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Abstract—Anomaly detection is a common component in com-
puter security. This paper proposes a host-based anomaly detec-
tion method based on k-means clustering and Markov networks.
First, the training data are clustered. Then, in each cluster, a
separate Markov network is built to model the underlying benign
behavior. During testing, each Markov network predicts the
probability for each previously-unseen instance. If the probability
from multiple Markov networks is low, the point is classified as
malicious. We experimentally show that our proposed approach
outperforms several other approaches, while being less sensitive
to label noise.

Index Terms—Computer security, host-based anomaly detec-
tion, Markov random fields

I. INTRODUCTION

Anomaly detection [1] refers to the problem of detecting
patterns in data that do not conform to a normal or expected
behavior. These patterns are called anomalies or outliers. An
outlier [2] can be defined as a data instance which greatly
deviates from the other instances, generally because it was
generated by a different underlying mechanism. In network
security an anomaly can be any illegitimate/malicious instance
that deviates from normal/benign data.

Anomaly detection aims to find malicious data by examin-
ing the data records under the assumption that the malicious
instances will somehow differ from the benign instances. The
detection process can be divided into two categories: 1) host-
based [3] in which the system monitors operating system
events like system calls of each computer in the network and 2)
network-based [4] in which the system monitors the network
traffic data. Traditionally, network-based anomaly detection
focuses on data received from an outsider. Therefore, it cannot
detect malicious data generated by an insider or malicious data
that is being sent without generating abnormal network traffic.

Our system is a host-based anomaly detection system which
collects periodic snapshots of system calls from machines
on the network. Then, it examines them by comparing each
snapshot to a prior model which is trained using historical
data. The objective is to classify the snapshots as benign or
malicious.

Various approaches can be used to train and use the model.
One approach assumes that there is enough training data to
represent both the benign and malicious data in the model. So,
the model learns the patterns of both classes of data. Typically,
the training dataset may not be balanced. That is, one class

may have few instances and the other may have a large
number of instances. This imbalance may cause a problem
in training. In our case, the malicious training data are rare
and it is not possible to represent all of the “characteristics”
of malicious behavior during training. In other words, some
malicious behavior may not appear in the training data. Hence,
it is difficult to come up with malicious data a priori. In this
paper we follow two different approaches. The first uses only
benign training data which we call unsupervised learning, and
the second uses benign and few malicious data to train the
model which we call semi-supervised learning.

In this paper, we present a host-based anomaly detection
method, clustered Markov networks (CMN). CMN first applies
k-means clustering to the benign training data, and then
uses Markov networks to probabilistically model each cluster.
During testing, each Markov network predicts the probability
of each testing instance. If the average predicted probability is
below a threshold, the system declares the instance malicious.

We experimentally compare our methods with existing
methods, including label propagation (LP) [5], Markov net-
works (MN) [6], and k-means outlier detection (KMOD) [7].
We also investigate clustered label propagation (CLP) and
compare it to our CMN approach. CLP starts by applying
k-means clustering to training data with both benign and
malicious instances. It then labels each cluster based on the
cluster’s central-most point. At testing time, these points
are added to the testing data as labeled points and label
propagation, a semi-supervised learning algorithm, is used
to label the testing data. Our experiments show that CMN
outperforms these other methods, because it is able to model
the local characteristics of the benign data.

This paper makes the following contributions:

o We propose a novel anomaly detection algorithm (CMN)
in which we combine k-means clustering with Markov
networks.

« We compare our approach with other approaches, namely:
Markov networks (MN) (without clustering), k-means
outlier detection (KMOD), label propagation (LP) (with-
out clustering), and clustered label propagation (CLP).

e We show that our CMN approach outperforms the other
methods in terms of the detection of true malicious data
without adding additional false alarms.

The rest of this paper is organized as follows: Sec-



tion II presents technical background information; Section III
presents our Markov network and label propagation techni-
ques; Section IV presents our experimental results; Section V
presents related work; finally, Section VI concludes the paper.

II. BACKGROUND

Our work relies on a number of methods, including k-
means clustering, Markov networks, and label propagation.
We review these algorithms here.

A. K-means Clustering

K-means [8] is a clustering algorithm which partitions the
data into k£ optimal clusters. In k-means, each data point is
assumed to be a d-dimensional vector. Each cluster has a
“centroid,” which is the average vector of all points assigned
to that cluster. Each point is assigned to the cluster with the
nearest centroid. The algorithm procedes in an expectation-
maximization style: first, k centroids are generated randomly.
Then, the data are assigned to the nearest centroid, and the
centroids are updated accordingly. This process repeats until
some convergence criterion is met.

However, k-means can be sensitive to the initial random
choice of centroids. So, we run the algorithm multiple times
with different random centroids. We then report the clustering
that leads to the most accurate results.

B. Markov Networks

Markov networks [6] (also known as Markov random
fields) are a form of probabilistic graphical models, which
specify probability distributions that model data. In Markov
networks, the distribution is represented by an undirected
graph G = (V, E) where nodes represent random variables
(i.e, features) and edges encode independence properties of the
joint distribution. Specifically, two variables are independent
if there is no path between them. Similarly, two variables
are conditionally dependent if there is a path between them.
Additionally, each Markov network has a set of “factors”
associated with subsets of V. These factors are functions
@i : val(D;)— > R, where D; C V, and val(D;) denotes
the possible value combinations of the variables in D;. Then,
the Markov network defines a probability distribution
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where Z is a normalization constant,

z= Y [le®.
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We calculate P(Z) without normalization because comput-
ing Z is computationally difficult. However, this does not
affect the final results when all the instances are tested using
the same models.

Algorithm 1: Label Propagation

input : The data points X and their classifications Y,
y; € {—1,0,1}, where 0 represents unlabeled
data.

output: The predicted labels of unlabeled points.

1 begin
Compute W from X;
gompute the diagonal matrix D by D;; < > ; Wijs
YO v,
repeat
Yyt o D=y o,
171(t+1) v
until convergence to y (o).
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C. Label Propagation

Label propagation [5], [9] is a semi-supervised learning
algorithm in which labeled and unlabeled data are used to form
a similarity or “affinity” matrix W, where w;; represents the
similarity between data points ¢ and j. A common choice of
similarity measure is the Gaussian kernel,
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where o is the width parameter. In general, we assume that
w;; = Wx(z;,x;), where Wx(-) is a symmetric, positive
function that may depend on the entire dataset X.

Given W, the label propagation algorithm is based on a
simple idea: labeled nodes propagate their labels to their neigh-
bors, with this propagation being weighted by the similarity
measure W. A variation of the label propagation algorithm is
given in Algorithm 1. This version is restricted to two classes

[5].
III. OUR APPROACH

We present two novel approaches for anomaly detection:
clustered Markov networks (CMN) and clustered label prop-
agation (CLP). We assume that we have only benign labeled
data for CMN and that we have both benign and malicious
data in CLP.

A. Clustered Markov Networks (CMN)

Markov networks (MN) can be used as an anomaly detection
method. The networks are trained using the “benign” training
data only. All the vertices (i.e, features) in the MN are
connected to each other. So, the network is a completely
connected graph. Each factor in MN consists of only two
features. Each factor is built by counting the number of co-
occurrences of each value of its first feature with each value
of its second feature. Then, the network is used as a model
to predict the probabilities of the instances to be examined.
If the probability of the instance is high, then the instance
is classified as benign. Conversely, if its probability is lower



Algorithm 2: Training Clustered Markov Networks

Algorithm 3: Testing with Clustered Markov Networks

input : Training data D, consisting of “benign” data;
k, the number of clusters.
output: An ensemble FE of Markov networks.

1 begin

2 E < 0

3 for ¢ € k-Means(Dy,) do
4 | E + EUBuildMN(c);

than some threshold A, then it is classified as malicious. The
threshold h can be specified in multiple ways. In all of our
networks, we take h to be the average probability of all the
testing instances plus their variance.

We call the previous approach a “global” Markov network,
because it learns from the whole training dataset without
considering that the training data may have multiple types of
benign characteristics. The results show that the false negative
rate is high and the true positive rate is low, which indicates
that the model is missing multiple types of malicious data. This
drawback may be due to the heterogeneity of the training data,
which may lead to overestimated MNs.

To solve this problem, we use the CMN approach. We
assume that the normal data with similar characteristics will
have minimum distances between each other. In CMN the
training data are first clustered using k-means, then “local”
MNs are trained on each cluster independently, as shown in
Algorithm 2. Line 3 shows that k-means clustering is applied
to the training data Dy,.. In line 4, a Markov network is built
using each cluster ¢ and the resulting networks are stored in
an ensemble E.

During testing, each local network independently predicts
the probability of the instance. Then, the resulting probability
predictions are averaged to obtain an overall prediction. If the
average probability of an instance is less than some threshold,
it is classified as malicious; otherwise, it is classified as benign,
as shown in Algorithm 3. In line 2, each testing instance d;
is retrieved from the testing dataset D;. Then, in lines 3 and
4, each Markov network M in ensemble E calculates the
probability p; of d;. In line 5, the average probability, P,
of all p;’s is calculated and compared to the threshold h as
stated from lines 6 to 9. As stated before, we calculate h by
taking the average probability of all the testing instances plus
their variance.

Clustering boosts the performance of the networks. It allows
MNs to be built from data that have similar characteristics.
This leads to MNs that are more capable of detecting malicious
data. The experimental results show that CMN is able to detect
a higher number of malicious instances.

B. Clustered Label Propagation (CLP)

Next, we present a variation of the label propagation (LP)
algorithm (described in Section II-C) called clustered label
propagation (CLP). In this method, k-means clustering is

input : Testing data D;, consisting of “benign” data; F,
an ensemble of Markov networks; h, the
threshold.

output: D; = {d;}, the predicted classifications of the
data points D;.

begin
for d; € D; do
for M; € E do
L pj Test(Mj,di);
1B
Pavg — 27‘31‘ b 5
if P,y > h then
\ d; + —1;
else
L d; < 1
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Fig. 1: Clustered Label Propagation (CLP)

combined with the label propagation algorithm. The procedure
is shown in Algorithm 4.

Here, the training dataset, which contains both benign and
malicious instances, is intelligently selected using clustering.
Initially, there are two empty sets: labeled point set P, and
its corresponding label set Y;. K-means clustering is applied
to the training dataset Dy, to create k clusters ci,co,...,Ck.
For each cluster, the closest point p,,;, to the centroid p.
(using Euclidean distance) is selected and inserted into P
while its corresponding label y is inserted into Y;. Finally, label
propagation is applied using P, and Y; to label the unlabeled
points.

Fig. 1 illustrates the clustered label propagation method. The
top of the figure shows the clusters for the training dataset. For
each cluster, the closest point to the centroid and its label are
selected. In the figure, the centroid is represented by a cross.
One can see in cluster 1 that the closest point to its centroid is
labeled as malicious (i.e, the shaded circle). Similarly, cluster



Algorithm 4: Training Clustered Label Propagation (CLP)
input : Training Dataset Dy,..
output: Labeled point set P, and its corresponding label
set Y].

1

2 | P={}. Yi={ }:

3 Cs + Cluster (Dy,.) where Cs ={c1,¢2,. ..,k }3
4 for each cluster c; € C do

5 pe < Center(c;);

6 Pmin  FindMinDistPoint( p. );

7 Y < Label(pmin);

8 Vi< YU {y};

9

P+ P {pmin };

Algorithm 5: Testing with Clustered Label Propagation
(CLP)
input : Testing Dataset D;, labeled point set P; and its
corresponding label set Y.
output: The predicted labels for unlabeled points.

1 begin
2 Dt — Dt U Pl;
3 Run label propagation with Y;;

2 and 3 have points nearest to the centroid which are benign
(i.e, the striped circles). These labeled points are then used
to run the label propagation (LP), which labels all the testing
data.

The label propagation (LP) algorithm is an efficient algo-
rithm for classification. It constructs a similarity graph over all
items in the input dataset. However, LP needs some labeled
data initially and finding these labeled data can be an expensive
task. Clustered label propagation (CLP) has introduced the
clustering feature into the label propagation algorithm. CLP
requires fewer labeled data instances and these instances are
more influential to the label propagation algorithm. Thus, CLP
reduces the total number of initial labels needed. (Note that LP
and CLP require both benign and malicious data for training
and there are few instances in the malicious class.)

C. K-means Outlier Detection (KMOD)

For this method [7], only benign instances are used to train
the model. During training, k-means clustering is first applied
to the dataset. Then, for each test instance, the cluster with the
nearest centroid is found using Euclidean distance. Finally, if
the distance between the point and the centroid of the cluster
is smaller than the distance between the centroid and farthest
point of the cluster, it is normal. Otherwise, it is classified as
anomalous.

IV. EXPERIMENTAL RESULTS

We have evaluated the discussed methods on a dataset of
system calls, where each instance is a snapshot of system calls

Training Testing
Method | # Benign | # Malicious | # Benign | # Malicious
MN 20,700 0 2,300 1,000
CMN 20,700 0 2,300 1,000
KMOD | 20,700 0 2,300 1,000
LP 19,837 863 3,163 137
CLP 19,837 863 3,163 137

TABLE I: Dataset Sizes

collected from a running executable during its first two minutes
of execution. Each instance is a binary vector representing
the presence or absence of a system call during execution;
there are a total of 284 possible system calls. Each instance
is also labeled as either benign or malicious. The benign
samples were collected from live feeds of all files that crossed
a corporate network border. In order to mitigate the risk of
having potentially malicious samples in this feed, the samples
were filtered through anti-virus scanners before labeling the
data stream as “good”. For malware, we used a daily feed from
Arbor Networks, a security company that collects malicious
software from the many network sensors that they own. The
dataset contains 24,000 instances, of which 23,000 are benign
and 1,000 are malicious.

Weka [10] was used to implement k-means in the CMN
and KMOD experiments. The CLP and LP experiments were
implemented in Python using the Scikit-Learn [11] implemen-
tation of label propagation and k-means.

A. Overall Performance

The Markov networks (MN), clustered Markov networks
(CMN), and k-means outlier detection (KMOD) approaches
were trained using 20,700 benign instances and tested on
the remaining 1,000 malicious and 2,300 benign instances.
However, as the label propagation (LP) and clustered label
propagation (CLP) require both benign and malicious training
data, the same training data cannot be used. The LP and CLP
approaches were therefore trained with 19,837 benign and
863 malicious randomly-selected instances. These numbers are
summarized in TABLE 1.

For CLP, we have set the number of clusters &k to 2,070. In
CLP, we take only one point (the nearest point to the centroid)
with its label from each cluster. If there are a smaller number
of clusters, then there are fewer labeled points for the label
propagation algorithm. So, the algorithm does not spread the
labels to the unlabeled points appropriately with these fewer
labeled points. For the CMN and KMOD experiments, we
varied the number of clusters k from 2 to 10 and have reported
the results in Fig. 3.

Our results show that CMN outperforms the other methods
in terms of maximizing the true positive rate and F» measure
while minimizing the false negative and false positive rates.
The best results of all approaches are shown in TABLE II.
The value of F5 in CMN is 0.828 and it is higher than MN,
KMOD, LP, and CLP which all have F, values of 0.483,
0.668, 0.113, and 0.0 respectively. This confirms our claim
that using clustering and then building a Markov network on



Method F> TPR FPR FNR | TNR
MN 0.483 | 0.571 | 0.582 | 0.429 | 0.417
CMN 0.828 | 0.845 | 0.112 | 0.155 | 0.887
KMOD | 0.668 | 0.837 | 0.622 | 0.163 | 0.378
LP 0.113 | 0.188 | 0.179 | 0.811 0.82
CLP 0.0 0.0 0.172 1.0 0.827

TABLE II: Experimental Results
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Fig. 2: Effect of Label Noise on F, Measure

each cluster increases the number of discovered true positives
without adding false positives.

B. Sensitivity to Mislabeled Data

We have also investigated the effect of having label noise
in the training data. Here, label noise refers to malicious
instances that have been labeled as benign. We have varied
the percentage of noise from 0.01% to 1% and reported the
results in Fig. 2. The z-axis is the percentage of noisy data
embedded in the training data and the y-axis is the F5 values
for each method. The figure shows that CMN outperforms
MN, KMOD, LP, and CLP. For example, when 1% of the
training data is mislabeled, F, value of CMN is 0.7 while it
is 0.471, 0.416, 0.055, and 0.0 for MN, KMOD, LP, and CLP
respectively. This clearly shows that CMN is less sensitive to
noise.

C. Sensitivity to Number of Clusters

Additionally, we have varied the number of clusters k£ in
CMN and KMOD from 2 to 10 to estimate the effect of cluster
size on performance. The results are reported in Fig. 3. The
x-axis represents k and the y-axis represents F5. The value of
F5 has increased from 0.5 using MN to 0.8 on average using
CMN. MN is represented in Fig. 3 by a straight line, because
it does not use the clustering method. The F, measure for
KMOD increases as k increases. However, the false positive
rate (FPR) also increases. For example, using 10 clusters,
the F5 values for KMOD and CMN are 0.828 and 0.668
respectively, while the FPR values are 0.076 and 0.622.
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Fig. 3: Effect of Cluster Size on F> Measure

V. RELATED WORK

Anomaly detection methods typically fit into one of a
number of broad categories:

e Distance-based [12]: classification is done based on the
number of points in the neighborhood of the examined
point. The neighborhood of a point can be defined as the
points that are closer than some distance d.

o Density-based [13]: classification is done based on the
density of the instances neighborhood. So if the neigh-
borhood of the instance is dense then it is considered
normal; otherwise it is abnormal.

o Statistical-based [14]: classification is based on a proba-
bilistic model; if the test instance is given sufficiently low
probability by the model, it is considered an anomaly.

o Clustering-based [15]: Classification is based on cluster-
ing method. Clusters with small size are considered as
outliers.

Knorr et al. [16] suggest a method that combines the
distance and density approaches, wherein a test instance is
considered an anomaly if the fraction of training instances that
lie within a given radius is below some threshold. However,
this approach requires setting the radius and the threshold,
which may be hard to estimate a priori. In our approach, we
do not set a threshold, instead it is calculated from the data.

Breunig er al. [17] present a density-based approach called
local outlier factor (LOF) in which the data instance is
assigned an outlier score which is equal to the ratio of
average local density of the k-nearest neighbors of the instance
and the local density of the data instance itself. However,
the anomalous instances that are not far enough from other
instances are missed and the use of k-nearest neighbors can
be very expensive depending on the distance function.

The statistical approach [14] has the following advantages.
First, it is mathematically justified by using well-established
statistical methods to detect outliers. Second, if the model
represents the normal data, then the results are accurate and



the methods are very efficient. Third, there is no need to keep
the training data after building the model. On the other hand,
a disadvantage is how to build the best model that represents
the normal data from the training data.

He et al. [15] propose a clustering-based method in which
each test instance is assigned an outlier score called the
cluster-based local outlier factor. The score is measured by
the size of the cluster that the instance belongs to and the
distance between the instance and the next closest cluster. A
disadvantage is that the clustering methods are designed to
cluster the instances in groups, so they are not optimized for
anomaly detection.

We present a host-based anomaly detection algorithm,
CMN, which uses only normal data to train the model. In
CMN, the clustering-based approach is combined with the
statistical approach. The training data is clustered and a
separate Markov network is built from each cluster. All of the
networks are then used as an ensemble to classify the instances
such that an outlier is an instance that does not “fit” into any
of the models. In this way, we produce models that together
have better ability to detect malicious data when compared to
using Markov networks without clustering. Clustering allows
the models to consider the local characteristics of the data and
not be confused by the possible heterogeneity of the entire
dataset. Empirical study shows that it is more effective for
anomaly detection when compared to other similar approaches.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel anomaly detection
approach: clustered Markov networks (CMN) in which we first
use k-means clustering. We then build an ensemble of Markov
networks (one per cluster) which independently predicts the
probabilities of the test instances, and if the average probability
of the test instance passes a threshold, it is classified as normal.

We experimentally compared our proposed approaches to
several other approaches on a real dataset on system calls,
and show that CMN outperforms the other methods. We also
show that CMN is less sensitive to noise as compared to other
approaches.

In the future, we want to improve our approaches by
analyzing the quality of both the clusters and the markov
networks. Then we can use this analysis to discard or combine
some clusters or Markov networks.
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