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What is QMU and Why Do We Do It


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The Role of QMU

 QMU is a conceptual framework that has evolved over time 
that outlines a process for communicating the confidence
in our components and systems.
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Key Elements of QMU

1. Specification of Performance Thresholds

 Performance is the ability of a system or a component to provide the proper function (e.g., 
timing, output, response) when exposed to the sequence of design environments and 
inputs. 

2. Identification of associated Performance Margins

 A performance margin is the difference between the required performance of a system and 
the demonstrated performance of a system, with a positive margin indicating that the 
expected performance exceeds the required performance. 

3. Quantification of Uncertainty in the performance thresholds and the 
performance margins as well as in the larger framework of the decisions being 
contemplated 

 There are two general types of uncertainty that must be separately accounted for, 
quantified, and aggregated within QMU:

1. Aleatory uncertainty – also called irreducible uncertainty or stochastic variability. Aleatory uncertainty 
(or variability) is naturally characterized, quantified, and communicated in terms of probability.  
Common examples are variability in manufacturing processes, material composition, test conditions, 
and environmental factors, which lead to variability in component or system performance.

2. Epistemic uncertainty – also called reducible uncertainty.  This type of uncertainty is due to lack of 
knowledge or incomplete knowledge.  Common examples of epistemic uncertainty are the so-called 
model form uncertainty (that is, uncertainty in how well the equations in the model capture the 
physical phenomena of interest), both known and unknown unknowns in scenarios, and poor-quality 
physical test data.  
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Conceptual Framework
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Conceptual Framework
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Statistical Framework for QMU Questions


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Background Definitions



J. Newcomer,  A Tolerance Interval Approach to QMU



10

Outer Probability Characterizes Epistemic Uncertainty

Background Definitions


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Inner Probability Characterizes Aleatory Uncertainty
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Physical Simulation QMU Metrics


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Tolerance Bound Methodology – Normal Data
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Non-Normal Data


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Tolerance Bound Methodology – Non-Normal Data
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QMU with a Trending Performance Characteristic


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Linear Regression with a Tolerance Bound
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Exploration of the Tolerance Ratio
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Exploration of the Tolerance Ratio

 Using these relationships, we can explore how to increase the tolerance 
ratio.  The list shown here discusses possible practical ways to increase 
the tolerance ratio by improving either the component’s performance 
or the amount of information obtained on the component.

 Increase margin – Improvements in the component performance (possibly 
through design improvement) that shift the mean of the distribution of the 
performance characteristic away from the performance requirement will 
result in a larger tolerance ratio, provided the unit-to-unit variability does not 
change significantly.

 Decrease uncertainty – Reducing the unit-to-unit variability of the component 
performance distribution (possibly through improvement or implementation 
of manufacturing process controls) will result in a larger tolerance ratio, 
provided these changes do not shift the mean of the distribution 
significantly.

 Increase precision – Increasing the data acquired on a performance 
requirement (possibly through increased testing) will result in a larger 
tolerance ratio, provided the additional data does not significantly change 
the estimated mean or standard deviation.
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Tolerance Bound Advantages


19
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The Future of QMU at Sandia (In My Opinion)

 More rigorous engineering analyses and data reviews to better understand what is 
being tested, what it means, and what the limitations of the available data are.

 Are there gaps in the current test programs?
 Are we measuring what’s important? 

 QMU analyses at the subsystem level that look at interactions between 
components and performance characteristics.

 How do we “roll up” analyses on several characteristics?
 Does the current testing exercise potential failure mechanisms at the interfaces between 

components?

 Margin testing and analyses to better understand the thresholds for critical 
performance characteristics.

 If an analysis indicates low margin relative to a requirement, what does that mean?  
 Do we feel the system will fail if a unit performs outside of its requirements?
 Do we understand the point at which it will begin to fail?

 More consistent use of methodologies for both physical simulation and 
computational simulation QMU analyses.

 Our ability to communicate the results of QMU analyses should be independent of the types 
of methodologies used!
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Normal Data Analysis
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Non-Normal Data: Transformation Approach
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Non-Normal Data: Direct Parametric Approach
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Regression with a Tolerance Bound
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Regression with a Tolerance Bound
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