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Outline

(JReasoning
(JLessons from history
JCurrent state

AClasses of new methods
JResults

Note: I’'m going to look at methods associated
with advection synonymous with remap. In
reality these are methods for hyperbolic
conservation (balance) laws.
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Van Leer introduced the PLM (and PPM) method in his
1977 paper

JOURNAL OF COMPUTATIONAL PHYSICS 23, 276-299 (1977)

the Ultimate Conservative Difference Scheme.
New Approach to Numerical Convection

Geometric BrRAM VAN LEER

Limiters! 8¢ Observatory, Leiden, The Netherlands
eceived April 30, 1976; revised July 30, 1976
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Reasoning for rethinking advection & remap

JFor the most part this community has focused upon a
single method (Van Leer’s slope limiter) for remap

JThat method was introduced in a 1977 paper that
includes six different methods.

(JdWe look at this paper and the method’s contained
therein for opportunities.
v'The method favored for remap is the “worst” of the six

(1Some of these methods may be much better on modern
computing platforms due to their compact nature.

(JFor example, Paul Woodward’s PPB scheme is based on
Van Leer’s scheme VI
v'Not described in the ‘77 paper
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The six schemes introduced in Van Leer’s paper

1 | — The standard slope limited method
v'You know all about it

Il — The evolved slope scheme (Hermite)
v'Described briefly here

Il - Piecewise linear DG (moment method)
v'Focus of lots of recent effort

IV — Piecewise parabolic on three points
v'Basis for the famous PPM scheme

1V - Piecewise parabolic with evolving edge values
v'Reintroduced as the PPM-L scheme

VI — Piecewise parabolic DG

v"Woodward’s PPB scheme / Santi




JOURNAL OF COMPUTATIONAL PHYSICS 135, 229-248 (1997)
ARTICLE No. CP975704

Van Leer’ s 1979 paper provided the true successor to
Godunov’ s method.

Lagrange-

Remap

Towards the Ultimate Conservative Difference Scheme
V. A Second-Order Sequel to Godunov’s Method

Bram van Leer

University Observatory, Leiden, The Netherlands

Received October 18, 1977; revised October 17, 1978

A method of second-order accuracy is described for integrating
the equations of ideal compressible flow. The method is based on
the integral conservation laws and is dissipative, so that it can be
used across shocks. The heart of the method is a one-dimensional
Lagrangean scheme that may be regarded as a second-order sequel
to Godunov’s method. The second-order accuracy is achieved by
taking the distributions of the state quantities inside a gas slab
to be linear, rather than uniform as in Godunov's method. The
Lagrangean results are remapped with least-squares accuracy onto
the desired Euler grid in a separate step. Several monotonicity algo-
rithms are applied to ensure positivity, monotonicity, and nonlinear
stability. Higher dimensions are covered through time splitting. Nu-
merical results for one-dimensional and two-dimensional flows are
presented, demonstrating the efficiency of the method. The paper
concludes with a summary of the results of the whole series “To-
wards the Ultimate Conservative Difference Scheme.” © 1979 Aca-
demic Press

tions, with due care taken to account for the discontinuities
in the interaction flow. The convective difference scheme,

PLM for the
Euler Equations
(MUSCL)

grangean step
scheme IIIL

tivethnse wAafinnmant
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Godunov methods use a geometric approach to
developing the method.

@ One of the key aspects of Godunov’ s methods is the
development of the numerical method through

interpolation - the reconstruction of the dependent
variables in a finite zone.

€ Because the geometry is clear often the methods (or the
differences between them) can be easy to understand.

X




Now we will spend time looking at linear and parabolic
reconstruction procedures.

PILLM PPM

. ! Wiz 1 :
B=1/,2 0=1/2 0=12 0=1.2

@ PLM is the piecewise linear method (Van Leer 1)
€ PPM is the piecewise parabolic method (Van Leer IV)

€ Both methods produce high quality methods
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A second-order Godunov method uses piecewise
linear polynomials.

@ The second-order polynomial uses the cell average and a
first-derivative (often called a slope),

P.(0)=PF,+PO.P,=U ;P =8§,

€ Several key requirements are necessary for this to useful:
v'Conservation U;= J-Pj(e)de =k,
v'Accuracy g _p_oP_dU

790 ox
v'Boundedness (monotonicity)-the next few slides!

Ax
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The key to using these reconstructions is keeping the

polynomials monotone.

& The original statement is //
heuristic: the reconstruction
should be bounded by the

neighboring data.

@ Later, time-dependence will Monotone
be entertained, the time

integrated edge values must —
be bounded.
,—-—'—'_'_'_._._.._._._._._._‘

Non Monotone/




We can derive the monotonicity conditions using
geometric arguments.

& Take the PLM reconstruction and derive the
monotonicity conditions,

U, <P(1/2)<U", LSP(-1/2)sU",
U <U'+1S,<U" Uj_l <U}-4S,<U’,,
U’ -U; <38 <0, -U’ U, -U<-38 <U", -U’
€ Assume the data is increasing left-to-right
s, <2(uy, -U)) s, <2(u;-v )
& Test the alternate case and you see the minmod limiter
does the trick,

S,=minmod|S,2A,_,,U.24,,,U]




Making PLM second-order in time is relatively simple.

& Taking the definition of the time-averaged value from
the integral we can find a second-order time-accurate
value,

| 2c | 2c 1
— | P(6)o= o | (,+PO)MO=P, +(1-C)P,
R V) B V) i

| e ~1/2-C 1

— j P(G)d@z% j (P0+1’10)d9:P0—§(1+C)Pl

o ~1/2 ~1/2

_ AAt| courant Number

¥

C




There is a wide variety of slopes that can be used with
PLM (many from the TVD schemes).

@® Here is a slew of different recipes

v’ Minmod S,=minmod| A,_,,.A,,, U]
v'Van Leer . AL, UlAL,U+|A,UA,,,U
v Fromm ] ‘Aj—1/2 U‘ T Aj+1/2 U

. Als = gninmod[%( A U+A,,U) 24, ,U2A,,,U]

(Aj+1/2 U)2 Aj—1/2 U+ ( Aj—1/2 U)2 Aj+1/2 U
(A, U) +(A,,,U)
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There’s more, the slope before limiting can be chosen
more broadly.

¥ High-order slopes can improve the performance of the
method,

v'An example would be a fourth-order choice,
. 8(u, U )- (U

S j+1 = j+2

/ 12

_ Ul;—z)

v'Or a sixth-order choice
_ 45(U", - U, )-9(U",, - UL, )+(U"

J+l j+3

_ U'}_3)

S’
! 60

v'Or whatever you like...
v'It can be used in conjunction with the limiter

S, = minmod[Sj 2A_,U2A, U]

g Sandia
National
Laboratories




Its always important to start with a stability analysis to
make sure you’re on the right path.

€ Before taking the time to code a scheme one
should know exactly what to expect from the
method. It also makes a good time to state the
design principles:

1. Have a stable dissipative (entropy condition
satisfying) monotone method as a foundation,

2. Blend it with a stable (upsteam-centered) high-
order method

3. Define the blending via monotonicity or some
other nonlinear stability principle .

4. Test, test, test




High-Resolution Methods

@ Provide an introduction to high-resolution schemes
including some ideas about motivation and implementation

v'These methods have provided an enormous upgrade in
computational performance over the previous generation
of methods.

v'The Dogbert Principle: “Logically all things are created by
a combination of simpler, less capable components” (see

Laney in Computational Gasdynamics) / -




High Resolution Methods and Accuracy and
order of convergence

Linear versus nonlinear error

dFor high order (unsplit) schemes getting nonlinear high
order is very expensive (lots of quadrature points)

If there is a discontinuity then the order of accuracy is
first order

JA good question to ask, what is required for practical
accuracy for discontinuous problems?

(JWhat is the important design point... | think the linear
accuracy is a good guide.




What is a high-resolution method?
Or the role of method nonlinearity

€ The need for method nonlinearity is a consequence of
Godunov’s theorem:

v'No linear method can be second-order and
monotone... but a nonlinear method can be second-
order and monotone (TVD, FCT,PLM, PPM, ENO,
WENO...)!*

€ These methods hybridized the (classical) linear schemes

(capitalizing on the best of each!)

v'To achieve higher order and physically relevant
solutions e.g. LxW and upwind




Basic Elements of Methods

Weighted ENO Method High-Order Godunov
* Entropy scheme (LLxF) * Riemann solver (upwind)
* Flux Splitting /tr Characteristic Projection

 Base fluxes < /° High-order differencing
* High-order flux * Limiter

* Weights 4 * Time-centering
* Smoothness deteci/7
 Method-of-lines

s [he key to these methods is

successfully hybridizing high-order
and entropy satisfaction
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How does the method do?

& Square wave -

40

0.8}

0.6}

0.4}

& Gaussian - 0.2

2b
0.8}
0.6}
0.4}
0.2}
20 40 &0 80 100

0.035
0.03
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0.015
0.01
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Error
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20 40 &0 80 100
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Error
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What about 4th order slopes

Error
€ Square wave .
: I
0.3
1}
0.25
0.8¢ 0.2
0.15
0.6 0.1
ol e UL
€ Gaussian T EETEr——
0.2F J
2.0 4‘0 6.0 8‘0 10.0
0.03
U8 0.025 Error
0.6 0.02
0.015
0.4}
0.01
0.2¢
0.005
20 40 60 20 100 20 40 &0
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Now we will spend time looking at linear and
parabolic reconstruction procedures.

PILLM PPM

. ! Wiz 1 :
B=1/,2 0=1/2 0=12 0=1.2

¥ PLM is the piecewise linear method (Van Leer 1)
€9 PPM is the piecewise parabolic method (Van Leer IV)
€ Both methods produce high quality methods

/ |
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The PPM method first studied by Van Leer in 77

appeared in Colella & Woodward’ s paper.

JOURNAL OF COMPUTATIONAL PHYSICS 54, 174-201 (1984)

The Piecewise Parabolic Method (PPM)
for Gas-Dynamical Simulations

PHILLIP COLELLA

Lawrence Berkeley Laboratory, University of California,
Berkeley, California, 94720

AND
PAauL R. WOODWARD

Lawrence Livermore National Laboratory, University of California,
Livermore, California 94550

Received August 3, 1982; revised August 25, 1983

We present the piecewise parabolic method, a higher-order extension of Godunov’s
method. There are several new features of this method which distinguish it from other
higher-order Godunov-type methods. We use a higher-order spatial interpolation than
previously used, which allows for a steeper representation of discontinuities, particularly
contact discontinuities. We introduce a simpler and more robust algorithm for calculating
the nonlinear wave interactions used to compute fluxes. Finally, we recognize the need for
additional dissipation in any higher-order Godunov method of this type, and introduce it

in such a way so as not to degrade the quality of the results.

/
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A second-order Godunov method uses piecewise
linear polynomials.

€ The second-order polynomial uses the cell average and
the cell edge values,

P.(0)=P,+P6+P0’
b, = U? — %PZ;I)I — U’;H/Z — U?—l/Z;PZ — 3(U?+1/2 — 2U? + Ul}—l/z)

& Several key requirements are necessary for this to
useful:

v'Conservation U, = JPJ. (0)d6 =P,
v'Accuracy Ujop = U('xjil/2)+0(Axn)

v'Boundedness (monotonicity)-the next few slides!
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First, a new function to simplify programming

¥ Remember the minmod function, using it we can define
a median function

median(a,b,c) = a+ minmod(b—a,c—a)
€ The median will return whatever argument that is
bounded by the other two.

€ The median also has some other useful properties that
we will exploit in a later lecture (for getting high-order
accuracy)




We can derive the monotonicity conditions using
geometric arguments.

@ Just as PLM we start with the same basic conditions,
U, <P(1/2)<U%, U™, <P(-1/2)<U",

€ We can inforce this condition with two operations that

put the interface value between the cell values bounding
them.

U}, = median(U},U3,,,, U3, ) U, = median(U",,U",,,U")
€ The only problem now is an local extrema inside the

zone.




We can derive the monotonicity conditions using
geometric arguments.

€ We can observe that the PPM reconstruction can
introduce local extrema within a zone. This is clearly
NOT monotone so it must be excluded.

@ A local extrema occurs when the derivative of the

polynomial is zero, if we force this to occur at or outside
(no problem) we are monotone.

dP(0)/d6 =P, +2P,0




We can now finish the monotonicity derivation

@ Force zero in the derivative to the edges if they occur in
the cell
0=P +2P,0

0= P1 + Pz = U’}+1/2 B U’;—l/2 + 3(U’;+1/2 — 2Un' + U’}—l/z)

4U?+1/2 - 2U?—1/2 - 6U? =0 ‘ U] 12 = 3U’;’ - 2U?+1/2
0=P-P, = U?+1/2 - U;—I/Z - 3(U +1/2 2Un T Uj 1/2)
_2U2+1/2 - 4U;—1/2 T 6U7‘ =0 ‘ UJ+1/2 3U}; B 2U’;—1/2

€ Summarize the algorithm
U’.,, = median(U’,U", ,,U", )
U',,, = median(U’,U", ,,3U" - 20" )

]
National
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Making PPM third-order in time more complex.

& Taking the definition of the time-averaged value from
the integral we can find a second-order time-accurate
value,

~1/2-C ~1/2-C
1

7 Sandia
National
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Woodward & Colella’s special edge value

€ The method is designed to make sure the edge lies
between the adjacent cell values,

U?+1/2 = %(U? +Uj )_ %(5U” B 5U,;)

j+l j+1
85U’ =minmod| 4(U%,, - U7, ).2(U) -7, ).2(U, - UY) |

@ This sort of procedure can be derived for other high-
order approximations to the edges.

@ This approach has a significantly positive impact on the
magnitude of error associated with the solution.




There’ s more, the initial edge values need to be
chosen.

@ Colella and Woodward chose fourth-order values*.
U?+1/2 — %(Uj + U?H ) - %(U?—l + UI}+2)
¥ Higher-order edges can improve the performance of the
method, a sixth-order choice

U;+1/2 = %(U3 + U?+1 ) — %(Uj—l + U’;’+2 ) * %(U’;—z + U?+3)
v'Or a fifth-order upwind choice

n ) n 13 n 47 n 27 n 3 n
Uj+1/2 - %Uj—z__ %U T %U_J‘ + @Ujﬂ o 6_QUj+2
v'Or whatever you like, a least third-order or its not

worth it!

* C&W actually use a special fourth-order method

' Sandia
National
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High-Order Edge Values — Tremendous flexibility!

@ First compute the edge values: Sixth-order centered
~ 37(Uj + U]_H)—s(Uj_1 + Uj+2)+(Uj—2 + Uj+3)
j+1/2 60
€ Seventh-order upwind

33U, 425U —101U.  +319U +214aU  —33U. _+4U.
. j-3 Jj—2 j—1 Ji j+1 Jj+2 Jj+3
j+1/2 420

€ Seventh-order parabolic

111U +s840U  —3010U.  +38510U +664sU = —1340U _+148U .
j-3 Jj—2 j—1 j j+1 J+2 Jj+3

j+1/2 11520

@ Six-point optimal stencil [0,3p/4]

U - a(Uf + Uj+1)+b(Uf—1 +Uf+2)+C(Uf—2 +Uf+3)

a=0.681056...;:b=—0.229918...,c=0.048816..
2 Sandia
National
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Scheme Stability & Truncation Error is
exceptional

@ Using Fourier analysis: &
v'All stable to CFL=1

@ Fourth-order truncation error
v’ Amplitude Az1+(—C2 c-clot+o(o°)

v Ph 24712 °
ase ~ 3 t\pt 6
P=1+(-4-5-5. <)o" +0(6°)

12 12

& Sixth-order truncation error
v Amplitude Az1+(—C2 c gj)e4+0(96)

24 T 12~
v'Phase P=~1+ —%+%_%+%\94+0(96)
& Seventh-order truncation errof’

v Amplitude Az1+(4£8—i+ﬁ_i\94+0 96)

612 24
v'Phase Pz1+(i . e C3+C4)64

120 24 12 12 ' 30



What about 6th order edge values?

Error
0.35
& Square wave |
0.3
1t m 0.25
ol 0.2
0.15
0.6F 01
0.4 0.05
€ Gaussian JL J\
0.2F 20 40 60 20 100
. 20 an &0 20 100
0.0175
0.8F
0.015 Error
06l 0.0125
0.01
0.4r 0.0075
0.005
0.2F
0.0025

20 40 60 80 100 20




The observation that high-order is best is rather old.

@ Boris and Book’ s most accurate method was based on a
spectral flux for the high-order method. It produced the
lowest absolute error in their square wave test.*

FOURIER TRANSFORM FCT
CLES

ou
BOO(SZY
b L

v=0.0

——
LR AL B LN

Il{
1 [111]

&M

A.E=.022

O_Lllllllllillllllllllllllillll—'
40 50 60 70 80 90 [e]

CELL NO.——

Fig. 13. The optitmum FCT slgorithm.

* Boris & Book, “Methods in Computational Physics” Volume 16, 1976
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ENO Methods use an adaptive stencil that chooses the
“smoothest” stencil locally, its formally higher order.

3rd order >

Uiy = llu —Tu;, ,+2u, U (2u1+l+5uj—uj_1)/6

&

¥ ENO selects stencils adaptively by choosing the one that is

closest to the next lower order.
laboratories




Weighted ENO methods are different in their
approach, but the result is similar
(

smoothness measures

€ These methods evaluate a// the high-order stencils and
compare them algebraically.

@ National _
Laboratories
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These methods also have a few more “bells
and whistles” that you’ll find in reading.

@ Steeper slopes or edges - You’ll often see modifications
of the slope or edge values that look like “pre-limiting”
to make the reconstruction steeper. This can also be
done for any sharp interface.

J_u :
x= a &= nmax[O,mln(l,ZO()(—0.0l))}
i, =u_ +5min mod(uj_1 —U_U,— U 1)
Uy =W — ~min mod(uj+2 —U, U uj)

u. ::(1— )u +Cu .
J 112 ( ) j— 1I2+§u] 112 j+112 5 Jj+112 {é j+112

2 Sandia
National



The next couple of schemes are different
PILLM PPM

. Mo W P
0=1,2 0=1/2 92=_1 2 9:= 1/2
IThe evolution for wj’s will be the same using the integral (weak)
form 5 - )
—jwdx+<ﬁwd5 =0—->Sw= —E(WM/2 — Wj_l/z)
JFor the PLM now we evolve the “S;'s” using the strong form of the
PDE a(aw awj 0, 00w 3w ds 95 _

=0— =0
ox\ ot oOx

Bt 0X 8x 0x Jdt  dx
For PPM we now evolve the edge wj,,;,’s ”
the PDE 8W ow o

ot ax

using the strong form of
If the method is higher than

second-order this matter a I laborires




Van Leer Il — The slope evolution scheme

IThis scheme uses the evolution of the slope (gradient)
as an extra equation, otherwise it is a “PLM” method
with better accuracy,

Ut =un-c(uniz -y Ui =) +3(1=C)s]

j+1/2 j-1/2 J+1/2

n+1 n n n n n n, 1¢gn
S ~ U]+1/2 _U] 172 _C(S S ) UJ+1/2 N U Sj
EIThls defines the simplest Hermltlan method
v'Very similar in flavor to discontinuous Galerkin except
the gradient evolution is differential rather than

integral

(dMore complex schemes can be defined by combining
the data from multiple cells.

JThese methods are both compact and capable of hlgher
resolution. :




Van Leer Il - Properties

JWith two degrees of freedom, there are two

computational modes to analyze (one is “spurious”)
OTruncation error is nice although there is an issue...
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ot

oS =

——

4678 \
o + ,
o

|

O
o +
© O o
[ {_\ _————
e O
+ =
QU — W)
) W_ +
o <t

-3 D
0 ‘

- 4C75
— +
M 3C72
m_l _
S
> o e
w = o
Q + —_

< -+
€ © o
w 4C78 —_——

() | ML6

£
O

= e
i

c ' =
.g + l—l
c - b
0 U 0

< R



VL |l Phase Error Plots

JThe phase error show the problems with VLII (at small

@ National _
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The DG method mathematically.

@1t is based on the integral, weak form of the PDE
@ Legendre Polynomial basis.

jV%U dV — gS FU)Y-w+ j FU)-VwdV =0
[P(x)av=vav ’—DG)%DG@ DG(2)

> —

( ) B (x)=x;P(x)=x" -4,
(aXU)t AiZ[f(Uj—l/Z)Jrf(Um/Z)} (U x=0

~Ax/2

(9,),+ SSB[f(Ufﬂ/Z)_f(Uf‘l/Zﬂ
360

e _.[ f(U)(x—xO)dx;O

Ax /2




Van Leer lll - Discontinuous Galerkin (moment)

 This is a very good method; similar to Van Leer-Il, but
lower errors
n+1/2 __ yyn n
U;z+1 _ U;,? _ C(Un+1/2 B Un+1/2) Uj+1/2 = Uj 4 %(1— C)Sj

Jj+1/2 Jj-1/2

s=s—6c(Un,,+U", )+2C(U7+4UT 71U

j-1/2 j+1/2 Jj J

72736 36 "

_ 23 (‘QB 4 6 3500
A~1+(_C ¢ %)0‘#0(9)

270 108 ' 108 270

Pz1+(1 c ¢ 64)94+0(96) '

Laboratories



Van Leer V — Evolved edge values

dThis method has largely been ignored until lately.

(JSeveral Authors have reinvented the method without

realizing it.
v'Popov’s PPM-L scheme

Piecewise parabolic method on a local stencil for magnetized

supersonic turbulence simulation
Sergey D. Ustyugov ?, Mikhail V. Popov?, Alexei G. Kritsuk™*, Michael L. Norman

2 Keldysh Institute of Applied Mathematics, Miusskaya Sq. 4, 125047 Moscow, Russia
® University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0424, USA

v'Zeng’s hybrid differencing (FV-FD method)

It is basically PPM using the edge values as the
unknowns and advanced using a differential form.

This is a very good scheme.



Van Leer V as a discrete method in 1-D

(JEvolve the cell-centers
Ut = — C(Un+1/2 B Un+1/2)
j j '

Jj+1/2 j-1/2

n+l/2 __ pn n n 2
Uj+1/2 _PO,j+(%_%C)P1,j+P2,j(%_%c+%c )
(JEvolve the edges
n+l __ yyn n n
Uj+1/2 — l&+1/2 _CP1,j _CPZ,j(l_C) o

e -

@ National
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The truncation error for Van Leer V is exciting!

dThis is a great form and equal or better than standard
PPM A=1+ C+C2 CB+C4)94+0(96)

72736 36 72

P=1+|1 _c¢ ¢ 04)94+0(96)

270 108 ' 108 270

wwwwwwwwwwwwwwwww 0.005 -

—0.0005 [ r
i -0.005
—0.0010 |- F

i -0.010f
—0.0015 -0.015

i —0.020 [
—0.0020 |- N
-0.025f

—0.0025 [ F
g -0.030 -

PPM Az1+(_C+C3_C4
Errors

For P=1+4[-1,c ¢
Comparison




Extensions from Van Leer-V could be even better
| will call it Van Leer-Vll

JFifth order — interpolate using the three cell averages
and two edge values (analyzed next)
P.(0)=P,+PO+P,0° +PH’ +P,0*

12-C
1

z P(Q)dezﬁjﬂ/z :Po+P1(%_%)""Pz(%_%+CT2)+P3(%_%+CT2_CT3)+P4(%_%4'%2_%3_%4)

1/2-C aP
-C J 6

1/2

dSimilar to a method introduced by Xiang & Shu

JFifth order WENO - could develop WENO versions of
this scheme.

—(0)d0 =P, +P,(1-C)+P,(3-£+C*)+P,($-3€E+2C" - C’)

JMultidimensional extensions would be interesting with
cell-centered Lagrangian.




Van Leer VIl Polynomial Coefficients

JAIl the details:
P.(0)=P,+PO+P,0° +PH’ +P,0*
b, = U’} _%Pz +$P4

— 377" 371" _ 1y~ 1Ly7”
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j+1
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The fifth order version Van Leer-VIl has
fantastic properties

JAmplitude and phase error

dTruncation errors are nice (but complex)
A=1+—1—(8C-10C"-3C*+17C* ~13C-5C°+8C” - 2¢°)6° +0(67)

7200(C2—C—1)

P~1+—L (104—170C—223€2+1O7CB+475CW
252000(C —C—1) Mool




Conclusions

(JThe basis of most remap is the simpliest and many
the worst scheme from Van Leer’s classic 1977 paper

(dMany extensions in resolution are possible for this
scheme and its closely related PPM scheme

JThe four remaining schemes have a great deal of
promise:

v'Two are basically discontinuous Galerkin
v'One is a Hermite scheme

v'The other is a hybrid finite volume-finite difference
method

v'These methods are accurate and compact.
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A summary of Greenough-Rider’s* results

on “off-the-shelf” methods
*Greenough & Rider, J. Comp. Phys. 196(1), 259-281, 2004.

€ WENOS is more efficient for linear problems

€ PLM is more efficient than WENO5 (6X CPU) on all nonlinear
problems (with discontinuities).

€ The advantage is unambiguous for Sod’s shock tube and the
Interacting Blast Waves

€ WENOS gives better answers for the Shu-Osher problem
(same Ax), but worse than PLM at fixed computational
expense

Sod’s Shock Tube Interacting Blast Waves Shu-Osher Entropy Wave

...........................................................

density

x/t



What'’s the impact? Look at a smooth

wave-breaking problem sloectrally
uervo 1-D Simulation

4Dc:nsity Power Spectrum, Time = 2.1929000001000000E-05
1.0x10™
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What'’s the impact? Look at a smooth
wave-breaking problem spectrally

Cuervo 1-D Simulation

4Density Power Spectrum, Time = 2.1929000001000000E-05
1.0x10™

exact
WENOS

xwPPM7

=)
QAu1.0x10712
1.0x10713
1.0x1071
1.0x1071°

1.0x10716
1.0x10717

0D L o e o e L S M —
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wavenumber sl
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