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What is QMU and Why Do We Do It ) i,

B Quantification of Margins and Uncertainties (QMU) is a framework with
applications that include the following:

= As a measure of vulnerability to change: By knowing the present margin (M)
and uncertainty (U), one has a sense of how vulnerable a particular parameter
may be to small changes. A parameter with a large margin relative to its
uncertainty can tolerate more change before jeopardizing performance
compared to a parameter with a small margin relative to its uncertainty.

= As a means of detecting a trend: A trend analysis on the actual measurements is
useful, but perhaps even more meaningful is identification of a trend or change
in the amount of margin over time.

= As a means of determining a performance impact: If a credible estimate can be
made of a parameter’s distribution through QMU and there is a credible
understanding of the pass/fail limit relative to meeting performance
requirements, then an estimate can be made of the proportion of units that
would fail to achieve their required output.
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The Role of QMU ) i,
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= QMU is a conceptual framework that has evolved over time
that outlines a process for communicating the confidence

in our components and systems.
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Key Elements of QMU ) i,

1. Specification of Performance Thresholds

= Performance is the ability of a system or a component to provide the proper function (e.g.,
timing, output, response) when exposed to the sequence of design environments and
inputs.

2. ldentification of associated Performance Margins

= A performance margin is the difference between the required performance of a system and
the demonstrated performance of a system, with a positive margin indicating that the
expected performance exceeds the required performance.

3. Quantification of Uncertainty in the performance thresholds and the
performance margins as well as in the larger framework of the decisions being
contemplated

= There are two general types of uncertainty that must be separately accounted for,
quantified, and aggregated within QMU:

1. Aleatory uncertainty — also called irreducible uncertainty or stochastic variability. Aleatory uncertainty
(or variability) is naturally characterized, quantified, and communicated in terms of probability.
Common examples are variability in manufacturing processes, material composition, test conditions,
and environmental factors, which lead to variability in component or system performance.

2. Epistemic uncertainty — also called reducible uncertainty. This type of uncertainty is due to lack of
knowledge or incomplete knowledge. Common examples of epistemic uncertainty are the so-called
model form uncertainty (that is, uncertainty in how well the equations in the model capture the
physical phenomena of interest), both known and unknown unknowns in scenarios, and poor-quality
physical test data.
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Conceptual Framework ) i,
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Conceptual Framework rh) i,
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Statistical Framework for QMU Questions ="

= QMU attempts to answer the following types of questions:

* Are we YY% certain that at-least XX% of the unit population will yield a response greater
than the threshold T?

* Are we YY% certain that at-least XX% of the unit population will yield a response greater
than the threshold T after Z years of life?

» At which age will we no longer be YY% certain that at-least XX% of the unit population
will yield a response greater than the threshold T?

= Thevaluesof XX, YY, Z, and T and the comparisons ‘at-least’ versus ‘at-most’
and ‘greater than’ versus ‘less than’ are all parameters of the requirement.
=  Examples:

" Are we 95% certain that at least 99.5% of the unit population will yield a response greater
than the lower performance requirement of 10?

" Are we 95% certain that at least 99.5% of the unit population will yield a response less
than the upper performance requirement of 20?

* At which age will we no longer be 99% certain that 99.99% of the unit population will yield
a response greater than the lower performance requirement of 10?

" Are we 90% certain that 99% of the unit population will yield a response less than the
upper performance requirement of 20 after 35 years of life?
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Background Definitions ) i,

Percentile: A percentile of a distribution is the value of a variable (here the
performance characteristic) below which a certain percent of the values for
that variable will fall.
= We denote a percentile by Q,.,, where r represents the probability that a performance
characteristic value will fall below @Q,..

= Prob(PC<Q,) =r.

= Maximum Allowable Probability of Failure, P,..,: Acceptable probability of
failure to meet performance requirements (margin failures).

= Content,p: The content of a distributionis the proportion of units that are
expected to be within the performance requirements (proportion greater
than a lower requirement or proportion less than an upper requirement)

" p=1—-PFy

= Required Performance: The (1 — p) - 100" percentile of the performance
characteristic distribution, Q;_,, for a lower requirement or the p - 100

percentile, @, for an upper requirement.
= For alower requirement, Prob(PC < Ql_p) =1—-—p=PFey
= For an upper requirement, Prob(PC > Qp) =1-— Prob(PC < Qp) =1—p =Py
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Background Definitions ) i,

Observed Performance: The estimate of the chosen percentile and denote this by either
Q1 _p Or Qp for a lower or upper percentile respectively

= Statistical Tolerance Bound: A one-sided y - 100% statistical confidence bound on an
estimated percentile.

= For a lower percentile a lower confidence bound is computed, denoted by él_m,
= For an upper percentile an upper confidence bound is computed, denoted by @p’y

= Accounts for the sampling uncertainty in the estimate. Formally,

= |Prob[Prob(PC < Q,_,,)<1-p)=y

Inner Probability Characterizes Aleatory Uncertainty

« |Prob{Prob(PC < Q,,) =p) =y

= f Q1 _py > LPR then we are able to claim that p - 100% of the performance characteristic
values will be greater than the lower performance requirement with y - 100% confidence.

= Asimilar statement could be made for an upper requirement however we would require Qm’ < UPR.

= Therefore, the tolerance bound incorporates information about margin and uncertainty and
can be compared directly to the performance requirement to draw conclusions.

= This is appealing because all decisions remain on the engineering unit scale, which provides an easily
interpreted result.
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Physical Simulation QMU Metrics ) i,

g Margin (IW) The difference between the observed performance (estimated percentile) and
the performance requirement.

M= @1_p — LPR, for a lower requirement
= M=UPR- @p, for an upper requirement

* Note that in some applications the appropriate metric could be defined as the median (5, or mean. In
such cases, the definition of margin would still hold as defined here.

= Uncertainty (ﬁ): The width of the confidence bound on the percentile (absolute difference
between the estimated percentile and its confidence bound).

* U=0Q1-p — Q1_p, foralowerrequirement
= U=10Q,, — @, foran upper requirement

* Tolerance Ratio (TR): QMU Figure of Merit for Physical Simulation Data. Defined as the
ratio of margin divided by uncertainty based on the tolerance bound methodology.

3,_—LPR UPR-0
= GoptPR L TR = PR

= TR = -,
Qpy=Cp

ST

Q1 p=Q1-py

= To make decisions based on this margin divided by uncertainty figure-of-merit, we have, if
Qi-py > LPR then Q1_, — Q1_p, < Q1-p — LPR indicates we are meeting the
requirement and hence

Q1_,—-LPR ) ) ) .. .
TR = @Ql r 3 > 1 is a single consistent decision rule that can be applied!
1-p~¥1-py

I ———————
J. Newcomer, A Tolerance Interval Approach to QMU




Tolerance Bound Methodology — Normal Data (),
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Non-Normal Data rh) pns

= When the assumption of Normality is violated, there are two
common approaches to analyzing the data:

Transformation Approach

= Recommendedwhen there is a one-to-one transformation available to
transform the data to Normality (at least approximately).

= Log transformation (Lognormal), Square root transformation, etc.

* The Gamma distribution has an approximate transformation to Normality

- XY3~Normal

Direct Parametric Approach

= Recommendedwhen no one-to-one transformation is available but
there is a standard statistical distribution available that fits the data
reasonably well.

= Weibull, Exponential, Extreme-value, etc.
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Tolerance Bound Methodology — Non-Normal Data () s,
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QMU with a Trending Performance Characteristic (i) &
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B When an age trend is present in the data, the goal of the analysis tends
to attempt to answer one of the following questions,

= Are we YY% certain that at-least XX % of the unit population will yield a
response greater than the threshold T after Z years of life?

= At which age will we no longer be YY% certain that at-least XX% of the unit
population will yield a response greater than the threshold T?

= Alarm Age: The component age at which we estimate certain
percentage of the population is no longer contained by the
performance requirement, with a given level of confidence.

= 'I;heﬁlarmAge is estimated as the component age, A, that satisfies,
M(A)=U(A)andTR =1

= For ages less than A we can claim that we are ¥ - 100% certain that at least
p + 100% of the units will meet the performance requirement.

= For ages greater than A, we can no longer make this statement.
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Linear Regression with a Tolerance Bound rh)
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Exploration of the Tolerance Ratio ) e
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= The tolerance ratio is a function of the content p and the confidence level y, however these

parameters are specific to the performance characteristic and the requirements, and for any
given analysis these will be fixed.

=  With these considered constant, the tolerance ratio, in general, becomes a function of the mean, standard

deviation, and the sample size.

" For afixed content p and confidence level y, we have

. _ _
TR (x ) XX ’ Tolerance Ratio vs Mean Performance Characteristic Tolerance Ratio vs Standard Deviation
Holding the Standard Deviation and Sample Size Fixed Holding the Mean and Sample Size Fixed
* TR(s)x1/s, 61 ]
» TR(n) < +n.

+
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N
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Tolerance Ratio vs Sample Size
Holding the Mean and Standad Deviation Fixed

Tolerance Ratio (TR)

Sample Size

The Tolerance Ratio as a Function of the QMU Metrics.
Mean (top left), Standard Deviation (top right), and Sample Size (bottom)
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Exploration of the Tolerance Ratio ) i,

= Using these relationships, we can explore how to increase the tolerance
ratio. The list shown here discusses possible practical ways to increase
the tolerance ratio by improving either the component’s performance
or the amount of information obtained on the component.

" |ncrease margin — Improvements in the component performance (possibly
through design improvement) that shift the mean of the distribution of the
performance characteristic away from the performance requirement will
result in a larger tolerance ratio, provided the unit-to-unit variability does not
change significantly.

= Decrease uncertainty — Reducing the unit-to-unit variability of the component
performance distribution (possibly through improvement or implementation
of manufacturing process controls) will result in a larger tolerance ratio,
provided these changes do not shift the mean of the distribution
significantly.

" |ncrease precision — Increasing the data acquired on a performance
requirement (possibly through increased testing) will result in a larger
tolerance ratio, provided the additional data does not significantly change
the estimated mean or standard deviation.
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Tolerance Bound Advantages rih) s

B Conclusions are made on the same scale as the original
measurements = Interpretability.

= Assumes a specific distribution, but is not limited to the Normal
distribution.

= Any distribution that maps 1:1 with a normal can be obtained easily:
= Lognormal: X = In(Y) is Normalif Yis lognormal.
= Gamma: X = Y1/3isapproximately Normal if ¥ is gamma.

= The Exponential and Weibull distributions are derived in Krishnamoorthy
and Mathew (2009).

= Pareto, Power, and Extreme Value are 1:1 transformations with Exponential
and Weibull.

= Can be communicated in a QMU framework with a single

critical value of 1 which provides a consistent and interpretable
decision metric.
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The Future of QMU at Sandia (In My Opinion) (),

= More rigorous engineering analyses and data reviews to better understand what is
being tested, what it means, and what the limitations of the available data are.

= Are there gaps in the current test programs?
= Are we measuring what’s important?

= QMU analyses at the subsystem level that look at interactions between
components and performance characteristics.

= How do we “roll up” analyses on several characteristics?

= Does the current testing exercise potential failure mechanisms at the interfaces between
components?

=  Margin testing and analyses to better understand the thresholds for critical
performance characteristics.

= |f an analysis indicates low margin relative to a requirement, what does that mean?
= Do we feel the system will fail if a unit performs outside of its requirements?
= Do we understand the point at which it will begin to fail?

= More consistent use of methodologies for both physical simulation and
computational simulation QMU analyses.

= Qur ability to communicate the results of QMU analyses should be independent of the types
of methodologies used!
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Normal Data Analysis rh) i

Laboratories

&8 For a univariate Normal distribution with mean u and standard
deviation o, the r - 100t percentile is,

" Qr=u+to-d7H()

= &7 1(7)is the r - 100t percentile of a standard Normal distribution

The best estimate of this percentile is obtained by replacing the mean
and standard deviation with their respective best estimates, X and s.

= 0, =%+s-PL7).

For data that follows a Normal distribution the estimated tolerance
bound from a sample of size n is of the form,

. Ql_p,y = X — s * k. for a lower tolerance bound
- Qp,y = X + s * k; for an upper tolerance bound
= kg = tho1, (V- @7H(p)) /0, where tgr,(A) denotes the y - 100 percentile

of a non-central t-distribution with df degrees of freedom and noncentrality
parameter A.
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Non-Normal Data: Transformation Approach ()&,

B Suppose, V1,V>, ..., Yy are a sample from a Lognormal performance
characteristic distribution with location and scale parameters y and o
respectively.

» x; =In(yy),x, =In(y,), ..., x,, = In(y,) is a sample from a Normal
distribution with mean and standard deviation u and o respectively.

= Normal based approaches discussed previously can be applied to construct
tolerance bounds based on the transformed sample x4, x,, ..., X,,.

= Recall, @1_1,,), =X —5-kqand @p,y =X + s - kq are lower and upper
tolerance bounds respectively for a sample from a Normal
distribution as defined before

* Therefore, @i_p,y = eQi-py = gX¥—Sk1 gnd @;,y — ey = pXtskq
are lower and upper tolerance bounds respectively from the original
Lognormal distribution.

"= The calculations and interpretations of M, U, and TR remain on the
original engineering unit scale

J. Newcomer, A Tolerance Interval Approach to QMU



Non-Normal Data: Direct Parametric Approach (ks
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F  Consider the two-parameter Weibull distribution f(x) = ﬁ
= No one-to-one transformation with a Normal distribution exists
=  The r- 100t percentile is, Q, = 1 - [— In(1 — r)]*/# and the best estimate of this

percentile, 0, = 7 - [— In(1 — r)]*/F, is given by replacing the shape and scale
parameters with their respective maximum likelihood estimates, 8 and 7.

=  The estimated lower tolerance bound from a sample of size n is of the form
01 -py = n exp(w1 _pi—y /B) where wy_j, 1 isthe (1 —y)- 100t percentile of
wip =B [=1In(n") + In{=In(1 - (1= p))}].

= For an upper tolerance bound, Qp.,, =7- exp(w /B) where w,,,, is the y - 100t
percentile of w, = " - [—ln(n )+ In(—1In(1 — p))]

= (7 andn” are the maximum likelihood estimates calculated from a sample of size n from a standard
Weibull (f = 1,7 = 1) distribution.

=  The distribution of w does not depend on any unknown parameters, and so its percentiles can be
estimated using Monte Carlo simulation.

= See Krishnamoorthy and Mathew (2009) for complete details and algorithm.

= Again, the calculations and interpretations of M, U, and TR remain on the original
engineering unit scale
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Regression with a Tolerance Bound ) i,

A simple linear regression model is given by,
" PCi= Lo+ p1-CA +¢, i=12, .10
*  PC; is the performance characteristic and C4; is the age of the i"* unit

= f, and 3;are the regression model parameters to be estimated
= g isarandom error assumed to follow a Normal distribution with mean zero and standard deviation op.

= For aregression analysis assuming the random error follows a Normal distribution with mean
zero and standard deviation oy, the r - 100" percentile is a function of the component age
and is defined to be,

* Q.(CA) = Bo+ P CA+ G- d7H(r)
= By, fo, and G5 are obtained via maximum likelihood

= &~ (r)isthe r- 100t percentile of a standard Normal distribution

= For aregression with a random error that follows a Normal distribution, the estimated
tolerance bound from a sample of size n is of the form,

" @1_3,,],(614) = By + [, CA — 65 - k (CA), for a lower tolerance bound
@p,y(CA) = Bo+ B, - CA+ 65 - k{(CA), for an upper tolerance bound

> 1(p)
n kl = d(CA) ) tn—Z,’y( a(C4a) )

2

n o XL (=02

. tdf,,},(ﬂ\) denotes the y - 100™ percentile of a non-central t-distribution with df degrees of freedom and
noncentrality parameter A.

x; is the ith component age, x is the average component age
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Regression with a Tolerance Bound ) i,

B The estimates of Margin, Uncertainty, and the Tolerance Ratio remain
the same as in the previous examples, however here they are a
function of the component age (CA)

- M(CA) = Q\l—p(ch) — LPR, ﬁ(CA) = Ql—p(CA) - Ql—p,y(CA): and
_ M(CA) _ Q1-p(CA)—-LPR
0(ca)  Q1-p(CA)—Q1-py(CAY

for a lower requirement

= M(CA)=UPR—Q,(CA), U(CA) = Q,,(CA)— Q,(CA),and TR =
UPR—Qp(CA)

Qp,y(CA) _Qp(CA)’

for an upper requirement

: T/beAAIaer Age is estimated as the component age, A, that satisfies,
M(A)=U(A)and TR =1

= For ages less than A we can claim that we are ¥ - 100% certain that at least
p + 100% of the units will meet the performance requirement.

= For ages greater than A, we can no longer make this statement.
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