SAND2013-6892C

Active Learning for Alert Triage

Justin E. Doak (J.D.), Joe Ingram, Jeffery Shelburg, Joshua Johnson, Brandon R. Rohrer
Sandia National Laboratories
Albuquerque, NM 87185, USA
Email: {jedoak, jbingra, jsshelb, jajohn} @sandia.gov, brohrer @ gmail.com

Abstract—In the cyber security operations of a typical orga-
nization, data from multiple sources are monitored, and when
certain conditions in the data are met, an alert is generated in
an alert management system. Analysts inspect these alerts to
decide if any deserve promotion to an event requiring further
scrutiny. This triage process is manual, time-consuming, and
detracts from the in-depth investigation of events. We investigate
the use of supervised machine learning to automatically prioritize
these alerts. In particular, we utilize active learning to make
efficient use of the pool of unlabeled alerts, thereby improving
the performance of our ranking models over passive learning.
We demonstrate the effectiveness of active learning on a large,
real-world dataset of cyber security alerts.

I. INTRODUCTION

Most organizations have an operational cyber security
group that is responsible for monitoring their networks, in-
cluding preventing and responding to attacks. These groups
are typically overwhelmed by the sheer volume of alerts and
the asymmetric nature of cyber defense (i.e., cyber defenders
must protect everything, but the attackers only need to find
a single vulnerability and corresponding exploit). All of these
groups would benefit from a system that helps prioritize alerts,
whether those alerts are generated internally from sensors or
externally via tips. Crucial alerts would not be overlooked,
analysts would have more time for in-depth investigations, and
the time gap between event and response might be reduced
thereby potentially mitigating the impact.

Our solution utilizes supervised machine learning to pro-
vide a prioritized list of alerts to cyber analysts. A practical
problem with supervised machine learning is obtaining labeled
training data, which can be expensive in time and cost. By
employing active machine learning, we only query the analysts
for explicit labels on those alerts that are predicted to provide
the most improvement in the output of the learned models. In
practice, these methods typically require fewer labeled train-
ing examples than passive learning (i.e., randomly selecting
instances for labeling) and are typically shown to be just as or
even more accurate.

In this work, we investigate the performance of a simple
active learning strategy, uncertainty sampling, on real-world
cyber security alerts. We demonstrate that active learning
vastly outperforms passive learning and requires fewer labels
to approach the performance of a classifier trained on the fully-
labeled dataset.

II. RELATED WORK

Empirical and theoretical evidence indicates that active
learning can outperform passive learning on a variety of
learning tasks [16]. However, our literature review suggests

that, while the field of active learning is well established in
terms of its theoretical underpinnings, the application of active
learning to real-world problems is in its infancy. In fact, we
were only able to find a relatively small number of papers that
employed active learning in cyber security settings.

One problem that has been noted when attempting to apply
machine learning to cyber security problems is the lack of
publicly available datasets. Many papers use the KDD-CUP’99
dataset [17], which has many documented issues [19]. One of
these issues is that the high percentage of redundant records
(78% and 75% in the training and test sets, respectively) biases
the models towards the frequent records, which hinders the
models generalization performance on unseen or infrequent
records. In addition, the dataset does not present enough of
a challenge for the models as even the worst model tested
attained 86% accuracy. (The paper describes a new version of
this dataset, NSL-KDD, that addresses both of these issues.)
Another issue not mentioned in the paper is simply the age
of the dataset meaning that many of the attacks are simply no
longer relevant.

A real-world application of active learning to network
traffic classification, anomaly detection, and malware detection
is Aladin [18]. In Aladin, label queries are made based on
two types of “interesting traffic”: (1) instances that do not
fit the pre-existing model (to discover new categories) and
(2) instances that cannot be classified with high certainty (to
improve classification accuracy). Results show that employing
active learning greatly reduces the number of queries required
to reach an acceptable level of accuracy and coverage. Fur-
thermore, a new trojan was discovered in a real corporate
network log containing roughly 13 million entries that rule-
based methods had missed.

In [15], a team at Google utilized active learning to help
detect real-world, adversarial advertisements. While experts
traditionally discover new types of “bad ads” and emerging
trends manually, active learning was used to rapidly build
models to detect these new types of ads. Results show that
only a few dozen label queries using active learning may be
needed to build sufficiently accurate models.

In [2], MITRE explains their method of detecting scanning
and probing attacks'. In their experience, MITRE notes that
most alerts are just noise (i.e., false positives), and it is
therefore imperative to reduce and prioritize alerts to more
efficiently use analysts’ time. Their approach includes selecting
relevant features, aggregating alerts into episodes, filtering

ICurrently, most networds are subjected to phishing attacks, drive-by
downloads (i.e., legitimate, but compromised websites), and other types of
intrusion attempts. Very little attention is paid to scans and probes as these
can be automatically blocked.

episodes into scans, and ranking scans by severity. Further-
more, domain knowledge is used in classification to reduce the
number of false alarms and clustering is employed to detect
anomalies.

III. DATA COLLECTION

As previously noted, an alert is generated from monitoring
real cyber security data and is then logged to a centralized
alert management system (AMS). In the following sections,
we briefly describe how we extract potentially relevant features
(a vector of attributes that are consistent across all alerts) and
how we obtained an initial dataset of labeled alerts based on
the lifecycle of an alert.

A. Feature Extraction

An alert in the AMS contains both the raw text of the alert
and some features extracted via regular expressions from the
raw text (i.e., metadata). The raw portion of an alert does not
have a standard structure, which has made feature extraction
challenging. The metadata contains specific information about
why the alert was created and why it may be worthy of
further review by an analyst. In addition, since the alerts are
largely composed of textual data, natural language processing
techniques are used to generate many of the features. For
example, named-entity recognition (NER) is used to extract
different entities (e.g., filenames) from the alerts. Different
techniques are then applied to the entities in order to derive
potentially relevant features. For example, an alert could be
correlated with other alerts containing specific entities in order
to determine the fraction of related alerts that were malicious
or benign.

Additionally, latent Dirichlet allocation [1] is used to model
the inherent “topics” in the raw alert text. It is a generative,
probabilistic model based on the notion that most documents
are comprised of multiple “latent” topics. In a corpus of
documents, LDA extracts a pre-specified number of topics, but
each document in that corpus will differ in terms of its focus
on the various topics. It utilizes the bag-of-words model and
assumes that each word’s usage can be attributed to one of
the document’s topics. The algorithm uses Bayesian inference
(e.g., variational Bayes) in order to learn these latent topics.

A modification of the original algorithm [8] allows the
model to be built from small, random subsamples of the
corpus, which means the entire corpus does not need to be
loaded in memory during the learning phase. We used the
authors’ implementation? to build the model and extract topics.
The number of topics was chosen arbitrarily based on the
perceived number of distinct alert types. The vocabulary that
was used to build the model was based on the output of NER.

We are currently building our models using all of the
extracted features and are not explicitly performing any kind
of feature selection. In some cases (e.g., Random Forest), the
model itself selects the features it deems most useful for the
task at hand.

Zhttp://www.cs.princeton.edu/~blei/topicmodeling.html

B. Implicit Label Extraction

Feedback from analysts will be both explicit (i.e., analyst
labels) and implicit (i.e., alert life-cycle) and will be utilized to
update models. (It is likely that we will give a higher weight
to alerts that have been explicitly labeled.) To understand the
alert life-cycle, consider that an alert’s status is “open” on
creation, but changes as an analyst triages and makes decisions
about the importance of the alert. The current status of an alert,
along with other information, allows us to infer an implicit
label for it. These implicit labels will augment the explicit
labels obtained from analysts and have also allowed us to build
models before explicit labels are obtained.

In this paragraph, we discuss the implicit labeling of alerts,
from the least important alerts to the most important. For
example, if an alert is closed by an analyst and never promoted
to an event, we label it as a “false positive”. The “open
not viewed”, “open viewed”, and “revisit” categories of alerts
represent alerts that have not been closed as false positives, nor
have they been promoted to an event. Hence, it is these alerts
that our model(s) ranks. “promoted false positive” represents
alerts that were promoted to an event, but then marked as
a false positive. The “promoted” label is given to alerts that
were promoted to an event and were not subsequently marked
as a false positive or an incident. The final category of alert is
“incident” and indicates events that must be reported.

For our initial results, we mapped all of these labels
into “closed” and “promoted” classes (e.g., “false positive”
was mapped to “closed” and “promoted false positive”, “pro-
moted”, and “incident” were all mapped to “promoted”). This
mapping allows us to frame the problem as binary classifica-

tion while still accurately simulating the triage process.

IV. SUPERVISED LEARNING

In this application, supervised learning is used to build a
ranking model that accurately prioritizes open alerts. (Note that
many classification models can be adapted to ranking appli-
cations, provided that the probabilities of class membership
are provided.) Before we can select an appropriate supervised
learning algorithm, we must evaluate the ranking performance
of the candidate models. A wide variety of supervised learning
methods, each with their own set of advantages and disadvan-
tages, were evaluated during the model selection process.

While there exist many ways to logically categorize these
supervised learning methods, categorizing them as linear or
nonlinear is convenient because of its simplicity and descrip-
tive power. A linear supervised learning method will yield
a model with a decision surface that can be described using
a linear combination of input features, whereas a nonlinear
supervised learning method will do so using a nonlinear com-
bination of input features. Brief descriptions of each supervised
learning method evaluated are given in their respective linear
or nonlinear subsection below.

A. Linear Methods

1) Linear Support Vector Machine (SVM): An SVM rep-
resents data as points in input feature space and finds a
hyperplane that divides the classes with as wide a gap as
possible by solving an optimization problem [4] utilizing
Platt’s Sequential Minimal Optimization algorithm [12].

(c) Active Learning (d) Full Learning

Fig. 1. Active vs. Passive Learning on a Toy Dataset

2) Logistic Regression: This technique models class proba-
bilities as a function of input features using a logistic function.

3) Linear Discriminant Analysis (LDA): LDA attempts to
find a linear combination of input features that best distin-
guishes between classes using the log of the likelihood ratios
under the assumptions that classes are normally distributed and
class covariances are identical [7].

4) Naive Bayes: This is a probabilistic classifier that uti-
lizes Bayes’ theorem under the assumption that input features
are independent [13].

B. Nonlinear Methods

1) SVM with Radial Basis Function (RBF) Kernel: This
model is the same as a Linear SVM except that an RBF is used
to measure distances, resulting in a nonlinear classification
boundary [20].

2) k-Nearest Neighbors (KNN): KNN classifies an instance
based on the class labels of its k nearest points in feature space.

3) Quadratic Discriminant Analysis (QDA): This algo-
rithm is the same as LDA except it does not assume class
covariances are identical and therefore produces a quadratic
combination of input features.

4) Multilayer Perceptron (MLP): This model is comprised
of a network of simple processing elements (neurons). Data
features are presented to the input layer where neuron activa-
tions are then fed forward in the network through the hidden
and output layers to yield a final classification. When training,
error values are propogated backwards through the network to
train the adaptive weights between neuron layers.

5) Random Forest: This is an ensemble method that con-
structs many bootstrap aggregated (bagged) decision trees that
split on a random, fixed-sized subset of input features at each
node in each tree [3].

V. ACTIVE LEARNING

Traditionally, most supervised learning problems assume
that labels for every data point are available to the learning
algorithm. However, in some real-world applications, there
are only a small fraction of labeled samples and the vast

majority of samples are unlabeled. In addition, the process
for obtaining labels can be costly in both time and effort, as it
generally requires a trained human annotator. Active learning
attempts to maximize the utility of labeled data by querying an
oracle for labels on only a carefully selected set of unlabeled
instances. These instances are the ones that, once labeled, are
predicted to most improve the output of the learned models.
The principal idea behind active learning is that a supervised
learner can perform as well or better than passive learning with
less training data if it is allowed to choose the data from which
it learns [16].

Fig. 1 (generated using matplotlib [9]) illustrates this
point by showing a simple two-dimensional dataset in which
the learner is trying to discriminate between red hexagons
and blue squares. Fig. la shows the initial dataset, where
the labeled points are marked with the appropriate colored
markers and the unlabeled points are represented as small gray
dots. Fig. 1b represents the learned decision boundary after
randomly (passively) selecting ten new points to label. Fig. 1c
depicts the learned decision boundary after ten iterations of
active learning, in which the active learner selects the point
closest to the current decision boundary for labeling. Fig. 1d
represents the learned decision boundary if all of the data
points were labeled. It is easy to see that the actively learned
decision boundary is much closer to the decision boundary
learned on the fully labeled dataset. Although this simple
example demonstrates the efficacy of using active learning,
the question now becomes: how is the best instance(s) to label
selected?

A. Query Frameworks

Before discussing how individual instances are selected for
labeling, we briefly describe some common settings in which
active learning is typically applied. In general, there are three
different frameworks for active learning [16]:

1) Query Synthesis: In this setting, a learner is allowed to
request labels for any data point in the input space, including
points that have been synthesized. The only assumption in
this setting is that the definition of the input space (i.e., the
features and their associated ranges) is known. However, this
framework does not typically work well for problems in which
points must be labeled by a human oracle, as synthetically
generating points may result in instances that are nonsensical
(e.g., in character recognition, it might produce characters that
are difficult for a human to distinguish).

2) Selective Sampling: In this setting, each instance arrives
sequentially and the learner must decide at that moment
whether to query for a label or discard. The decision whether to
query or discard an instance can be framed in many ways, but
typically involves either defining a utility measure for making
a biased random decision or computing an explicit region of
uncertainty and only querying instances that fall within it. It
is typically only used in streaming settings.

3) Pool-based Sampling: In this setting, there is a set
of labeled instances and a pool of unlabeled instances. The
learner is allowed to look at all instances in the unlabeled
pool in order to select the optimal query, which is typically
done in a greedy manner. (A greedy approach can create
issues, such as querying instances that are too similar to other

instances that have already been queried. There are techniques
for addressing problems such as this.) This setting appears to
be more common in practical applications.

B. Query Strategies

Once the appropriate active learning framework is selected,
the next step involves choosing the appropriate strategy for
identifying the points to be labeled by the oracle.

1) Random Sampling: The simplest approach for selecting
which examples to label is to sample them uniformly at
random. However, since no information about the input space
or current supervised model is used to select points, we refer
to this strategy as passive learning. Random sampling is not
technically a form of active learning, but it is often used as
a baseline for comparison. It should also be pointed out that
there are datasets for which random learning outpeforms active
learning [16].

2) Uncertainty Sampling: In this approach, first introduced
by Lewis and Gale [10], unlabeled instances that the model
is least certain how to classify are selected for labeling.
Uncertainty sampling is based on the idea that obtaining labels
for instances about which the current model is most uncertain
will yield more information than instances in which the model
is highly confident (because these are most likely correct).

Measuring this uncertainty involves estimating the dis-
tance from a particular example to the current model’s de-
cision boundary. Although some classifiers explicitly output
the distance to the decision boundary (e.g., SVMs), explicit
uncertainty measures must be defined for other classifiers
(e.g., probabilistic classifiers). The most common measures of
uncertainty for probabilistic classifiers are [16]:

o Least Confident — query the instance whose predicted
output is the least confident:

argmax 1 — Py(y|z)

where Py(-) represents the posterior distribution of
the model 6 (i.e., the probability that the label is y,
given input x), and ¢ is the prediction with the highest
posterior probability for the given input x.

e Margin — query the instance with the smallest margin
(difference betwee the two most likely predictions):

argmax [Po(32|z) — Po(41)]

where y; and y» represent the first and second highest
posterior probabilities given the input x.

o Entropy — a measure of a variable’s average informa-
tion content. The instance with the highest entropy is
queried:

argmax —» _ Py(ylz) log Py(ylz)
* y
which represents the entropy of the model’s posterior

distribution for the given input x.

In learning problems with only two classes, these measures
are equivalent. However, in multiclass learning problems, the

least confident and margin-based uncertainty measures tend to
select points that will reduce classification error. For example,
they might select an instance that would help the model
better discriminate among specific classes. On the other hand,
the entropy measure will attempt to minimize expected log-
loss, which means it will select points where the current
model’s posterior distribution is most uncertain (i.e., closest
to uniform).

Uncertainty sampling is very easy to implement, since any
classification algorithm that outputs an appropriate distance
metric from a point to the decision boundary can be used as a
“black box.” However, the initial model is often trained with
very little data, and subsequent data might become biased by
the sampling strategy [16].

3) Other Strategies: Uncertainty sampling is not the only
method for selecting which point to query. In fact, there are a
plethora of methods that have been developed in the active
learning literature, which can be broadly categorized into
hypothesis-space search, expected-error or variance reduction,
and exploiting structure in data [16]. However, since we
have currently only explored uncertainty sampling, we omit
discussion of these other methods in the interest of brevity.

VI. EXPERIMENTAL RESULTS

Initial experiments were run on real-world alert data
consisting of 8905 alerts, 1436 (approximately 16%) of
which were promoted to an event. For implementations of
the various algorithms, with the exception of the MLP,
a machine learning library developed in Python called
scikit—learn [11] was used. Since a MLP implementation
was not included in scikit-1learn, another Python library
called PyBrain [14] was used for the MLP.

A. Model Evaluation

Model evaluation consists of techniques such as cross-
validation that attempt to maximize the value of the labeled
data. They achieve this by accurately estimating the gener-
alization performance of a classification algorithm without
using a separately held-out test set. For example, 10-fold
cross-validation splits the data set into ten “folds”. The first
evaluation uses nine of the folds to train the model, and then
evaluates on the remaining fold. When all ten of the folds have
been used as the testing set, the performance across all of the
folds is averaged.

Each evaluation (a total of ten in the 10-fold cross vali-
dation example) relies on a metric that scores the utility of
the model. These metrics can be categorized as classification,
probabilistic, or ranking depending on the type of model a
metric most effectively evaluates [6]. For our application, we
are focusing on ranking metrics because our end goal is to
prioritize alerts for analysts. An example of a metric that may
be effective at evaluating ranking models is the Area Under
the Receiver Operating Characteristic Curve [5].

In order to measure the classification performance of
each supervised learning method on our problem, the macro
average arithmetic metric [6] was used where the accuracies
of predicting each class individually are averaged over all
classes. For clarity, this metric will henceforth be referred to

TABLE 1. BASELINE MODEL COMPARISON

Method CAA
LDA 0.774 (0.019)
§ Naive Bayes 0.684 (0.016)
5 | Linear SVM 0.585 (0.015)
Logistic Regression | 0.556 (0.014)
Random Forest 0.814 (0.020)
g | QDA 0.753 (0.074)
% MLP 0.560 (0.021)
2 | SVM w/ RBE 0.516 (0.007)
kNN 0.457 (0.014)

as class-averaged accuracy (CAA). This metric is used instead
of overall classification accuracy due to the presence of skew
in the class distribution, which may bias certain classifiers
towards predicting the majority class (e.g., closed alerts) often
to the detriment of the minority class (e.g., promoted alerts).
We mitigate this tendency to neglect the minority class by
choosing the supervised learning method that maximizes CAA.

B. Baseline Performance

To select an appropriate supervised learning method, base-
line performance for each method is needed. This performance
was obtained by performing three runs of 10-fold stratified
cross-validation and calculating the CAA for each of the 30
total folds as well as the overall average and standard deviation
for each method. These values are shown in TABLE I (standard
deviations in parentheses). The random forest method (using
100 base decision trees) was determined to be the best model
based on average CAA. Furthermore, a Wilcoxon signed-
rank test [21] with o = 0.05 determined that the differences
between the random forest and all other evaluated methods
were statistically significant.

C. Active Learning Performance

In order to evaluate the performance of active learning on
the alert data, a slight variation of 10-fold stratified cross-
validation was used. The ten stratified folds were selected,
and then, for each iteration, 10% of the data was randomly
sampled (without replacement) from the training folds to build
an initial model. Next, each of the active learning strategies
were allowed to select from the remaining 90% of the data in
the training fold. The model was then evaluated against the
held-out test fold. In order to reduce the variance associated
with the initial 10% subsampling, the process was repeated ten
times for every fold of cross-validation.

Since the entire unlabeled dataset is available, we inves-
tigate the performance of pool-based sampling described in
Section V-A. The model was allowed to select 50 instances
from the pool at a time to be added to the labeled dataset,
and then the model was retrained and the selection process
repeated.

Fig. 2 shows the CAA of the random forest model as
a function of the number of queried labels for uncertainty
sampling (active) and random sampling (passive). The plots
represent the average over the 100 iterations (10 folds x 10
iterations of randomly subsampling 10% of the training data
to build an initial model), with error bars at one standard error.

0.85f

0.80

CAA

0.75f

0.70} % Random
H+F Uncertainty (entropy)
"

0 900 1800 2700 3600 4500
of Queried Labels

Fig. 2. Active vs. Passive Learning on Alert Data

As can be seen in Fig. 2, active learning vastly outperforms
passive learning, and it approaches the baseline performance
(see TABLE I) of the random forest model trained on the fully-
labeled dataset after approximately 1500 queries. Given that
the initial model was trained on 10% of the data in the training
folds and the queried data® represents approximately another
20%* of the data, active learning is able to achieve the same
performance with approximately a 70% reduction in labeled
data for this dataset.

VII. DEPLOYMENT TO ENTERPRISE SECURITY

The described active learning-based ranking model(s) will
be integrated into an AMS to automatically prioritize alerts for
analysts. This will allow the analysts to focus their triaging
efforts on alerts most likely to be promoted to events and
may also increase the time available for in-depth investigations
of events. As new alerts are created, the model will predict
their labels and insert them into the tracking system in the
appropriate location relative to all the other open alerts. On a
nightly basis, the model(s) will be rebuilt using all available
labeled alerts, including the labels (both explicit and implicit)
obtained the previous day. Then, all open alerts will be
relabeled in batch-mode. This relabeling is performed during
off-peak times so as not to cause unnecessary load when the
AMS is being heavily used by analysts.

The AMS allows analysts to modify the contents of an alert.
For example, if an analyst discovers new information during
the triaging process, he or she may append this information to
the contents of the alert. When any open alert is modified in
such a way as to cause a change in value for any of its features,
features will again be extracted, the model will predict a new
label, and the alert will be moved to the appropriate location
given its new priority.

Multiple analysts have independently requested that we pe-
riodically project closed alerts onto our newly-built model(s).

3In this context, we mean the queried data necessary to approach the
accuracy of the model trained on all nine folds.

4The training folds consist of roughly 90% of the data, or approximately
8000 alerts.

By reprioritizing closed alerts, it is possible that the current
model, with the advantage of new information, may deem some
of the closed alerts as likely to be promoted. This may prompt
an analyst to revisit these closed alerts to see if actual events
were missed and begin their respective investigations.

VIII. CONCLUSION

In the operational cyber security group of a typical orga-
nization, data from multiple sources are monitored, and when
certain conditions in the data are met, an alert is generated
in an AMS. Analysts must inspect these alerts to decide if
any deserve promotion to an event, which is typically a very
manual, time-consuming process. We have investigated the
use of active learning to automatically prioritize alerts so
that analysts can effeciently triage alerts, focus on in-depth
investigations, and rapidly respond to potential threats. We
have shown that, for our data, active learning results in a 70%
reduction in the number of labels required to achieve the same
performance as when using the fully-labeled dataset.

ACKNOWLEDGMENT

Funding for this work came from the Laboratory Directed
Research and Development program at Sandia National Lab-
oratories.

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly-owned
subsidiary of Lockheed Martin Corporation, for the U.S. De-
partment of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

The authors would like to thank Dustin Franklin, Nick
Peterson, Todd Bruner, Roger Suppona, Beth Potts, Bill Hart,
and Danny Dunlavy for useful discussions, insights, and con-
tributions.

REFERENCES

[1] D. M. Blei, A. Y. Ng, M. L. Jordan, and J. Lafferty, “Latent Dirichlet
Allocation,” Journal of Machine Learning Research, vol. 3, p. 2003,
2003.

[2] E. Bloedorn, L. Talbot, and D. DeBarr, “Data Mining Applied to
Intrusion Detection: MITRE Experiences,” in Machine Learning and
Data Mining for Computer Security, ser. Advanced Information and
Knowledge Processing, M. Maloof, Ed. Springer London, 2006, pp.
65-88.

[3] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp.
5-32, 2001.

(4]

(5]

(6]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

C. Cortes and V. Vapnik, “Support Vector Machine,” Machine Learning,
vol. 20, no. 3, pp. 273-297, 1995.

T. Fawcett, “An Introduction to ROC Analysis,” Pattern Recognition
Letters, vol. 27, no. 8, pp. 861-874, 2006.

C. Ferri, J. Herndndez-Orallo, and R. Modroiu, “An Experimental Com-
parison of Performance Measures for Classification,” Pattern Recogn.
Lett., vol. 30, no. 1, pp. 27-38, Jan. 2009.

R. A. Fisher, “The Use of Multiple Measurements in Taxonomic
Problems,” Annals of Eugenics, vol. 7, no. 2, pp. 179-188, 1936.

M. D. Hoffman, D. M. Blei, and F. Bach, “Online Learning for Latent
Dirichlet Allocation,” in In NIPS, 2010.

J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Computing In
Science & Engineering, vol. 9, no. 3, pp. 90-95, May-Jun 2007.

D. D. Lewis and W. A. Gale, “A Sequential Algorithm for Training
Text Classifiers,” in Proceedings of the 17th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, ser. SIGIR *94. New York, NY, USA: Springer-Verlag New
York, Inc., 1994, pp. 3-12.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine Learning in Python ,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

J. Platt et al., “Sequential Minimal Optimization: A Fast Algorithm for
Training Support Vector Machines,” 1998.

I. Rish, “An Empirical Study of the Naive Bayes Classifier,” in IJCAI
2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3,
no. 22, 2001, pp. 41-46.

T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke,
T. Riickstiel, and J. Schmidhuber, “PyBrain,” Journal of Machine
Learning Research, 2010.

D. Sculley, M. E. Otey, M. Pohl, B. Spitznagel, J. Hainsworth, and
Y. Zhou, “Detecting Adversarial Advertisements in the Wild,” in Pro-
ceedings of the 17th ACM SIGKDD International Conference on Data
Mining and Knowledge Discovery, 2011.

B. Settles, Active Learning, ser. Synthesis Lectures on Artificial Intel-
ligence and Machine Learning. Morgan & Claypool Publishers, 2012.

R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in In Proceedings of the IEEE
Symposium on Security and Privacy, 2010.

J. W. Stokes, J. C. Platt, J. Kravis, and M. Shilman, “Aladin: Active
Learning of Anomalies to Detect Intrusions,” Technique Report. Mi-
crosoft Network Security Redmond, WA, vol. 98052, 2008.

M. Tavallaee, E. Bagheri, W. Lu, and A.-A. Ghorbani, “A Detailed
Analysis of the KDD CUP 99 Data Set,” in Proceedings of the
Second IEEE Symposium on Computational Intelligence for Security
and Defence Applications 2009, 2009.

J.-P. Vert, K. Tsuda, and B. Scholkopf, “A Primer on Kernel Methods,”
Kernel Methods in Computational Biology, pp. 35-70, 2004.

F. Wilcoxon, “Individual Comparisons by Ranking Methods,” Biomet-
rics Bulletin, vol. 1, no. 6, pp. 80-83, 1945.

