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Note:	
  I’m	
  going	
  to	
  look	
  at	
  methods	
  associated	
  
with	
  advec=on	
  synonymous	
  with	
  remap.	
  	
  In	
  
reality	
  these	
  are	
  methods	
  for	
  hyperbolic	
  
conserva=on	
  (balance)	
  laws.	
  
	
  



Van	
  Leer	
  introduced	
  the	
  PLM	
  (and	
  PPM)	
  method	
  in	
  his	
  
1977	
  paper	
  

PLM!	
  

Discon=nuous	
  
Galerkin!	
  

PPM!	
  
Geometric	
  	
  
Limiters!	
  

Hybrid	
  	
  
FV-­‐FD	
  

Hermite	
  



Reasoning for rethinking advection & remap 

 For	
  the	
  most	
  part	
  this	
  community	
  has	
  focused	
  upon	
  a	
  
single	
  method	
  (Van	
  Leer’s	
  slope	
  limiter)	
  for	
  remap	
  
 That	
  method	
  was	
  introduced	
  in	
  a	
  1977	
  paper	
  that	
  
includes	
  six	
  different	
  methods.	
  
 We	
  look	
  at	
  this	
  paper	
  and	
  the	
  method’s	
  contained	
  
therein	
  for	
  opportuni=es.	
  
 The	
  method	
  favored	
  for	
  remap	
  is	
  the	
  “worst”	
  of	
  the	
  six	
  

 Some	
  of	
  these	
  methods	
  may	
  be	
  much	
  beVer	
  on	
  modern	
  
compu=ng	
  plaWorms	
  due	
  to	
  their	
  compact	
  nature.	
  
 For	
  example,	
  Paul	
  Woodward’s	
  PPB	
  scheme	
  is	
  based	
  on	
  
Van	
  Leer’s	
  scheme	
  VI	
  
 Not	
  described	
  in	
  the	
  ‘77	
  paper	
  



The six schemes introduced in Van Leer’s paper 

 	
  I	
  –	
  The	
  standard	
  slope	
  limited	
  method	
  
 You	
  know	
  all	
  about	
  it	
  

 II	
  –	
  The	
  evolved	
  slope	
  scheme	
  (Hermite)	
  
 Described	
  briefly	
  here	
  

 III	
  –	
  Piecewise	
  linear	
  DG	
  (moment	
  method)	
  
 Focus	
  of	
  lots	
  of	
  recent	
  effort	
  

 IV	
  –	
  Piecewise	
  parabolic	
  on	
  three	
  points	
  
 Basis	
  for	
  the	
  famous	
  PPM	
  scheme	
  

 V	
  –	
  Piecewise	
  parabolic	
  with	
  evolving	
  edge	
  values	
  
 Reintroduced	
  as	
  the	
  PPM-­‐L	
  scheme	
  

 VI	
  –	
  Piecewise	
  parabolic	
  DG	
  
 Woodward’s	
  PPB	
  scheme	
  



Van	
  Leer’s	
  1979	
  paper	
  provided	
  the	
  true	
  successor	
  to	
  
Godunov’s	
  method.	
  

PLM	
  for	
  the	
  
Euler	
  Equa=ons	
  

(MUSCL)	
  

Lagrange-­‐	
  
Remap	
  



Godunov	
  methods	
  use	
  a	
  geometric	
  approach	
  to	
  
developing	
  the	
  method.	
  

 One	
  of	
  the	
  key	
  aspects	
  of	
  Godunov’s	
  methods	
  is	
  the	
  
development	
  of	
  the	
  numerical	
  method	
  through	
  
interpola=on	
  -­‐	
  the	
  reconstruc=on	
  of	
  the	
  dependent	
  
variables	
  in	
  a	
  finite	
  zone.	
  
 Because	
  the	
  geometry	
  is	
  clear	
  oden	
  the	
  methods	
  (or	
  the	
  
differences	
  between	
  them)	
  can	
  be	
  easy	
  to	
  understand.	
  



Now	
  we	
  will	
  spend	
  =me	
  looking	
  at	
  linear	
  and	
  parabolic	
  
reconstruc=on	
  procedures.	
  

	
  
 PLM	
  is	
  the	
  piecewise	
  linear	
  method	
  (Van	
  Leer	
  I)	
  
 PPM	
  is	
  the	
  piecewise	
  parabolic	
  method	
  (Van	
  Leer	
  IV)	
  
 Both	
  methods	
  produce	
  high	
  quality	
  methods	
  



A	
  second-­‐order	
  Godunov	
  method	
  uses	
  piecewise	
  
linear	
  polynomials.	
  

 The	
  second-­‐order	
  polynomial	
  uses	
  the	
  cell	
  average	
  and	
  a	
  
first-­‐deriva=ve	
  (oden	
  called	
  a	
  slope),	
  

 Several	
  key	
  requirements	
  are	
  necessary	
  for	
  this	
  to	
  useful:	
  

 Conserva=on	
  

 Accuracy	
  

 Boundedness	
  (monotonicity)-­‐the	
  next	
  few	
  slides!	
  

Pj (θ ) = P0 + P1θ;P0 = U j ;P1 = S j

U j = Pj (θ )∫ dθ = P0

S j = P1 =
∂P
∂θ

= ∂U
∂x
∆ x



The	
  key	
  to	
  using	
  these	
  reconstruc=ons	
  is	
  keeping	
  the	
  
polynomials	
  monotone.	
  

 The	
  original	
  statement	
  is	
  
heuris=c:	
  the	
  reconstruc=on	
  
should	
  be	
  bounded	
  by	
  the	
  
neighboring	
  data.	
  
 Later,	
  =me-­‐dependence	
  will	
  
be	
  entertained,	
  the	
  =me	
  
integrated	
  edge	
  values	
  must	
  
be	
  bounded.	
  



We	
  can	
  derive	
  the	
  monotonicity	
  condi=ons	
  using	
  
geometric	
  arguments.	
  

 Take	
  the	
  PLM	
  reconstruc=on	
  and	
  derive	
  the	
  
monotonicity	
  condi=ons,	
  

 Assume	
  the	
  data	
  is	
  increasing	
  led-­‐to-­‐right	
  

 Test	
  the	
  alternate	
  case	
  and	
  you	
  see	
  the	
  minmod	
  limiter	
  
does	
  the	
  trick,	
  

U j−1
n ≤ P(1 / 2) ≤ U j+1

n U j−1
n ≤ P(−1 / 2) ≤ U j+1

n

U j−1
n ≤ U j

n + 1
2 S j ≤ U j+1

n U j−1
n ≤ U j

n − 1
2 S j ≤ U j+1

n

U j−1
n −U j

n ≤ 1
2 S j ≤ U j+1

n −U j
n U j−1

n −U j
n ≤ − 1

2 S j ≤ U j+1
n −U j

n

S j ≤ 2 U j+1
n −U j

n( ) S j ≤ 2 U j
n −U j−1

n( )

S j := minmod S j ,2∆ j−1/2 U,2∆ j+1/2 U⎡⎣ ⎤⎦



Making	
  PLM	
  second-­‐order	
  in	
  =me	
  is	
  rela=vely	
  simple.	
  

 Taking	
  the	
  defini=on	
  of	
  the	
  =me-­‐averaged	
  value	
  from	
  
the	
  integral	
  we	
  can	
  find	
  a	
  second-­‐order	
  =me-­‐accurate	
  
value,	
  

1
−C

P θ( )
1/2

1/2−C

∫ dθ = 1
−C

P0 + P1θ( )
1/2

1/2−C

∫ dθ = P0 +
1
2
1−C( )P1

1
−C

P θ( )
−1/2

−1/2−C

∫ dθ = 1
−C

P0 + P1θ( )
−1/2

−1/2−C

∫ dθ = P0 −
1
2
1+C( )P1

U j
n + 1
2
1−C( )S j

n

C = λ∆ t
∆ x

Courant	
  Number	
  



There	
  is	
  a	
  wide	
  variety	
  of	
  slopes	
  that	
  can	
  be	
  used	
  with	
  
PLM	
  (many	
  from	
  the	
  TVD	
  schemes).	
  

 Here	
  is	
  a	
  slew	
  of	
  different	
  recipes	
  
	
  
 Minmod	
  

 Van	
  Leer	
  

 Fromm	
  

 Van	
  Albada	
  

 And	
  so	
  on,	
  

S j = minmod 1
2 ∆ j−1/2 U + ∆ j+1/2 U( ),2∆ j−1/2 U,2∆ j+1/2 U⎡⎣ ⎤⎦

S j = minmod ∆ j−1/2 ,∆ j+1/2 U⎡⎣ ⎤⎦

S j =
∆ j+1/2 U ∆ j−1/2 U + ∆ j−1/2 U ∆ j+1/2 U

∆ j−1/2 U + ∆ j+1/2 U

S j =
∆ j+1/2 U( )2 ∆ j−1/2 U + ∆ j−1/2 U( )2 ∆ j+1/2 U

∆ j−1/2 U( )2 + ∆ j+1/2 U( )2



There’s	
  more,	
  the	
  slope	
  before	
  limi=ng	
  can	
  be	
  chosen	
  
more	
  broadly.	
  

 High-­‐order	
  slopes	
  can	
  improve	
  the	
  performance	
  of	
  the	
  
method,	
  

 An	
  example	
  would	
  be	
  a	
  fourth-­‐order	
  choice,	
  

 Or	
  a	
  sixth-­‐order	
  choice	
  

 Or	
  whatever	
  you	
  like…	
  
 It	
  can	
  be	
  used	
  in	
  conjunc=on	
  with	
  the	
  limiter	
  

S j := minmod S j ,2∆ j−1/2 U,2∆ j+1/2 U⎡⎣ ⎤⎦

S j
n =

8 U j+1
n −U j−1

n( )− U j+2
n −U j−2

n( )
12

S j
n =

45 U j+1
n −U j−1

n( )− 9 U j+2
n −U j−2

n( ) + U j+3
n −U j−3

n( )
60



Its	
  always	
  important	
  to	
  start	
  with	
  a	
  stability	
  analysis	
  to	
  
make	
  sure	
  you’re	
  on	
  the	
  right	
  path.	
  

 Before	
  taking	
  the	
  =me	
  to	
  code	
  a	
  scheme	
  one	
  
should	
  know	
  exactly	
  what	
  to	
  expect	
  from	
  the	
  
method.	
  	
  It	
  also	
  makes	
  a	
  good	
  =me	
  to	
  state	
  the	
  
design	
  principles:	
  

1.   Have	
  a	
  stable	
  dissipa=ve	
  (entropy	
  condi=on	
  
sa=sfying)	
  monotone	
  method	
  as	
  a	
  founda=on,	
  

2.   Blend	
  it	
  with	
  a	
  stable	
  (upsteam-­‐centered)	
  high-­‐
order	
  method	
  

3.   Define	
  the	
  blending	
  via	
  monotonicity	
  or	
  some	
  
other	
  nonlinear	
  stability	
  principle	
  .	
  

4.   Test,	
  test,	
  test	
  



High-Resolution Methods 

 Provide	
  an	
  introduc=on	
  to	
  high-­‐resolu+on	
  schemes	
  
including	
  some	
  ideas	
  about	
  mo=va=on	
  and	
  implementa=on	
  

	
  	
  
 These	
  methods	
  have	
  provided	
  an	
  enormous	
  upgrade	
  in	
  
computa=onal	
  performance	
  over	
  the	
  previous	
  genera=on	
  
of	
  methods.	
  

	
  
 The	
  Dogbert	
  Principle:	
  “Logically	
  all	
  things	
  are	
  created	
  by	
  
a	
  combina+on	
  of	
  simpler,	
  less	
  capable	
  components”	
  (see	
  
Laney	
  in	
  Computa=onal	
  Gasdynamics)	
  



High Resolution Methods and Accuracy and 
order of convergence 
 Linear	
  versus	
  nonlinear	
  error	
  
 For	
  high	
  order	
  (unsplit)	
  schemes	
  gekng	
  nonlinear	
  high	
  
order	
  is	
  very	
  expensive	
  (lots	
  of	
  quadrature	
  points)	
  
 If	
  there	
  is	
  a	
  discon=nuity	
  then	
  the	
  order	
  of	
  accuracy	
  is	
  
first	
  order	
  
 A	
  good	
  ques=on	
  to	
  ask,	
  what	
  is	
  required	
  for	
  prac=cal	
  
accuracy	
  for	
  discon=nuous	
  problems?	
  
 What	
  is	
  the	
  important	
  design	
  point…	
  I	
  think	
  the	
  linear	
  
accuracy	
  is	
  a	
  good	
  guide.	
  



What is a high-resolution method? 
Or the role of method nonlinearity 

 The	
  need	
  for	
  method	
  nonlinearity	
  is	
  a	
  consequence	
  of	
  
Godunov’s	
  theorem:	
  
 No	
  linear	
  method	
  can	
  be	
  second-­‐order	
  and	
  
monotone…	
  but	
  a	
  nonlinear	
  method	
  can	
  be	
  second-­‐
order	
  and	
  monotone	
  (TVD,	
  FCT,PLM,	
  PPM,	
  ENO,	
  
WENO...)!*	
  

 These	
  methods	
  hybridized	
  the	
  (classical)	
  linear	
  schemes	
  
(capitalizing	
  on	
  the	
  best	
  of	
  each!)	
  
 To	
  achieve	
  higher	
  order	
  and	
  physically	
  relevant	
  
solu=ons	
  e.g.	
  LxW	
  and	
  upwind	
  



Basic Elements of Methods 

Weighted	
  ENO	
  Method	
  
•  Entropy	
  scheme	
  (LLxF)	
  
•  Flux	
  SpliLng	
  
•  Base	
  fluxes	
  
•  High-­‐order	
  flux	
  
•  Weights	
  
•  Smoothness	
  detector	
  
•  Method-­‐of-­‐lines	
  

High-­‐Order	
  Godunov	
  
•  Riemann	
  solver	
  (upwind)	
  
•  Characteris6c	
  Projec6on	
  
•  High-­‐order	
  differencing	
  
•  Limiter	
  
•  Time-­‐centering	
  

  The key to these methods is 
successfully hybridizing high-order 
and entropy satisfaction   



How	
  does	
  the	
  method	
  do?	
  

 Square	
  wave	
  -­‐	
  

 Gaussian	
  -­‐	
  	
  

Error	
  

Error	
  



What	
  about	
  4th	
  order	
  slopes	
  

 Square	
  wave	
  

 Gaussian	
  

Error	
  

Error	
  



Now	
  we	
  will	
  spend	
  =me	
  looking	
  at	
  linear	
  and	
  
parabolic	
  reconstruc=on	
  procedures.	
  

 PLM	
  is	
  the	
  piecewise	
  linear	
  method	
  (Van	
  Leer	
  I)	
  
 PPM	
  is	
  the	
  piecewise	
  parabolic	
  method	
  (Van	
  Leer	
  IV)	
  
 Both	
  methods	
  produce	
  high	
  quality	
  methods	
  



The	
  PPM	
  method	
  first	
  studied	
  by	
  Van	
  Leer	
  in	
  ‘77	
  
appeared	
  in	
  Colella	
  &	
  Woodward’s	
  paper.	
  



A	
  second-­‐order	
  Godunov	
  method	
  uses	
  piecewise	
  
linear	
  polynomials.	
  

 The	
  second-­‐order	
  polynomial	
  uses	
  the	
  cell	
  average	
  and	
  
the	
  cell	
  edge	
  values,	
  

 Several	
  key	
  requirements	
  are	
  necessary	
  for	
  this	
  to	
  
useful:	
  

 Conserva=on	
  

 Accuracy	
  

 Boundedness	
  (monotonicity)-­‐the	
  next	
  few	
  slides!	
  

Pj (θ ) = P0 + P1θ + P2θ
2

U j = Pj (θ )∫ dθ = P0

 U j±1/2 = U x j±1/2( ) + O ∆ xn( )

P0 = U j
n − 1

12 P2;P1 = U j+1/2
n −U j−1/2

n ;P2 = 3 U j+1/2
n − 2U j

n +U j−1/2
n( )



First,	
  a	
  new	
  func=on	
  to	
  simplify	
  programming	
  

 Remember	
  the	
  minmod	
  func=on,	
  using	
  it	
  we	
  can	
  define	
  
a	
  median	
  func=on	
  

 The	
  median	
  will	
  return	
  whatever	
  argument	
  that	
  is	
  
bounded	
  by	
  the	
  other	
  two.	
  
 The	
  median	
  also	
  has	
  some	
  other	
  useful	
  proper=es	
  that	
  
we	
  will	
  exploit	
  in	
  a	
  later	
  lecture	
  (for	
  gekng	
  high-­‐order	
  
accuracy)	
  

median a,b,c( ) = a +minmod b − a,c − a( )



We	
  can	
  derive	
  the	
  monotonicity	
  condi=ons	
  using	
  
geometric	
  arguments.	
  

 Just	
  as	
  PLM	
  we	
  start	
  with	
  the	
  same	
  basic	
  condi=ons,	
  

 We	
  can	
  inforce	
  this	
  condi=on	
  with	
  two	
  opera=ons	
  that	
  
put	
  the	
  interface	
  value	
  between	
  the	
  cell	
  values	
  bounding	
  
them.	
  

 The	
  only	
  problem	
  now	
  is	
  an	
  local	
  extrema	
  inside	
  the	
  
zone.	
  

U j−1
n ≤ P(1 / 2) ≤ U j+1

n U j−1
n ≤ P(−1 / 2) ≤ U j+1

n

U j+1/2
n := median U j

n ,U j+1/2
n ,U j+1

n( ) U j−1/2
n := median U j−1

n ,U j−1/2
n ,U j

n( )



We	
  can	
  derive	
  the	
  monotonicity	
  condi=ons	
  using	
  
geometric	
  arguments.	
  

 We	
  can	
  observe	
  that	
  the	
  PPM	
  reconstruc=on	
  can	
  
introduce	
  local	
  extrema	
  within	
  a	
  zone.	
  	
  This	
  is	
  clearly	
  
NOT	
  monotone	
  so	
  it	
  must	
  be	
  excluded.	
  
 A	
  local	
  extrema	
  occurs	
  when	
  the	
  deriva=ve	
  of	
  the	
  
polynomial	
  is	
  zero,	
  if	
  we	
  force	
  this	
  to	
  occur	
  at	
  or	
  outside	
  
(no	
  problem)	
  we	
  are	
  monotone.	
  

dP θ( ) dθ = P1 + 2P2θ



We	
  can	
  now	
  finish	
  the	
  monotonicity	
  deriva=on	
  

 Force	
  zero	
  in	
  the	
  deriva=ve	
  to	
  the	
  edges	
  if	
  they	
  occur	
  in	
  
the	
  cell	
  

 Summarize	
  the	
  algorithm	
  

0 = P1 + 2P2θ

U j±1/2
n := median U j

n ,U j±1/2
n ,U j±1

n( )

0 = P1 + P2 = U j+1/2
n −U j−1/2

n + 3 U j+1/2
n − 2U j

n +U j−1/2
n( )

4U j+1/2
n − 2U j−1/2

n − 6U j
n = 0 U j−1/2

n = 3U j
n − 2U j+1/2

n

0 = P1 − P2 = U j+1/2
n −U j−1/2

n − 3 U j+1/2
n − 2U j

n +U j−1/2
n( )

−2U j+1/2
n − 4U j−1/2

n + 6U j
n = 0 U j+1/2

n = 3U j
n − 2U j−1/2

n

 U j±1/2
n := median U j

n ,U j±1/2
n , 3U j

n − 2U j1/2
n( )



Making	
  PPM	
  third-­‐order	
  in	
  =me	
  more	
  complex.	
  

 Taking	
  the	
  defini=on	
  of	
  the	
  =me-­‐averaged	
  value	
  from	
  
the	
  integral	
  we	
  can	
  find	
  a	
  second-­‐order	
  =me-­‐accurate	
  
value,	
  

1
−C

P θ( )
1/2

1/2−C

∫ dθ = P0 + P1θ + P2θ
2( )

1/2

1/2−C

∫ dθ

U j+1/2 = P0 + P1 1
2 − C

2( ) + P2 1
4 − C

2 + C2
3( )

1
−C

P θ( )
−1/2

−1/2−C

∫ dθ = P0 + P1θ + P2θ
2( )

−1/2

−1/2−C

∫ dθ

U j−1/2 = P0 + P1 − 1
2 − C

2( ) + P2 1
4 + C

2 + C2
3( )



Woodward & Colella’s special edge value 

 The	
  method	
  is	
  designed	
  to	
  make	
  sure	
  the	
  edge	
  lies	
  
between	
  the	
  adjacent	
  cell	
  values,	
  

 This	
  sort	
  of	
  procedure	
  can	
  be	
  derived	
  for	
  other	
  high-­‐
order	
  approxima=ons	
  to	
  the	
  edges.	
  
 This	
  approach	
  has	
  a	
  significantly	
  posi=ve	
  impact	
  on	
  the	
  
magnitude	
  of	
  error	
  associated	
  with	
  the	
  solu=on.	
  

U j+1/2
n = 1

2 U j
n +U j+1

n( )− 1
6 δU j+1

n −δU j
n( )

δU j
n = minmod 1

2 U j+1
n −U j−1

n( ),2 U j
n −U j−1

n( ),2 U j+1
n −U j

n( )⎡⎣ ⎤⎦



There’s	
  more,	
  the	
  ini=al	
  edge	
  values	
  need	
  to	
  be	
  
chosen.	
  

 Colella	
  and	
  Woodward	
  chose	
  fourth-­‐order	
  values*.	
  
	
  
 Higher-­‐order	
  edges	
  can	
  improve	
  the	
  performance	
  of	
  the	
  
method,	
  a	
  sixth-­‐order	
  choice	
  

 Or	
  a	
  fidh-­‐order	
  upwind	
  choice	
  

 Or	
  whatever	
  you	
  like,	
  a	
  least	
  third-­‐order	
  or	
  its	
  not	
  
worth	
  it!	
  

*	
  C&W	
  actually	
  use	
  a	
  special	
  fourth-­‐order	
  method	
  

U j+1/2
n = 7

12 U j
n +U j+1

n( )− 1
12 U j−1

n +U j+2
n( )

U j+1/2
n = 37

60 U j
n +U j+1

n( )− 8
60 U j−1

n +U j+2
n( ) + 1

60 U j−2
n +U j+3

n( )
U j+1/2

n = 2
60U j−2

n − 13
60U j−1

n + 47
60 U j

n + 27
60U j+1

n − 3
60U j+2

n



High-Order Edge Values – Tremendous flexibility! 

 First	
  compute	
  the	
  edge	
  values:	
  Sixth-­‐order	
  centered	
  

 Seventh-­‐order	
  upwind	
  

 Seventh-­‐order	
  parabolic	
  

 Six-­‐point	
  op=mal	
  stencil	
  [0,3p/4]	
  

!!U j+1 2 =
37 U j +U j+1( )− 8 U j−1 +U j+2( )+ U j−2 +U j+3( )

60

!!U j+1 2 = a U j +U j+1( )+b U j−1 +U j+2( )+ c U j−2 +U j+3( )

� 

a= 0.681056...;b=−0.229918...,c= 0.048816..

!!U j+1 2 =
−3U j−3 + 25U j−2 − 101U j−1 + 319U j + 214U j+1 − 38U j+2 + 4U j+3

420

!!U j+1 2 =
−111U j−3 + 849U j−2 − 3010U j−1 + 8510U j + 6645U j+1 − 1349U j+2 + 148U j+3

11520



 

 

 

Scheme Stability & Truncation Error is 
exceptional 

 Using	
  Fourier	
  analysis:	
  	
  
 All	
  stable	
  to	
  CFL=1	
  

 Fourth-­‐order	
  trunca=on	
  error	
  
 Amplitude	
  
 Phase	
  

 Sixth-­‐order	
  trunca=on	
  error	
  
 Amplitude	
  
 Phase	
  

 Seventh-­‐order	
  trunca=on	
  error	
  
 Amplitude	
  
 Phase	
  

!!A≈1+ − C2
24 + C

3
12 − C

4
24( )θ 4 +O θ 6( )

!!A≈1+ − C2
24 + C

3
12 − C

4
24( )θ 4 +O θ 6( )

!!A≈1+
C
48 −

C2
16 + C

3
12 − C

4
24( )θ 4 +O θ 6( )

!!P ≈1+ − 1
30 + C

12 − C
3
12 + C

4
30( )θ 4 +O θ 6( )

!!P ≈1+ − C
60 + C

2

15 − C
3
12 + C

4
30( )θ 4 +O θ 6( )

!!P ≈1+
1
120 − C

24 + C
2

12 − C
3
12 + C

4
30( )θ 4 +O θ 6( )



What	
  about	
  6th	
  order	
  edge	
  values?	
  

 Square	
  wave	
  

 Gaussian	
  

Error	
  

Error	
  



The	
  observa=on	
  that	
  high-­‐order	
  is	
  best	
  is	
  rather	
  old.	
  

 Boris	
  and	
  Book’s	
  most	
  accurate	
  method	
  was	
  based	
  on	
  a	
  
spectral	
  flux	
  for	
  the	
  high-­‐order	
  method.	
  	
  It	
  produced	
  the	
  
lowest	
  absolute	
  error	
  in	
  their	
  square	
  wave	
  test.*	
  

*	
  Boris	
  &	
  Book,	
  “Methods	
  in	
  Computa(onal	
  Physics”	
  Volume	
  16,	
  1976	
  



ENO	
  Methods	
  use	
  an	
  adap=ve	
  stencil	
  that	
  chooses	
  the	
  
“smoothest”	
  stencil	
  locally,	
  its	
  formally	
  higher	
  order.	
  

 ENO	
  selects	
  stencils	
  adap6vely	
  by	
  choosing	
  the	
  one	
  that	
  is	
  
closest	
  to	
  the	
  next	
  lower	
  order.	
  

1st	
  order	
  

2nd	
  order	
   2nd	
  order	
  

3rd	
  order	
   3rd	
  order	
  3rd	
  order	
  

4th	
  order	
   4th	
  order	
  4th	
  order	
  4th	
  order	
  

� 

u j+1/ 2 = u j

� 

u j+1/ 2 = u j + u j+1( ) /2

� 

u j+1/ 2 = 11u j − 7u j−1 + 2u j−2( ) /6

� 

u j+1/ 2 = 2u j+1 + 5u j − u j−1( ) /6

� 

u j+1/ 2 = 2u j + 5u j+1 − u j+2( ) /6

 u j+1/2 = 3u j − u j−1( ) / 2



Weighted	
  ENO	
  methods	
  are	
  different	
  in	
  their	
  
approach,	
  but	
  the	
  result	
  is	
  similar	
  

 These	
  methods	
  evaluate	
  all	
  the	
  high-­‐order	
  stencils	
  and	
  
compare	
  them	
  algebraically.	
  

1st	
  order	
  

2nd	
  order	
   2nd	
  order	
  

3rd	
  order	
   3rd	
  order	
  3rd	
  order	
  

4th	
  order	
   4th	
  order	
  4th	
  order	
  4th	
  order	
  

� 

u j+1/ 2 = u j

� 

u j+1/ 2 = u j + u j+1( ) /2

� 

u j+1/ 2 = 11u j − 7u j−1 + 2u j−2( ) /6

� 

u j+1/ 2 = 2u j+1 + 5u j − u j−1( ) /6

� 

u j+1/ 2 = 2u j + 5u j+1 − u j+2( ) /6

sm
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 u j+1/2 = 3u j − u j−1( ) / 2



These methods also have a few more “bells 
and whistles” that you’ll find in reading. 

 Steeper	
  slopes	
  or	
  edges	
  -­‐	
  You’ll	
  oden	
  see	
  modifica=ons	
  
of	
  the	
  slope	
  or	
  edge	
  values	
  that	
  look	
  like	
  “pre-­‐limi=ng”	
  
to	
  make	
  the	
  reconstruc=on	
  steeper.	
  	
  This	
  can	
  also	
  be	
  
done	
  for	
  any	
  sharp	
  interface.	
  

  
u j−1/2 = u j−1 +

1
2 minmod u j−1 − u j−2 ,u j − u j−1( )

  
u j+1/2 = u j+1 −

1
2 minmod u j+2 − u j+1,u j+1 − u j( )

  u j+1/2 := 1− ξ( )u j+1/2 + ξ u j+1/2  u j−1/2 := 1− ξ( )u j−1/2 + ξ u j−1/2

 
χ =

∂xxxu
∂xu

→ξ = ηmax 0,min 1,20 χ − 0.01( )( )⎡
⎣

⎤
⎦



The next couple of schemes are different 

 The	
  evolu=on	
  for	
  wj’s	
  will	
  be	
  the	
  same	
  using	
  the	
  integral	
  (weak)	
  
form	
  

	
  
 For	
  the	
  PLM	
  now	
  we	
  evolve	
  the	
  “Sj’s”	
  using	
  the	
  strong	
  form	
  of	
  the	
  
PDE	
  

 For	
  PPM	
  we	
  now	
  evolve	
  the	
  edge	
  wj±1/2’s	
  ”	
  using	
  the	
  strong	
  form	
  of	
  
the	
  PDE	
  

 !!
∂
∂t wdx + wdS∫∫ =0→ ∂

∂t w = − 1
∆x w j+1/2 −wj−1/2( )

!!
∂
∂x

∂w
∂t

+ ∂w
∂x

⎛
⎝⎜

⎞
⎠⎟
=0→ ∂

∂t
∂w
∂x

+ ∂
∂x

∂w
∂x

=0→ ∂s
∂t

+ ∂s
∂x

=0

!!
∂w
∂t

+ ∂w
∂x

=0 If	
  the	
  method	
  is	
  higher	
  than	
  	
  
second-­‐order	
  this	
  maaer	
  a	
  lot!	
  



Van Leer II – The slope evolution scheme 

 This	
  scheme	
  uses	
  the	
  evolu=on	
  of	
  the	
  slope	
  (gradient)	
  
as	
  an	
  extra	
  equa=on,	
  otherwise	
  it	
  is	
  a	
  “PLM”	
  method	
  
with	
  beVer	
  accuracy,	
  

 This	
  defines	
  the	
  simplest	
  Hermi=an	
  method.	
  
 Very	
  similar	
  in	
  flavor	
  to	
  discon=nuous	
  Galerkin	
  except	
  
the	
  gradient	
  evolu=on	
  is	
  differen=al	
  rather	
  than	
  
integral	
  

 More	
  complex	
  schemes	
  can	
  be	
  defined	
  by	
  combining	
  
the	
  data	
  from	
  mul=ple	
  cells.	
  
 These	
  methods	
  are	
  both	
  compact	
  and	
  capable	
  of	
  higher	
  
resolu=on.	
  

!!U j+1/2
n+1/2 =U j

n + 1
2 1−C( )S jn!!U j

n+1 =U j
n −C U j+1/2

n+1/2 −U j−1/2
n+1/2( )

!!U j+1/2
n =U j

n + 1
2 S j

n

!!S j
n+1 =U j+1/2

n −U j−1/2
n −C S j

n − S j−1
n( )



Van Leer II - Properties 

 With	
  two	
  degrees	
  of	
  freedom,	
  there	
  are	
  two	
  
computa=onal	
  modes	
  to	
  analyze	
  (one	
  is	
  “spurious”)	
  

	
  

 Trunca=on	
  error	
  is	
  nice	
  although	
  there	
  is	
  an	
  issue…	
  
basically	
  the	
  same	
  as	
  VLI	
  (PLM),	
  but	
  beVer	
  at	
  C=1/2	
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!!A≈1+ − C2
8 + C

3
4 − C

4
8( )θ 4 +O θ 6( )

!!P ≈1+
1
12 − C4 − + C

2

6( )θ 2 + 1
120 − C8 + 5C

2

12 − C
3
2 + C

4
5( )θ 4 +O θ 6( )

!! −
C
8 + C

2
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3
4 + C

4
8( )θ 4VLI	
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VL II Phase Error Plots 

 The	
  phase	
  error	
  show	
  the	
  problems	
  with	
  VLII	
  (at	
  small	
  
Courant	
  numbers,	
  at	
  close	
  to	
  mesh	
  scale).	
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The	
  DG	
  method	
  mathema=cally.	
  

 It	
  is	
  based	
  on	
  the	
  integral,	
  weak	
  form	
  of	
  the	
  PDE	
  
 Legendre	
  Polynomial	
  basis.	
  

 

∂U
∂ t

w
V∫ dV − f (U ) ⋅w

S∫ + f (U ) ⋅∇wdV
V∫ = 0

!
P x( )∫ dV =UdV

P0 x( ) = 1;P1 x( ) = x;P2 x( ) = x2 − 1
12

DG(0)	
  
DG(1)	
   DG(2)	
  

!!
∂xU( )

t
+ 6
Δx2

f U j−1 2( )+ f U j+1 2( )⎡
⎣

⎤
⎦−

12
Δx2

f U( )
−Δx/2

Δx/2

∫ dx =0

!!
∂xxU( )

t
+ 30
Δx3 f U j+1 2( )− f U j−1 2( )⎡

⎣
⎤
⎦

!!
−360
Δx3

f U( )
−Δx/2

Δx/2

∫ x − x0( )dx =0



Van Leer III – Discontinuous Galerkin (moment) 

 	
  This	
  is	
  a	
  very	
  good	
  method;	
  similar	
  to	
  Van	
  Leer-­‐II,	
  but	
  
lower	
  errors	
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!!U j+1/2
n+1/2 =U j

n + 1
2 1−C( )S jn!!U j

n+1 =U j
n −C U j+1/2

n+1/2 −U j−1/2
n+1/2( )

!!A≈1+ − C
72 + C

2
36 − C

3
36 + C

4
72( )θ 4 +O θ 6( )

!!P ≈1+
1
270 − C

108 + C3
108 − C4

270( )θ 4 +O θ 6( )

!!S j
n+1 = S j

n −6C U j−1/2
n +U j+1/2

n( )+2C U j
n +4U j

n+1/2 +U j
n+1( )



Van Leer V – Evolved edge values 

 This	
  method	
  has	
  largely	
  been	
  ignored	
  un=l	
  lately.	
  
 Several	
  Authors	
  have	
  reinvented	
  the	
  method	
  without	
  
realizing	
  it.	
  
 Popov’s	
  PPM-­‐L	
  scheme	
  	
  

 Zeng’s	
  hybrid	
  differencing	
  (FV-­‐FD	
  method)	
  	
  	
  
 It	
  is	
  basically	
  PPM	
  using	
  the	
  edge	
  values	
  as	
  the	
  
unknowns	
  and	
  advanced	
  using	
  a	
  differen=al	
  form.	
  
 This	
  is	
  a	
  very	
  good	
  scheme.	
  



Van Leer V as a discrete method in 1-D 
 Evolve	
  the	
  cell-­‐centers	
  

 Evolve	
  the	
  edges	
  !!U j+1/2
n+1/2 = P0, j

n + 1
2 −

1
2C( )P1, jn +P2, j

n 1
4 −

1
2C +

1
3C

2( )!!U j
n+1 =U j

n −C U j+1/2
n+1/2 −U j−1/2

n+1/2( )

!!U j+1/2
n+1 =U j+1/2

n −CP1, j
n −CP2, j

n 1−C( )
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The truncation error for Van Leer V is exciting! 

 This	
  is	
  a	
  great	
  form	
  and	
  equal	
  or	
  beVer	
  than	
  standard	
  
PPM	
  

 

!!A≈1+ − C
72 + C

2
36 − C

3
36 + C

4
72( )θ 4 +O θ 6( )

!!P ≈1+ − 1
30 + C

12 − C
3
12 + C

4
30( )θ 4 +O θ 6( )

!!A≈1+ − C2
24 + C

3
12 − C

4
24( )θ 4 +O θ 6( )

!!P ≈1+
1
270 − C

108 + C3
108 − C4

270( )θ 4 +O θ 6( )
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Extensions from Van Leer-V could be even better 
I will call it Van Leer-VII 

 Fidh	
  order	
  –	
  interpolate	
  using	
  the	
  three	
  cell	
  averages	
  
and	
  two	
  edge	
  values	
  (analyzed	
  next)	
  

 Similar	
  to	
  a	
  method	
  introduced	
  by	
  Xiang	
  &	
  Shu	
  
 Fidh	
  order	
  WENO	
  –	
  could	
  develop	
  WENO	
  versions	
  of	
  
this	
  scheme.	
  
 Mul=dimensional	
  extensions	
  would	
  be	
  interes=ng	
  with	
  
cell-­‐centered	
  Lagrangian.	
  

Pj (θ ) = P0 + P1θ + P2θ
2 + P3θ

3 + P4θ
4

1
−C

P θ( )dθ
1/2

1/2−C

∫ = U j+1/2 = P0 + P1 1
2 − C

2( ) + P2 1
4 − C

2 + C2
3( ) + P3 1

8 − 3C
4 + C2

2 − C3
4( ) + P4 1

16 − C
4 + C2

2 − C3
2 − C4

5( )

1
−C

∂P
∂θ

θ( )
1/2

1/2−C

∫ dθ = P1 + P2 1−C( ) + P3 3
4 − 3C

2 +C2( ) + P4 1
2 − 3C

2 + 2C2 −C3( )



Van Leer VII Polynomial Coefficients 

 All	
  the	
  details:	
  	
  

Pj (θ ) = P0 + P1θ + P2θ
2 + P3θ

3 + P4θ
4

P0 = U j
n − 1

12 P2 + 1
80 P4

P1 = 5
4 U j+1/2

n − 5
4 U j−1/2

n − 1
8U j+1

n + 1
8U j−1

n

P2 = − 1
8U j−1

n + 15
4 U j+1/2

n − 29
4 U j

n + 15
4 U j−1/2

n − 1
8U j+1

n

P3 = − 1
2U j−1

n −U j+1/2
n +U j−1/2

n + 1
2U j+1

n

P4 = 5
12U j−1

n − 5
2U j+1/2

n + 25
6 U j

n − 5
2U j−1/2

n + 5
12U j+1

n



The fifth order version Van Leer-VII has 
fantastic properties 
 Amplitude	
  and	
  phase	
  error	
  

 Trunca=on	
  errors	
  are	
  nice	
  (but	
  complex)	
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!!
A≈1+ 1

7200 C2−C−1( ) 8C −10C
2 −3C3 +17C 4 −13C5 −5C6 +8C7 −2C8( )θ 6 +O θ 8( )

!!
P ≈1+ 1

252000 C2−C−1( ) 104−170C −223C
2 +107C3 +475C 4 +63C5 −678C6 +198C7 +286C8 −198C 9 +36C10( )θ 6 +O θ 8( )



Conclusions 

 The	
  basis	
  of	
  most	
  remap	
  is	
  the	
  simpliest	
  and	
  many	
  
the	
  worst	
  scheme	
  from	
  Van	
  Leer’s	
  classic	
  1977	
  paper	
  
 Many	
  extensions	
  in	
  resolu=on	
  are	
  possible	
  for	
  this	
  
scheme	
  and	
  its	
  closely	
  related	
  PPM	
  scheme	
  
 The	
  four	
  remaining	
  schemes	
  have	
  a	
  great	
  deal	
  of	
  
promise:	
  
 Two	
  are	
  basically	
  discon=nuous	
  Galerkin	
  
 One	
  is	
  a	
  Hermite	
  scheme	
  
 The	
  other	
  is	
  a	
  hybrid	
  finite	
  volume-­‐finite	
  difference	
  
method	
  
 These	
  methods	
  are	
  accurate	
  and	
  compact.	
  



A summary of Greenough-Rider’s* results 
on “off-the-shelf” methods 
*Greenough & Rider, J. Comp. Phys. 196(1), 259-281, 2004. 

 WENO5	
  is	
  more	
  efficient	
  for	
  linear	
  problems	
  
 PLM	
  is	
  more	
  efficient	
  than	
  WENO5	
  (6X	
  CPU)	
  on	
  all	
  nonlinear	
  
problems	
  (with	
  discon=nui=es).	
  
 The	
  advantage	
  is	
  unambiguous	
  for	
  Sod’s	
  shock	
  tube	
  and	
  the	
  
Interac=ng	
  Blast	
  Waves	
  
 WENO5	
  gives	
  beVer	
  answers	
  for	
  the	
  Shu-­‐Osher	
  problem	
  
(same	
  ∆x),	
  but	
  worse	
  than	
  PLM	
  at	
  fixed	
  computa=onal	
  
expense	
  

Shu-Osher Entropy Wave Sod’s Shock Tube Interacting Blast Waves 



Wavenumber	
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