical to each other in the one-dimensional case
by setting

β = γ
hk

12ϑc∆t
(72)

Hence, once the bound of stability parameter γ is
defined, the bound of β is also known via (72). To
compute the stability bound for the L

2 projection
stabilization, we first apply (68) into (70), which
leads to

cosh
h

(
√
ϑc∆t)h

=
1 + h

2
/ϑc∆t)(4 + γ)/6

1− h2/ϑc∆t)(2− γ)/12
(73)

The approximate growth/decay rate does not con-
tain an imaginary part if the hyperbolic cosine
function is positive valued. Provided that γ and β

are both positive, the stabilization parameter that
eliminate spurious oscillation can be determined
from the denominator in the R.H.S of (73) ,

γ > 2− 12
ϑc∆t

h2
> 0 (74)

which is equivalent to the following relation for
the 1D case,

β >
hk

6ϑc∆t
− 1

h
k > 0 (75)

In our implementation, we employ the L
2 projec-

tion scheme and define γ as

γ = (2− 6
ϑc∆t

h2
)
�1
2
+

1

2
tanh(2− 12

ϑc∆t

h2
)
�

(76)

Notice that the term 1/2 + tanh(2 − 12ϑc∆t
h2 )/2

approaches zero if diffusivity is high and equal to 1
if diffusivity is low. This treatment is to limit over-
diffusion caused by usage of stabilization term as
mentioned in [39].
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Stabilized FEM for Poromechanics at Finite Strain 11

may assign a very large value to stabilize the so-
lution, doing so may over-diffuse the solution and
lead to nonphysical results [55].

Since it is difficult to directly determine, a
priori, the optimal value of the stabilization pa-
rameter for multi-dimensional large deformation
poromechanics problems, we estimate the sta-
bilization parameter based on a simplified one-
dimension diffusion problem. As [20] points out,
this represents a uniform d-dimensional mesh aligned
with the direction of the growth and decay of the
solution.

Our starting point of this analysis is the lin-
earized perturbation equation from Rice [42], where
an infinitesimal perturbation of pore pressure p̂

satisfies the linearization of the one dimensional
poromechanics governing equation, written as

c
∂
2
p̂

∂x2
=

∂p̂

∂t
, (65)

where c is the diffusivity. If the elastic response
of the solid skeleton and the permeability are
both isotropic and the plastic response is of the
Drucker-Prager type, then the diffusivity c can be
expressed as,

c =
k

µ

M
�
H

H + νβM � ;M
� =

M(K + 4G/3)

K + 4G/3 +B2M
(66)

where H, ν and β are the hardening modulus,
dilatancy factor and the frictional parameter de-
termined from the constitutive model. Notice that
M

� also appears in (60) and (61).
For brevity, the derivation of (65) is not re-

peated here. Interested readers please refer to
[42; 43; 46] for details.

Equations taking the form of (65) can be dis-
cretized in time and that leads to a modified
Helmholtz operator in space [20], which reads,

p̂n+1 + ϑc∆t
∂
2

∂x2
p̂n+1 = p̂n − (1− ϑ)c∆t

∂
2

∂x2
p̂n

(67)

where ϑ ∈ [0, 1] is the scalar parameter of the gen-
eralized trapezoid rule. Without introducing any
boundary conditions, (67) has an exact solution
that reads [20],

p̂(x) = exp(±x/

√
ϑc∆t) (68)

Notice that the finite element approximate growth
and decay rate of the solution can be determined
by assuming that xA = Ah such that,

p̂A = exp(±(h/(
√
ϑc∆t)h)A (69)

where
√
ϑc∆t

h
is the approximate growth/decay

term in the finite element solution. Obviously the
finite element solution may exhibit spurious oscil-
lations if

√
ϑc∆t

h
is complex valued, as pointed

out in [20]. To determine the range of the stabi-
lization parameters that prevent

√
ϑc∆t

h
being

complex valued, we consider a simple case in which
piecewise-linear finite elements are of uniform size
h. As a result, we may construct a three-node
stencil via the standard Galerkin method, i.e.,

− p̂A−1 + 2p̂A − p̂A−1

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (70)

Next, we add the stabilization terms defined in
(57) and (60) into (67). By assembling the effective
stiffness matrices of the L2 projection stabilization
term, we obtain,

−p̂A−1 +2p̂A − p̂A−1

+ h2

12ϑc∆t [(2− γ)p̂A−1

+(8 + 2γ)p̂A + (2− γ)p̂A+1] = 0 (71)

where γ is the stabilization parameter for the
pressure projection term. On the other hand, the
three node stencil stabilized by the fluid pressure
Laplacian method reads,

(1 + β
hk

ϑ∆tµ
)(−p̂A−1 + 2p̂A − p̂A−1)

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (72)

where β is the stabilization parameter for the gra-
dient stabilization term. By comparing (71) and
(72), one may show that the L

2 projection stabi-
lization and fluid pressure Laplacian stabilization
are identical to each other in the one-dimensional
case if the following holds,

γ =
�
12

ck

µh

�
β (73)

Hence, once the bound for the stability parameter
γ is defined, the bound of β is also known via
(73). To compute the stability bound for the L

2
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may assign a very large value to stabilize the so-
lution, doing so may over-diffuse the solution and
lead to nonphysical results [55].

Since it is difficult to directly determine, a
priori, the optimal value of the stabilization pa-
rameter for multi-dimensional large deformation
poromechanics problems, we estimate the sta-
bilization parameter based on a simplified one-
dimension diffusion problem. As [20] points out,
this represents a uniform d-dimensional mesh aligned
with the direction of the growth and decay of the
solution.

Our starting point of this analysis is the lin-
earized perturbation equation from Rice [42], where
an infinitesimal perturbation of pore pressure p̂

satisfies the linearization of the one dimensional
poromechanics governing equation, written as

c
∂
2
p̂

∂x2
=

∂p̂

∂t
, (65)

where c is the diffusivity. If the elastic response
of the solid skeleton and the permeability are
both isotropic and the plastic response is of the
Drucker-Prager type, then the diffusivity c can be
expressed as,

c =
k

µ

M
�
H

H + νβM � ;M
� =

M(K + 4G/3)

K + 4G/3 +B2M
(66)

where H, ν and β are the hardening modulus,
dilatancy factor and the frictional parameter de-
termined from the constitutive model. Notice that
M

� also appears in (60) and (61).
For brevity, the derivation of (65) is not re-

peated here. Interested readers please refer to
[42; 43; 46] for details.

Equations taking the form of (65) can be dis-
cretized in time and that leads to a modified
Helmholtz operator in space [20], which reads,

p̂n+1 + ϑc∆t
∂
2

∂x2
p̂n+1 = p̂n − (1− ϑ)c∆t

∂
2

∂x2
p̂n

(67)

where ϑ ∈ [0, 1] is the scalar parameter of the gen-
eralized trapezoid rule. Without introducing any
boundary conditions, (67) has an exact solution
that reads [20],

p̂(x) = exp(±x/

√
ϑc∆t) (68)

Notice that the finite element approximate growth
and decay rate of the solution can be determined
by assuming that xA = Ah such that,

p̂A = exp(±(h/(
√
ϑc∆t)h)A (69)

where
√
ϑc∆t

h
is the approximate growth/decay

term in the finite element solution. Obviously the
finite element solution may exhibit spurious oscil-
lations if

√
ϑc∆t

h
is complex valued, as pointed

out in [20]. To determine the range of the stabi-
lization parameters that prevent

√
ϑc∆t

h
being

complex valued, we consider a simple case in which
piecewise-linear finite elements are of uniform size
h. As a result, we may construct a three-node
stencil via the standard Galerkin method, i.e.,

− p̂A−1 + 2p̂A − p̂A−1

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (70)

Next, we add the stabilization terms defined in
(57) and (60) into (67). By assembling the effective
stiffness matrices of the L2 projection stabilization
term, we obtain,

−p̂A−1 +2p̂A − p̂A−1

+ h2

12ϑc∆t [(2− γ)p̂A−1

+(8 + 2γ)p̂A + (2− γ)p̂A+1] = 0 (71)

where γ is the stabilization parameter for the
pressure projection term. On the other hand, the
three node stencil stabilized by the fluid pressure
Laplacian method reads,

(1 + β
hk

ϑ∆tµ
)(−p̂A−1 + 2p̂A − p̂A−1)

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (72)

where β is the stabilization parameter for the gra-
dient stabilization term. By comparing (71) and
(72), one may show that the L

2 projection stabi-
lization and fluid pressure Laplacian stabilization
are identical to each other in the one-dimensional
case if the following holds,

γ =
�
12

ck

µh

�
β (73)

Hence, once the bound for the stability parameter
γ is defined, the bound of β is also known via
(73). To compute the stability bound for the L

2
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may assign a very large value to stabilize the so-
lution, doing so may over-diffuse the solution and
lead to nonphysical results [55].

Since it is difficult to directly determine, a
priori, the optimal value of the stabilization pa-
rameter for multi-dimensional large deformation
poromechanics problems, we estimate the sta-
bilization parameter based on a simplified one-
dimension diffusion problem. As [20] points out,
this represents a uniform d-dimensional mesh aligned
with the direction of the growth and decay of the
solution.

Our starting point of this analysis is the lin-
earized perturbation equation from Rice [42], where
an infinitesimal perturbation of pore pressure p̂

satisfies the linearization of the one dimensional
poromechanics governing equation, written as

c
∂
2
p̂

∂x2
=

∂p̂

∂t
, (65)

where c is the diffusivity. If the elastic response
of the solid skeleton and the permeability are
both isotropic and the plastic response is of the
Drucker-Prager type, then the diffusivity c can be
expressed as,

c =
k

µ

M
�
H

H + νβM � ;M
� =

M(K + 4G/3)

K + 4G/3 +B2M
(66)

where H, ν and β are the hardening modulus,
dilatancy factor and the frictional parameter de-
termined from the constitutive model. Notice that
M

� also appears in (60) and (61).
For brevity, the derivation of (65) is not re-

peated here. Interested readers please refer to
[42; 43; 46] for details.

Equations taking the form of (65) can be dis-
cretized in time and that leads to a modified
Helmholtz operator in space [20], which reads,

p̂n+1 + ϑc∆t
∂
2

∂x2
p̂n+1 = p̂n − (1− ϑ)c∆t

∂
2

∂x2
p̂n

(67)

where ϑ ∈ [0, 1] is the scalar parameter of the gen-
eralized trapezoid rule. Without introducing any
boundary conditions, (67) has an exact solution
that reads [20],

p̂(x) = exp(±x/

√
ϑc∆t) (68)

Notice that the finite element approximate growth
and decay rate of the solution can be determined
by assuming that xA = Ah such that,

p̂A = exp(±(h/(
√
ϑc∆t)h)A (69)

where
√
ϑc∆t

h
is the approximate growth/decay

term in the finite element solution. Obviously the
finite element solution may exhibit spurious oscil-
lations if

√
ϑc∆t

h
is complex valued, as pointed

out in [20]. To determine the range of the stabi-
lization parameters that prevent

√
ϑc∆t

h
being

complex valued, we consider a simple case in which
piecewise-linear finite elements are of uniform size
h. As a result, we may construct a three-node
stencil via the standard Galerkin method, i.e.,

− p̂A−1 + 2p̂A − p̂A−1

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (70)

Next, we add the stabilization terms defined in
(57) and (60) into (67). By assembling the effective
stiffness matrices of the L2 projection stabilization
term, we obtain,

−p̂A−1 +2p̂A − p̂A−1

+ h2

12ϑc∆t [(2− γ)p̂A−1

+(8 + 2γ)p̂A + (2− γ)p̂A+1] = 0 (71)

where γ is the stabilization parameter for the
pressure projection term. On the other hand, the
three node stencil stabilized by the fluid pressure
Laplacian method reads,

(1 + β
hk

ϑ∆tµ
)(−p̂A−1 + 2p̂A − p̂A−1)

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (72)

where β is the stabilization parameter for the gra-
dient stabilization term. By comparing (71) and
(72), one may show that the L

2 projection stabi-
lization and fluid pressure Laplacian stabilization
are identical to each other in the one-dimensional
case if the following holds,

γ =
�
12

ck

µh

�
β (73)

Hence, once the bound for the stability parameter
γ is defined, the bound of β is also known via
(73). To compute the stability bound for the L

2
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may assign a very large value to stabilize the so-
lution, doing so may over-diffuse the solution and
lead to nonphysical results [55].

Since it is difficult to directly determine, a
priori, the optimal value of the stabilization pa-
rameter for multi-dimensional large deformation
poromechanics problems, we estimate the sta-
bilization parameter based on a simplified one-
dimension diffusion problem. As [20] points out,
this represents a uniform d-dimensional mesh aligned
with the direction of the growth and decay of the
solution.

Our starting point of this analysis is the lin-
earized perturbation equation from Rice [42], where
an infinitesimal perturbation of pore pressure p̂

satisfies the linearization of the one dimensional
poromechanics governing equation, written as

c
∂
2
p̂

∂x2
=

∂p̂

∂t
, (65)

where c is the diffusivity. If the elastic response
of the solid skeleton and the permeability are
both isotropic and the plastic response is of the
Drucker-Prager type, then the diffusivity c can be
expressed as,

c =
k

µ

M
�
H

H + νβM � ;M
� =

M(K + 4G/3)

K + 4G/3 +B2M
(66)

where H, ν and β are the hardening modulus,
dilatancy factor and the frictional parameter de-
termined from the constitutive model. Notice that
M

� also appears in (60) and (61).
For brevity, the derivation of (65) is not re-

peated here. Interested readers please refer to
[42; 43; 46] for details.

Equations taking the form of (65) can be dis-
cretized in time and that leads to a modified
Helmholtz operator in space [20], which reads,

p̂n+1 + ϑc∆t
∂
2

∂x2
p̂n+1 = p̂n − (1− ϑ)c∆t

∂
2

∂x2
p̂n

(67)

where ϑ ∈ [0, 1] is the scalar parameter of the gen-
eralized trapezoid rule. Without introducing any
boundary conditions, (67) has an exact solution
that reads [20],

p̂(x) = exp(±x/

√
ϑc∆t) (68)

Notice that the finite element approximate growth
and decay rate of the solution can be determined
by assuming that xA = Ah such that,

p̂A = exp(±(h/(
√
ϑc∆t)h)A (69)

where
√
ϑc∆t

h
is the approximate growth/decay

term in the finite element solution. Obviously the
finite element solution may exhibit spurious oscil-
lations if

√
ϑc∆t

h
is complex valued, as pointed

out in [20]. To determine the range of the stabi-
lization parameters that prevent

√
ϑc∆t

h
being

complex valued, we consider a simple case in which
piecewise-linear finite elements are of uniform size
h. As a result, we may construct a three-node
stencil via the standard Galerkin method, i.e.,

− p̂A−1 + 2p̂A − p̂A−1

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (70)

Next, we add the stabilization terms defined in
(57) and (60) into (67). By assembling the effective
stiffness matrices of the L2 projection stabilization
term, we obtain,

−p̂A−1 +2p̂A − p̂A−1

+ h2

12ϑc∆t [(2− γ)p̂A−1

+(8 + 2γ)p̂A + (2− γ)p̂A+1] = 0 (71)

where γ is the stabilization parameter for the
pressure projection term. On the other hand, the
three node stencil stabilized by the fluid pressure
Laplacian method reads,

(1 + β
hk

ϑ∆tµ
)(−p̂A−1 + 2p̂A − p̂A−1)

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (72)

where β is the stabilization parameter for the gra-
dient stabilization term. By comparing (71) and
(72), one may show that the L

2 projection stabi-
lization and fluid pressure Laplacian stabilization
are identical to each other in the one-dimensional
case if the following holds,

γ =
�
12

ck

µh

�
β (73)

Hence, once the bound for the stability parameter
γ is defined, the bound of β is also known via
(73). To compute the stability bound for the L

2
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projection stabilization, we first apply (69) into
(71), which leads to

cosh
h

(
√
ϑc∆t)h

=
(1 + h

2
/ϑc∆t)(4 + γ)/6

(1− h2/ϑc∆t)(2− γ)/12
(74)

The approximate growth/decay rate does not con-
tain an imaginary part if the hyperbolic cosine
term is positive. Provided that γ and β are both
positive, the stabilization parameter that elimi-
nates spurious oscillation can be determined from
the denominator in the right hand side of (74),

γ > 2− 12
ϑc∆t

h2
> 0 (75)

which is equivalent to the following relation for
the 1D case,

β >
µ

k
(
ch

6
− ϑk∆t

µh
) > 0 (76)

In our implementation, we employ the L
2 projec-

tion scheme and define γ as

γ = (2− 6
ϑc∆t

h2
)
�1
2
+

1

2
tanh(2− 12

ϑc∆t

h2
)
�

(77)

Notice that the term 1/2 + tanh(2 − 12ϑc∆t
h2 )/2

approaches zero if diffusivity is high and equal to
1 if diffusivity is low. This treatment is to limit
over-diffusion caused by usage of the stabilization
term as mentioned in [55].

Remark 3 It is evident that the estimation of the
stabilization parameter is based on a 1D problem,
and thus as useful as it is, cannot be relied upon
as a definitive analytical solution for the optimal
value of the stabilization parameter. Nevertheless,
in engineering practice, it may serve as an useful
guideline for typical problems. In the numerical
examples shown in Section 5, the estimated sta-
bilization parameter is able to eliminate spurious
oscillations and converges to analytical solutions
without introducing significant over-diffusion.

Remark 4 Notice that the above formulation can
be reduced to the classical 1D lumped mass case if
γ = 2 and β = h/(6ϑc∆t). The latter relation has
been pointed out in [33]. The stabilization param-
eter suggested in [55] is equivalent to γ = 2M �

/G

in our formulation. This is a more conservative
choice than the γ defined in (77) if 1/2G is larger
than 2/M �.

Remark 5 Rice’s analysis in [42] has shown that
dilatant hardening is unstable when H is negative.
This unstable response prevails in both analytical
and numerical responses, since the growth/decay
rates of the numerical and analytical solutions are
both complex valued.

Remark 6 For multi-dimensional problems, one
may use the definition in [53] to define the element
length, i.e.,

h(X) = 2(
�

a

| ∇X
p
f (X)

||∇X pf (X)|| ·∇
X

Na(X)|)−1

(78)

where h(x) is not a constant within an element,
but rather a continuous field which measures the
element length in the direction of the pore pressure
gradient. This definition, however, is not suitable
for problems where pore pressure varies within
the boundary layer but remains zero elsewhere.
For those cases, we define the element length as,

h(X) = 2(
�

a

|N ·∇X
Na(X)|)−1 (79)

where N = (1/
√
3)(e1 + e2 + e3) is a unit vector.

4 Implementation

Implementation of the poromechanics formulation
presented above is carried out within a highly
abstracted C++ framework employing template
based generic programming practices. The mo-
tivation and advantages of such an environment
are presented in this section and include access
to transformational tools, graph based assembly,
simplified analytic linearization, and a natural
treatment of strongly coupled systems. The sec-
tion summarizes the framework described in [36]
and [37].

Demands on multi-physics analyses, includ-
ing poromechanics, such as uncertainty quantifica-
tion, optimization, and sensitivity analysis, require
additional embedded computational capabilities.
These embedded tools have been implemented
using templates and operator overloading in a
series of packages within the Trilinos framework
[22]. These packages have been employed in an
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projection stabilization, we first apply (69) into
(71), which leads to

cosh
h

(
√
ϑc∆t)h

=
(1 + h

2
/ϑc∆t)(4 + γ)/6

(1− h2/ϑc∆t)(2− γ)/12
(74)

The approximate growth/decay rate does not con-
tain an imaginary part if the hyperbolic cosine
term is positive. Provided that γ and β are both
positive, the stabilization parameter that elimi-
nates spurious oscillation can be determined from
the denominator in the right hand side of (74),

γ > 2− 12
ϑc∆t

h2
> 0 (75)

which is equivalent to the following relation for
the 1D case,

β >
µ

k
(
ch

6
− ϑk∆t

µh
) > 0 (76)

In our implementation, we employ the L
2 projec-

tion scheme and define γ as

γ = (2− 6
ϑc∆t

h2
)
�1
2
+

1

2
tanh(2− 12

ϑc∆t

h2
)
�

(77)

Notice that the term 1/2 + tanh(2 − 12ϑc∆t
h2 )/2

approaches zero if diffusivity is high and equal to
1 if diffusivity is low. This treatment is to limit
over-diffusion caused by usage of the stabilization
term as mentioned in [55].

Remark 3 It is evident that the estimation of the
stabilization parameter is based on a 1D problem,
and thus as useful as it is, cannot be relied upon
as a definitive analytical solution for the optimal
value of the stabilization parameter. Nevertheless,
in engineering practice, it may serve as an useful
guideline for typical problems. In the numerical
examples shown in Section 5, the estimated sta-
bilization parameter is able to eliminate spurious
oscillations and converges to analytical solutions
without introducing significant over-diffusion.

Remark 4 Notice that the above formulation can
be reduced to the classical 1D lumped mass case if
γ = 2 and β = h/(6ϑc∆t). The latter relation has
been pointed out in [33]. The stabilization param-
eter suggested in [55] is equivalent to γ = 2M �

/G

in our formulation. This is a more conservative
choice than the γ defined in (77) if 1/2G is larger
than 2/M �.

Remark 5 Rice’s analysis in [42] has shown that
dilatant hardening is unstable when H is negative.
This unstable response prevails in both analytical
and numerical responses, since the growth/decay
rates of the numerical and analytical solutions are
both complex valued.

Remark 6 For multi-dimensional problems, one
may use the definition in [53] to define the element
length, i.e.,

h(X) = 2(
�

a

| ∇X
p
f (X)

||∇X pf (X)|| ·∇
X

Na(X)|)−1

(78)

where h(x) is not a constant within an element,
but rather a continuous field which measures the
element length in the direction of the pore pressure
gradient. This definition, however, is not suitable
for problems where pore pressure varies within
the boundary layer but remains zero elsewhere.
For those cases, we define the element length as,

h(X) = 2(
�

a

|N ·∇X
Na(X)|)−1 (79)

where N = (1/
√
3)(e1 + e2 + e3) is a unit vector.

4 Implementation

Implementation of the poromechanics formulation
presented above is carried out within a highly
abstracted C++ framework employing template
based generic programming practices. The mo-
tivation and advantages of such an environment
are presented in this section and include access
to transformational tools, graph based assembly,
simplified analytic linearization, and a natural
treatment of strongly coupled systems. The sec-
tion summarizes the framework described in [36]
and [37].

Demands on multi-physics analyses, includ-
ing poromechanics, such as uncertainty quantifica-
tion, optimization, and sensitivity analysis, require
additional embedded computational capabilities.
These embedded tools have been implemented
using templates and operator overloading in a
series of packages within the Trilinos framework
[22]. These packages have been employed in an
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Fig. 14 Isosurface of pore pressure field of the circular
elasto-plastic footing at time = 0.005 seconds obtained
from the standard F-bar (top) and stabilized F-bar
scheme (bottom), low hydraulic conductivity case, with
k/µ = 8.333× 10−21 m2/Pa s

the stabilized F-bar and standard formulation. In
this case, we notice that the stabilization scheme
is able to eliminate the pore pressure oscillation,
as the sharp pore pressure gradient diffuses over
time. This is because the diffusion process may
smoothen the pore pressure profile over time, pro-
vided that the hydraulic conductivity tensor is
symmetric and positive definite.

Figure 16 compares the equivalent plastic strain
at time = 20000 seconds. At this instant, consider-
able plastic strain has developed inside a localized
zone. We found no discrepancy exists in the me-
chanical responses between the standard and sta-
bilized formualtion at 20000 seconds. This result
shows that the stabilization scheme does not in-

Fig. 15 Contour of pore pressure field of the circu-
lar elasto-plastic footing at time = 20000 seconds ob-
tained from the standard F-bar(top) and stabilized F-
bar scheme (bottom), low hydraulic conductivity case,
with k/µ = 8.333× 10−21 m2/Pa s

troduce any artificial behavior except filtering out
the oscillation pattern due to lack of H1 stability.

Figure 17 presents the pore pressure time his-
tories at the center (top) and tip (bottom) of the
circular footing. While the two pore pressure time
histories obtained from the stabilized and stan-
dard F-bar schemes match quite well at the center,
they differ at the tip where the oscillation takes
place as shown in Figures 14 and 15. This find-
ing is consistent with [22], in which the author
proves that the standard Galerkin method tends
to under-diffuse solutions in the presence of sharp
gradient, but may perform well in the absence of
it.

Notice that pore pressure at the tip of the
footing predicted by the standard scheme tends

Stabilized FEM for Poromechanics at Finite Strain 23
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Fig. 18 Time-histories of equivalent plastic strain and
tip of the circular footing (bottom), low hydraulic con-
ductivity case, with k/µ = 8.333 × 10−21 m2/Pa s
.

6 Conclusion

In this work, we propose the usage of an adaptively
stabilized scheme on a assumed deformation gra-
dient poromechanics formulation to deliver stable,
locking-free numerical solutions. By using equal-
order integration, we establish monolithically cou-
pled poromechanics finite element models with
less degrees of freedom, fewer integration points,
and simpler data structures, but without the ne-
cessity to design complex splitting I/O algorithms
required for sequential coupling schemes [23].

We show that the L2 projection scheme pro-
posed in [51] can be re-casted as an penalty energy
formulation in which spurious pore pressure modes
are filtered out by the penalty energy functional.
Using this as our starting point, we apply Harari’s
condition [18] to adaptively estimate the optimal
value for the stabilization parameter. Thus, no
tuning and additional input is required from the
user. By applying an assumed deformation gradi-
ent to the formulation, we improve the element
performance of the stabilized formulation when
locking may occur.

Numerical examples have demonstrated that
the formulation with stabilized scheme and as-
sumed deformation gradient is robust and leads
to high-quality, locking free solutions. In particu-
lar, the introduction of an assumed deformation
gradient does not exhibit a negative impact on
the stability of the solutions. Numerical studies

Fig. 19 Contour of pore pressure field of the circular
elasto-plastic footing at time = 20000 seconda obtained
from standard F-bar(top) and stabilized F-bar scheme
(bottom), high hydraulic conductivity case, with k/µ =
8.333× 10−11 m2/Pa s

indicate that problems with fine mesh, high diffu-
sivity and large time step, but without sharp pore
pressure gradient, tend to deliver more stable solu-
tions. Meanwhile, problems with coarse mesh, low
diffusivity and small time step, but without sharp
pore pressure gradients, tend to exhibit spurious
modes a unless stabilization scheme is used.

It is worthwhile to point out that the imple-
mentation of this formulation is significantly sim-
plified via template programming and in particu-
lar, the usage of automatic differentiation.

Since both locking and instabilities are com-
monly encountered in engineering applications for
porous media, the stable and locking-free features
demonstrated in this formulation are highly de-
sirable. Future work will include further analysis

Low diffusivity case High diffusivity case 

In low diffusivity case, 
the stabilization 

scheme is able to 
eliminate spurious 

oscillation. 

In high diffusivity case, 
the stabilization 

scheme does not 
introduce extra 

diffusivity that cause 
error.   

Without Stabilization 

With Stabilization 

From Sun, Ostien, Salinger, International Journal for Numerical and Analytical Methods in Geomechanics, 2013 
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See W.C Sun, J.E. Andrade, J.W. Rudnicki, A multiscale method for characterization of porous microstructures and their impact on macroscopic 
effective permeability, International Journal of Numerical Methods in Engineering, Vol. 88, No.12, 1260-1279, 2011. 
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Internal Variable Recovery via Lie Algebra 

Balance of Linear Momentum 

Variational Continuum Projection Operator 

2.Application of Lie Algebra to interpolate 
internal variables within admissible space  

1. Application of Lie Algebra to interpolate 
internal variables within admissible space  

Logarithmic Mapping of 
Internal Variables  

Polynomial Interpolation 

Exponential Mapping of 
Transformed Internal 
Variables 

(a)Error of rotation is negligible if   
logarithmic mapping has been applied 

(b)Error of rotation without logarithmic 
mapping is generated when remeshing 

(a) Plastic split of deformation gradient 
remains isochoric when logarithmic 
mapping is applied for J2 plasticity 
model. 

(b) Spurious plastic dilation/contraction 
generated due to improper linear 
mapping. 
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Blue = mechanical 
Red = pore-fluid diffusion 
Purple = coupled terms 
Green = General FEM 

•  Gather coordinates, displacement and pore-pressure fields 
•  Interpolate fields and gradients to integration points 
•  Chain together Evaluators to compute momentum and mass Residuals of the solid and pore-fluid constituents 
•  Apply LBB stabilizer 
•  Scatter back to the global system of equations 



Hydrogen	
  Transport	
  



Stabilized hydrogen diffusion-deformation K-field problem 
for low diffusive materials   

Balance of Linear Momentum 

Hydrogen Transport Theorem 

Concentration Sensitive Yield Function 

W.C. Sun and J.E. Andrade

The matrix form reads,
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Ω
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5 Hydrogen transport

The balance of linear momentum reads

∇X ·P (F , z, CT ) = 0 (5.1)

f(τ , z, CT ) = ||dev[τ ]−
�

2

3
[σY (CT ) +Kα ≤ 0 (5.2)

5.1 Type II zero-energy mode

5.2 Capturing diffuse instability in finite element simulation

5.3 Diffuse Bifurcation under Extreme Drainage Condition

5.3.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

5.4 Numerical Example: Surface Rumpling of Slope

Remark 1. Due to the finite precision of arithmetic operation in computer, the set of eigen-

values computed are never exactly zero. Thus, theoretical specking, computer simulation

involving material approaching diffuse bifurcation should still be able to converge to unique

solution. The finite precision of arithmetic operation also introduces similar impact on the

fluttering mode, as it ceases the possibility for exact pair of complex conjugate eigenvalues in

computer unless symbolic operation is carried out.

6 Discussion

TO BE CONTINUNE ...

6.1 Pointwise vs. Global Instabilities

6.1.1 Instability related to Numerical deficits

7 Conclusion

We have presented conditions that lead to material instabilities of porous media under

drained and undrained conditions. We have also highlighted how these conditions could be used
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5 Deformation Mapping

x = ϕ(Xs, t) (5.1)
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D∗ĊL −∇X ·DL∇X CL +∇X · VH

RT
CLDL∇X SH + θT

dNT

d�p
�̇p = 0 (6.3)

�

B
Na(σh −Nbσb) dV = 0 (6.4)

W (cL) =
1

2

�

K∈B
hK

�

K

∇X cL · βK ·∇X cLdV (6.5)

12



Implicit	
  Time	
  Integra(on	
  of	
  Fully	
  Coupled	
  Scheme	
  

Backward Euler Scheme 

Solid deformation  

Deformation 
induced flow 

Hydrogen transport 
induced deformation 

constraint 

Transient 
advection-

diffusion hydrogen 
transport 

Physical interpretation of the matrix form 

W.C. Sun and J.E. Andrade

The matrix form reads,

�
0 0

Bpu Ktran
pp

� �
u̇
ṗ
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4.4 Numerical Example: Surface Rumpling of Slope

Remark 1. Due to the finite precision of arithmetic operation in computer, the set of eigen-

values computed are never exactly zero. Thus, theoretical specking, computer simulation

involving material approaching diffuse bifurcation should still be able to converge to unique

solution. The finite precision of arithmetic operation also introduces similar impact on the

fluttering mode, as it ceases the possibility for exact pair of complex conjugate eigenvalues in

computer unless symbolic operation is carried out.

5 Discussion

TO BE CONTINUNE ...

5.1 Pointwise vs. Global Instabilities

5.1.1 Instability related to Numerical deficits

6 Conclusion

We have presented conditions that lead to material instabilities of porous media under

drained and undrained conditions. We have also highlighted how these conditions could be used

in a finite element simulations and distinguished material driven instabilities from numerical

instabilities caused by improper use of basis functions. A technique is proposed to measure

the material sustainability.
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Challenges	
  on	
  Implementa(on	
  of	
  Hydrogen	
  
Transport	
  Problem	
  

1.  Numerical	
  instability	
  may	
  occur	
  if	
  (1)	
  (me	
  step	
  is	
  too	
  small	
  and/or	
  (2)	
  
diffusivity	
  is	
  too	
  small	
  (i.e.	
  stainless	
  steel)	
  (Harari,	
  2004)	
  and	
  (3)	
  boundary	
  
layer	
  due	
  to	
  the	
  advec(on	
  term	
  is	
  thinner	
  than	
  the	
  side	
  length	
  of	
  the	
  
finite	
  element	
  (Belytschko,	
  Liu,	
  Moran,	
  2012).	
  	
  

2.  Hydrogen	
  transport	
  problem	
  is	
  highly	
  nonlinear,	
  thus	
  require	
  a	
  	
  
consistent	
  lineariza(on	
  to	
  implicitly	
  solve	
  for	
  solu(ons	
  (i.e.,	
  NUMEROUS	
  
manual,	
  mechanical	
  deriva(ons	
  EACH	
  (me	
  the	
  problem	
  is	
  amended).	
  

	
  
3.  Volmetric	
  Locking,	
  which	
  may	
  occur	
  under	
  perfectly	
  plas(c	
  response	
  /	
  

isochoric	
  deforma(on..etc.	
  	
  



Example	
   Moving to 21-6-9 

 WB = 9.65E3 J/mol 

 DL = 2.2E-16 m2/s 

  VM = 7.116E-6 m3/mol 

 VH = 2.0E-6 m3/mol 

T = 300 K 
 

R  = 8.314 J/(mol K) 
 Q = 53.9E3 J/mol 
 D0 = 5.4E-7 m2/s 

 KT = 47.9  

Somerday et al, Met Trans, 2009 Say we want to find the 
linearized D* (i.e., the first 
order 
term in the Taylor expansion).  
D* depends on the trapped 
solvent, temperature, lattice 
concentration—but trapped 
solvent also depends on 
equivalent plastic strain and 
hence, displacement, yield 
stress…etc.  
 
How do we derive consistent 
linearization with respect to all 
the dependent variables ?  
 
Notice that we need to restart 
the entire process if we make 
any changes…. 
 
 

Moving to 21-6-9 

 WB = 9.65E3 J/mol 

 DL = 2.2E-16 m2/s 

  VM = 7.116E-6 m3/mol 

 VH = 2.0E-6 m3/mol 

T = 300 K 
 

R  = 8.314 J/(mol K) 
 Q = 53.9E3 J/mol 
 D0 = 5.4E-7 m2/s 

 KT = 47.9  

Somerday et al, Met Trans, 2009 



Implementa(on	
  of	
  Hydrogen	
  Diffusion-­‐Mechanics	
  Problem	
  
with	
  automa(c	
  differen(a(on	
  

•  Gather coordinates, displacement and lattice 
concentration fields 

•  Interpolate fields and gradients to integration points 
•  Chain together Evaluators to compute Momentum 

and Conservation of Hydrogen Residuals 
•  Scatter back to the global system of equations 

Blue = Hydrogen Transport 
Red = Solid Mechanics (J2 Plasticity) 
Purple = coupled terms 



Combined	
  F-­‐bar	
  formula(on	
  

8 WaiChing Sun et al.
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3.3 Enhanced Deformation Gradient for

Volumetric Locking

In this section, we derive an assumed deformation

gradient definition for the case when the solid

skeleton matrix becomes incompressible. A simple

stabilization mechanism is provided.

The assumed deformation gradient method is

often used to avoid over-constraining associated

with equal-order interpolations of the volumetric

and isochoric parts of the deformation gradient

[14; 28; 47; 52]. The key to avoid this problem is to

replace the interpolated volumetric deformation

field J = detF with a reduced order volumetric

field J such that fewer volumetric constraints oc-

cur when incompressibility limit is approached.

The resultant assumed deformation gradient is

therefore composed of the modified volumetric

deformation field and the original interpolated

isochoric deformation gradient.

Recall that the kinematic split of the deforma-

tion gradient F is formulated as,

F = F vol · F iso (49)

where

F vol = J
1/3I ; F iso = J

−1/3F (50)

An assumed strain formulation replaces the in-

terpolated volumetric split F vol = J
1/3I with an

modified definition F vol = J̄
1/3I such that

F = J̄
1/3F iso = J̄

1/3
J
−1/3F (51)

However, the usage of assumed deformation gra-

dient may lead to numerical instabilities when

the stiffness from the assumed deformation gra-

dient is too low. As a result, Moran et al. (1990)

[28] suggested replacing the assumed deformation

gradient F of a linear interpolation between the

original and the assumed deformation gradient,

i.e.,

�F = αF − (1− α)F . (52)

where α is a stabilization parameter in which α =
0 leads to the pure F-bar formulation and α = 1
leads to the standard formulation. The idea is

to stiffen the element by increasing α whenever

numerical instability is encountered. Recent work

by Mota et al. (2012), however, has demonstrated

that linear interpolation may lead to significant

error, since the addition operation is not valid for

the multiplicative group of which the deformation

gradient belongs.

In order to provide the essential volumetric

relaxation while maintaining stability, we intro-

duce a simple combined/standard F-bar element

by recourse to exponential/logarithmic mapping,

�F = �J1/3
J
−1/3F (53)

where

�J(X) = exp
�1− α

VBe

�

Be

log J(X) dV+α log J(X)
�

(54)

where α ∈ [0, 1]. The combined formulation may

reduce to fully standard or F-bar formulation by

adjusting α as in [28]. Furthermore, it can be

easily shown that (53) is identical to the mid-point

assumed deformation gradient formulation in [14]

if α = 0 and the volume averaging of log J(X) is

computed via one-point quadrature at the centroid

of the element.

Notice that this formulation does not require

modification other than consistently replacing the

conventional interpolated deformation gradient

with the modified counterpart in (53).

Remark 2 The method to select α is at present

unclear. While assumed deformation gradient may

lead to spurious mode for certain single-phase solid

mechanics problem as demonstrated in [9], non-

zero α is not required in the solutions presented

in the example section.
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Ĥ (un+1, p
f
n+1,η)

=

�

B

ψ
Bn+1 −Bn

∆t
(log Jn+1 +

p
f
n+1

Ks
) dV

+

�

B

ψBn+1
log Jn+1 − log Jn

∆t
dV

+

�

B

ψ
1

Mn+1

p
f
n+1 − p

f
n

∆t
dV

−
�

B

∇X
ψ ·Qn+1 dV

−
�

∂BQ

ψQn+1 dΓ (48)

3.3 Enhanced Deformation Gradient for

Volumetric Locking
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skeleton matrix becomes incompressible. A simple

stabilization mechanism is provided.

The assumed deformation gradient method is

often used to avoid over-constraining associated

with equal-order interpolations of the volumetric

and isochoric parts of the deformation gradient

[14; 28; 47; 52]. The key to avoid this problem is to

replace the interpolated volumetric deformation

field J = detF with a reduced order volumetric

field J such that fewer volumetric constraints oc-

cur when incompressibility limit is approached.

The resultant assumed deformation gradient is

therefore composed of the modified volumetric

deformation field and the original interpolated

isochoric deformation gradient.

Recall that the kinematic split of the deforma-

tion gradient F is formulated as,

F = F vol · F iso (49)

where

F vol = J
1/3I ; F iso = J

−1/3F (50)

An assumed strain formulation replaces the in-
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1/3I with an

modified definition F vol = J̄
1/3I such that
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dient may lead to numerical instabilities when

the stiffness from the assumed deformation gra-

dient is too low. As a result, Moran et al. (1990)

[28] suggested replacing the assumed deformation

gradient F of a linear interpolation between the

original and the assumed deformation gradient,

i.e.,

�F = αF − (1− α)F . (52)

where α is a stabilization parameter in which α =
0 leads to the pure F-bar formulation and α = 1
leads to the standard formulation. The idea is

to stiffen the element by increasing α whenever

numerical instability is encountered. Recent work

by Mota et al. (2012), however, has demonstrated

that linear interpolation may lead to significant

error, since the addition operation is not valid for

the multiplicative group of which the deformation

gradient belongs.

In order to provide the essential volumetric

relaxation while maintaining stability, we intro-

duce a simple combined/standard F-bar element

by recourse to exponential/logarithmic mapping,
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J
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where
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where α ∈ [0, 1]. The combined formulation may

reduce to fully standard or F-bar formulation by

adjusting α as in [28]. Furthermore, it can be

easily shown that (53) is identical to the mid-point

assumed deformation gradient formulation in [14]

if α = 0 and the volume averaging of log J(X) is

computed via one-point quadrature at the centroid

of the element.

Notice that this formulation does not require

modification other than consistently replacing the

conventional interpolated deformation gradient

with the modified counterpart in (53).

Remark 2 The method to select α is at present

unclear. While assumed deformation gradient may

lead to spurious mode for certain single-phase solid

mechanics problem as demonstrated in [9], non-

zero α is not required in the solutions presented

in the example section.

Isochoric-volumetric split 
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Volumetric Locking

In this section, we derive an assumed deformation

gradient definition for the case when the solid

skeleton matrix becomes incompressible. A simple

stabilization mechanism is provided.

The assumed deformation gradient method is

often used to avoid over-constraining associated

with equal-order interpolations of the volumetric

and isochoric parts of the deformation gradient

[14; 28; 47; 52]. The key to avoid this problem is to

replace the interpolated volumetric deformation

field J = detF with a reduced order volumetric

field J such that fewer volumetric constraints oc-

cur when incompressibility limit is approached.

The resultant assumed deformation gradient is

therefore composed of the modified volumetric

deformation field and the original interpolated

isochoric deformation gradient.

Recall that the kinematic split of the deforma-

tion gradient F is formulated as,

F = F vol · F iso (49)

where

F vol = J
1/3I ; F iso = J

−1/3F (50)

An assumed strain formulation replaces the in-

terpolated volumetric split F vol = J
1/3I with an

modified definition F vol = J̄
1/3I such that

F = J̄
1/3F iso = J̄

1/3
J
−1/3F (51)

However, the usage of assumed deformation gra-

dient may lead to numerical instabilities when

the stiffness from the assumed deformation gra-

dient is too low. As a result, Moran et al. (1990)

[28] suggested replacing the assumed deformation

gradient F of a linear interpolation between the

original and the assumed deformation gradient,

i.e.,

�F = αF − (1− α)F . (52)

where α is a stabilization parameter in which α =
0 leads to the pure F-bar formulation and α = 1
leads to the standard formulation. The idea is

to stiffen the element by increasing α whenever

numerical instability is encountered. Recent work

by Mota et al. (2012), however, has demonstrated

that linear interpolation may lead to significant

error, since the addition operation is not valid for

the multiplicative group of which the deformation

gradient belongs.

In order to provide the essential volumetric

relaxation while maintaining stability, we intro-

duce a simple combined/standard F-bar element

by recourse to exponential/logarithmic mapping,

�F = �J1/3
J
−1/3F (53)

where

�J(X) = exp
�1− α

VBe
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where α ∈ [0, 1]. The combined formulation may

reduce to fully standard or F-bar formulation by

adjusting α as in [28]. Furthermore, it can be

easily shown that (53) is identical to the mid-point

assumed deformation gradient formulation in [14]

if α = 0 and the volume averaging of log J(X) is

computed via one-point quadrature at the centroid

of the element.

Notice that this formulation does not require

modification other than consistently replacing the

conventional interpolated deformation gradient

with the modified counterpart in (53).

Remark 2 The method to select α is at present

unclear. While assumed deformation gradient may

lead to spurious mode for certain single-phase solid

mechanics problem as demonstrated in [9], non-

zero α is not required in the solutions presented

in the example section.

Replacing volumetric split with 
assumed term 

Classical Combined F-bar approach 
W.C. Sun
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Kuu BucL
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F ext
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F ext
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(6.7)

J = JeJpJC ; JC = 1 + λ(C − Co) (6.8)

7 Automatic Differentiation Tool
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(7.1)
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stability criteria

h2D∗

6γDL∆t
< 1 (7.5)

Pe =
VH

RT
|∇X SH |h < 1 (7.6)

7.1 Type II zero-energy mode

7.2 Capturing diffuse instability in finite element simulation

7.3 Diffuse Bifurcation under Extreme Drainage Condition

7.3.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

7.4 Numerical Example: Surface Rumpling of Slope

Remark 1. Due to the finite precision of arithmetic operation in computer, the set of eigen-

values computed are never exactly zero. Thus, theoretical specking, computer simulation

involving material approaching diffuse bifurcation should still be able to converge to unique

solution. The finite precision of arithmetic operation also introduces similar impact on the

fluttering mode, as it ceases the possibility for exact pair of complex conjugate eigenvalues in

computer unless symbolic operation is carried out.

8 Discussion

TO BE CONTINUNE ...
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3.3 Enhanced Deformation Gradient for

Volumetric Locking

In this section, we derive an assumed deformation

gradient definition for the case when the solid

skeleton matrix becomes incompressible. A simple

stabilization mechanism is provided.

The assumed deformation gradient method is

often used to avoid over-constraining associated

with equal-order interpolations of the volumetric

and isochoric parts of the deformation gradient

[14; 28; 47; 52]. The key to avoid this problem is to

replace the interpolated volumetric deformation

field J = detF with a reduced order volumetric

field J such that fewer volumetric constraints oc-

cur when incompressibility limit is approached.

The resultant assumed deformation gradient is

therefore composed of the modified volumetric

deformation field and the original interpolated

isochoric deformation gradient.

Recall that the kinematic split of the deforma-

tion gradient F is formulated as,

F = F vol · F iso (49)

where

F vol = J
1/3I ; F iso = J

−1/3F (50)

An assumed strain formulation replaces the in-

terpolated volumetric split F vol = J
1/3I with an

modified definition F vol = J̄
1/3I such that

F = J̄
1/3F iso = J̄

1/3
J
−1/3F (51)

However, the usage of assumed deformation gra-

dient may lead to numerical instabilities when

the stiffness from the assumed deformation gra-

dient is too low. As a result, Moran et al. (1990)

[28] suggested replacing the assumed deformation

gradient F of a linear interpolation between the

original and the assumed deformation gradient,

i.e.,

�F = αF − (1− α)F . (52)

where α is a stabilization parameter in which α =
0 leads to the pure F-bar formulation and α = 1
leads to the standard formulation. The idea is

to stiffen the element by increasing α whenever

numerical instability is encountered. Recent work

by Mota et al. (2012), however, has demonstrated

that linear interpolation may lead to significant

error, since the addition operation is not valid for

the multiplicative group of which the deformation

gradient belongs.

In order to provide the essential volumetric

relaxation while maintaining stability, we intro-

duce a simple combined/standard F-bar element

by recourse to exponential/logarithmic mapping,

�F = �J1/3
J
−1/3F (53)

where

�J(X) = exp
�1− α

VBe
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Be

log J(X) dV+α log J(X)
�
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where α ∈ [0, 1]. The combined formulation may

reduce to fully standard or F-bar formulation by

adjusting α as in [28]. Furthermore, it can be

easily shown that (53) is identical to the mid-point

assumed deformation gradient formulation in [14]

if α = 0 and the volume averaging of log J(X) is

computed via one-point quadrature at the centroid

of the element.

Notice that this formulation does not require

modification other than consistently replacing the

conventional interpolated deformation gradient

with the modified counterpart in (53).

Remark 2 The method to select α is at present

unclear. While assumed deformation gradient may

lead to spurious mode for certain single-phase solid

mechanics problem as demonstrated in [9], non-

zero α is not required in the solutions presented

in the example section.

Current Approach via Lie algebra  
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The matrix form reads,
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Stabilization term

Rstab =

�

Ω
[τ(ηh − 1

VΩ

�

Ω
ηhdΩ)(ph − 1

VΩ

�

Ω
phdΩ)] dΩ (4.10)

5 Hydrogen transport

The balance of linear momentum reads

∇X ·P (F , z, CT ) = 0 (5.1)

f(τ , z, CT ) = ||dev[τ ]||−
�

2

3
[σY (CT ) +Kα ≤ 0 (5.2)

The transport equation reads

D∗ĊL −∇X ·DL∇X CL +∇X · VH

RT
CLDL∇X SH + θT

dNT

d�p
�̇p = 0 (5.3)

5.1 Type II zero-energy mode

5.2 Capturing diffuse instability in finite element simulation

5.3 Diffuse Bifurcation under Extreme Drainage Condition

5.3.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

5.4 Numerical Example: Surface Rumpling of Slope

Remark 1. Due to the finite precision of arithmetic operation in computer, the set of eigen-

values computed are never exactly zero. Thus, theoretical specking, computer simulation

involving material approaching diffuse bifurcation should still be able to converge to unique

solution. The finite precision of arithmetic operation also introduces similar impact on the

fluttering mode, as it ceases the possibility for exact pair of complex conjugate eigenvalues in

computer unless symbolic operation is carried out.

6 Discussion

TO BE CONTINUNE ...
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Plastic strain nonlinear 
coupling  

term 

Hydrogen diffusion  
term 

Advection coupling   
term 

 transient  
term 

Hydrogen Transport Theorem 

•  Spurious oscillations may occur when 
•   D* is large, which means local rate of change dominates 
•  The mesh size h is large (relative to the advection and diffusion length scale) 
•   The time step is small (relative to the advection and diffusion time scale). 
•  Notice that Peclet number measures whether advection of diffusion is more important, but does not 

tell much about the transient term!  
 

•  Examples of stabilization scheme 

•  Petrov-Galerkin/streamline upwind method (Hughes, 1978, Johnson, 1984) 
•  Space-time finite incremental calculus method (Onate and Manzan 2000) 
•  SUPG with adaptive stabilization parameters (Tezduyar 2003)  
•  Spurious oscillations at layers diminishing method (Volker and Schmeyer, 2008). 
•  Artificial diffusivity (Onate and Manzan, 2000).   

 
  



Stabiliza(on	
  for	
  hydrogen	
  convec(on-­‐diffusion	
  problem	
  

•  add stabilization term to penalize the deficiency  

No stabilization  

With stabilization  

92	
  9/6/13	
  

Stable result 

Standard Implicit Galerkin Formulation  

Spurious oscillated result 

Stabilized Implicit Gakerlin Formulation 

•  For transient problem, stability criteria must be satisfied for the 
pair of time step and element size h used in simulations. γ is the 
parameter for backward Euler time integrator (Harari, 2004).   

 

•  Meanwhile, stability of the steady solution can be predicted by the 
Peclet number. If Pe is less than 1 and D*/DL is reasonably close 
to h^2/dt 
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7.1 Type II zero-energy mode

7.2 Capturing diffuse instability in finite element simulation

7.3 Diffuse Bifurcation under Extreme Drainage Condition

7.3.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

7.4 Numerical Example: Surface Rumpling of Slope

Remark 1. Due to the finite precision of arithmetic operation in computer, the set of eigen-

values computed are never exactly zero. Thus, theoretical specking, computer simulation

involving material approaching diffuse bifurcation should still be able to converge to unique

solution. The finite precision of arithmetic operation also introduces similar impact on the

fluttering mode, as it ceases the possibility for exact pair of complex conjugate eigenvalues in

computer unless symbolic operation is carried out.

8 Discussion

TO BE CONTINUNE ...

8.1 Pointwise vs. Global Instabilities

8.1.1 Instability related to Numerical deficits

9 Conclusion

We have presented conditions that lead to material instabilities of porous media under

drained and undrained conditions. We have also highlighted how these conditions could be used

in a finite element simulations and distinguished material driven instabilities from numerical
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7.2 Capturing diffuse instability in finite element simulation

7.3 Diffuse Bifurcation under Extreme Drainage Condition
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Stabilization term

Rstab =
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L dΩ (4.12)

5 Deformation Mapping

x = ϕ(Xs, t) (5.1)

Xs = ϕ−1(x, t) (5.2)

x = ϕf (Xf , t) (5.3)

y = ϕf (Y f , t) (5.4)

6 Hydrogen transport

The balance of linear momentum reads

∇X ·P (F , z, CT ) = 0 (6.1)

f(τ , z, CT ) = ||dev[τ ]||−
�

2

3
[σY (CT ) +Kα ≤ 0 (6.2)

The transport equation reads

D∗ĊL −∇X ·DL∇X CL +∇X · VH

RT
CLDL∇X SH + θT

dNT

d�p
�̇p = 0 (6.3)

�

B
Na(σh −Nbσb) dV = 0 (6.4)
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Conclusion	
  and	
  Future	
  Perspec(ve	
  
§  We	
  have	
  implemented	
  a	
  fully	
  implicit	
  hydrogen	
  transport	
  model	
  in	
  the	
  

Laboratory	
  of	
  Computa(onal	
  Mechanics	
  package	
  with	
  the	
  following	
  
desirable	
  features	
  
§  Capacity	
  to	
  conduct	
  fully	
  coupled,	
  fully	
  implicit	
  simula(ons	
  with	
  

stabiliza(on	
  scheme.	
  	
  	
  
§  Automa(c	
  differen(a(on,	
  which	
  makes	
  it	
  fast	
  and	
  easy	
  to	
  make	
  

amendment	
  to	
  exis(ng	
  model	
  and	
  eliminate	
  chance	
  of	
  making	
  error	
  
in	
  deriva(on	
  

§  Stabiliza(on	
  scheme	
  available	
  to	
  handle	
  material	
  with	
  extremely	
  low	
  
diffusivity,	
  thin	
  boundary	
  layer…etc.	
  

§  A	
  L2	
  projec(on	
  scheme	
  to	
  obtain	
  a	
  C0-­‐con(nuous	
  stress	
  gradient	
  
term	
  that	
  enables	
  the	
  advec(on	
  term	
  to	
  be	
  correctly	
  modeled	
  
without	
  introducing	
  errors	
  during	
  the	
  extrapola(on	
  process.	
  	
  

§  Localiza(on	
  element	
  is	
  currently	
  developing	
  for	
  modeling	
  boundary/
laVce	
  diffusion	
  and	
  fracture.	
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