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• Lagrangian:
• Mesh moves with material points.
• Mesh-quality may deteriorate over time

• REMESH
• Mesh-quality is adjusted to improve solution-
quality or robustness.
• Eulerian sets new mesh to original location 

• REMAP
•Algorithm transfers dependent variables to the 
new mesh.

Arbitrary Lagrangian/Eulerian (ALE)
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• Lagrangian:
• The kinematic complexity is simplified due to 
embedding in the Lagrangian frame.
• Use of mimetic operators keeps the solution in the 
right space.

• Remesh:
• Nothing special

• Remap:
• Algorithm looks like a “constrained transport” 
algorithm in some way.
•The algorithm of necessity is un-split.

What happens with Involution 
Constraints and ALE?



Geometric Structure and
Numerical Methods

 The structure of the equations is related to their geometric origins.

 This geometry can reappear in effective numerical methods.

 The deRham structure shown below is used to discuss issues of “compatible 
discretizations.” 

 These are related to 0-forms, 1-forms, 2-forms and 3-forms.

 Transport theorems are associated with the kinematics of such mathematical ideas.

 Presentation is “color coded”
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Circulation Transport Theorem
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Surface Flux Transport Theorem
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Volume Transport
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Solid Kinematics
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Solid Kinematics

x(a,t)

(Current) Spatial Coordinates

. x(a,t).a

(Reference) Material Coordinates

Deformation gradient and inverse:

Symmetric Positive Definite 
(Stretch) Tensor

Proper Orthogonal   
(Rotation) Tensor

Polar Decomposition: F = VR

1 /   G F a x

/  F x a



Remap

 Some material models require that the kinematic 
description  (i.e. F) be available.  The rotation tensor in 
particular is needed.

 Any method for tracking F on a discrete grid may fail 
eventually.
 Det(F)>0

 Positive definiteness of the stretch, V, can be lost.

 R proper orthogonal: RRT = I, Det(R)>0.

 Rows of the inverse deformation tensor G=F-1 should be 
gradients.

 These constraints may not hold due to truncation errors in the remap 
step and finite accuracy discretizations.

 What is the best approach?

 “fixes” will be required.

 Storage, accuracy and speed should be considered.



Possible Solutions

 Use an integration scheme to update V and R in the Lagrangian 
step using the rate-of-deformation tensor.
 Conservatively remap components of  both V and R (VR)

 Conservatively remap components of V and quaternion parameters 
representing R (QVR)

 We have investigated a constrained transport remap to stay in 
a curl free space (DG)

 Apply appropriate fixes or projections where possible and 
necessary.



The stretch can fail to be positive definite 
after remap (VR/QVR)

Spectral Decomposition

Eigenvectors Eigenvalues

ˆ min(max( , ),1/ )k k s s   

Limiting minimum and maximum stretches enables robustness.



Project R to rotation after remap

2D (VR) 3D (VR)

QVR



Comparison of 2D ALE Rotation 
Algorithms for Two Test Problems

Relative error growth for test problems comparing 
quaternion with exponential map algorithm (QVR) versus 

rotation tensor with Cayley transformation (VR)

Exponential Vortex ABC Rotate



 Is there something more satisfying?

 Representation of G on edges allows for a discrete curl-
free inverse deformation gradient.

 Remap algorithm should preserve this property.

 Constrained transport (CT) approach pioneered by Evans 
and Hawley for div free MHD algorithm on Cartesian grid 
is the prototype algorithm.

Curl Free Constrained  Transport (DG)
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Curl Free  Remap Algorithm

• Use patch recovered nodal values of G to 
compute trial edge element gradient 
coefficients along each edge.

• Limit slopes along each edge 
(minmod,harmonic)

• Compute the node circulation 
contributions in the upwind element by a 
midpoint integration rule at the center of 
the node motion vector. 

• Take gradient and add to edge element 
circulations.  

tv

Upwind element

Rows guaranteed to be curl 
free. 

No control on det(G). 

Speed 

• Edge element representation



Solid Kinematics Remap

 There are significant benefits for quaternion rotation 
(LQVR,QVR) representation with volumetric remap.

 Stretch tensor reset algorithm based on eigenvalue 
decomposition has been shown to provide robustness.

 Inverse deformation gradient modeling with curl free remap 
required continued investigation. SAND2009-5154 

 BIG question #1: How to control det(G)?

 BIG question #2: How to program the CT algorithms efficiently?  
In particular one needs to find the upwind element.

 Research Question:  The det(G) constraint essentially links a CT 
type algorithm across 2 or 3 coordinates.  Is there a better 
(perhaps  more coordinate free) way to think about the problem?



One possible approach to solving  
the det(G)>0 problem
 Kamm, Love, Ridzal, Young, Robinson have investigated 

whether optimization based remap ideas might help.

 Solve global optimization problem for nodal increments 
using the standard CT algorithm increments as the target.

 Solve using slack variable formulation

 Research report in progress.

 Key idea:  optimization might be able to help with remap.



Eulerian Frame for kinematics
 Caltech group has had success with Eulerian frame equations for 

solid kinematics.

 The G equation (circulation transport theorem for three 
components of inverse deformation gradient) must contain a 
term related to preserving consistency with mass conservation.

 Phil Barton
 Caltech and now at AWE

 Reports success with both F and G equations. (Personal communication at 
Multimat 2013 (with permission)).

 Did not use the additional diffusion term of Miller and Colella.

 See also Hill, Pullin, Ortiz, Meiron JCP 229 (2010) and Miller and 
Colella, JCP 167 (2001).

 Is there something to be learned from Eulerian frame success for 
ALE algorithms?  Are there weaknesses about Eulerian frame that 
are not clear?



Magnetohydrodynamics
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Faraday’s Law (Natural operator splitting)

A straightforward B-field update is possible using Faraday’s law.

Integrate over time-dependent surface oooo, apply 
Stokes theorem, and discretize in time: 

Zero for ideal MHD by 
frozen-in flux theorem: 

Terms in red are zero for ideal MHD so nothing needs to be done if fluxes are degrees of freedom.
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Magnetic Flux Density Remap

 The Lagrangian step maintains the discrete divergence free 
property via flux density updates given only in term of curls of 
edge centered variables. 

 The remap should not destroy this property.

 Constrained transport is fundamentally unsplit.
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CT on unstructured quad 
and hex grids (CCT)

 Define the low order or donor method 
by integrating the total flux through the 
upwind characteristic of the total face 
element representation of the flux 
density. 

 High order method constructs a 
modification to the flux so that it varies 
across the element face.  Compute flux 
density gradients in the tangential 
direction using the blue and the red 
faces.

 All contributions are combined.

 Electric field updates are located on 
edges.

 Take curl to get updated fluxes.

 Requires tracking flux and circulation 

sign conventions.

tv
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Face element representation

 Obtain representation of upwind element in terms of natural coordinates of an 
isoparametric element.
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CT 1D advection



Improved CCT Algorithm
• Compute B at nodes from the face element 

representation at element centers. This 
must be second order accurate.  Patch 
recovery (PR) suggested.  Other means are 
possible.

• Compute trial cross face element flux 
coefficients on each face using these nodal 
B. 

• Limit on each face to obtain cross face flux 
coefficients which contribute zero total 
flux.

• Compute the edge flux contributions in the 
upwind element by a midpoint integration 
rule at the center of the edge centered 
motion vector. 

tv

Upwind element

• ``Arbitrary Lagrangian-Eulerian 3D Ideal MHD Algorithms,’’ Int. Journal Numerical Methods in 
Fluids, 2011;65:1438-1450. (remap and deBar energy conservation discussed)

• Bochev and student have looked at optimization based reconstruction for flux based remap.

• The key thing to optimize is the magnetic energy loss.



Patch Recovery Based CCT
Cartesian Paved Randomized

x

diag

Paved,diagonal, 
face based,
harmonic

Paved,diagonal, 
patch recovery,

harmonic



Hydrodynamics
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 Lagrangian Step

 Mass is conserved in the Lagrangian frame.

 Discrete Lagrangian continuity equation is trivial.

 Remap Step

 Swept surfaces or overlap grids plus integration over 
reconstructed densities yield mass changes.

 Remap algorithms associated with the blue box have been 
worked on for a long time.  

 Recent new algorithms tend to emphasize solving optimization 
problems to avoid excessive dissipation.   See work by Shashkov 
and Bochev and their coworkers.

 My impression is that the blue box in the deRham diagram has 
received most of the research attention!  

Hydrodynamics



Cross cutting algorithms
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 Is it possible to build an ALE numerical method for the full 
Maxwell’s equations coupled to mechanics that naturally 
transitions between the electro-quasi-static and magneto-
quasi-static regimes, is reasonably efficient and would give a 
useful approximation to at least some low frequency 
electromagnetic wave propagation effects if the time and 
space scales are sufficient?

 Such an algorithm if built for an ALE modeling framework and 
a mimetic based numerical method would required some 
cross deRham diagram linked algorithmic characteristics.

Cross cutting algorithms 



 Kovetz

 Constitutive theory provides                            with 

 Flux derivatives

 Fundamental equations still up for discussion, e.g. Weile, Hopkins, Gazonas and 
Powers, “On the proper formulation of Maxwellian electrodynamics for continuum 
mechanics,” Continuum Mech. Thermo., DOI 10.1007/s00161-013-0308-7.

Maxwell Equations and Continuum Mechanics



 Take a page from 3D ALE MHD and place D and B as fundamental 
variables (fluxes) on faces using face elements.

 Operator split the Lagrangian step.

 Mesh motion occurs with constant D and B fluxes.  This conserves both 
the zero magnetic flux divergence property and charge.

 Update the fluxes and electric displacements using a mimetic method. 
 The Bochev and Gunzberger algorithm, “Least-Squares Finite Element Methods,” 

p.225 is a good candidate. 

 Use an L stable time discretization method.

 Remap magnetic flux using standard constrained transport.

 What about remap of electric displacement?

Possible Solution



new
S

CT plus a volume term!
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New electric displacement flux is the oriented sum of edge contributions 
which does not change the charge plus face flux contributions which do.
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ALE Multiphysics and the deRham Complex

 There are many opportunities to use geometrically based 
methods associated with the deRham complex in ALE 
multiphysics modeling.

 The three integral transport theorems essential to two-step 
ALE methods provide fundamental meaning.

 The ideas associated with numerical methods tend to be 
intuitive and natural.

 Many opportunities are available for additional advances in 
robustness, computational speed, accuracy, extended 
modeling and fundamental understanding.
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