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Abstract—Generalized Minimum Residual (GMRES) method
is one of the most widely-used iterative methods for solving
nonsymmetric linear systems of equations. In recent years,
techniques to avoid communication in GMRES have gained
attention because in comparison to floating point operations,
communication is becoming increasingly expensive on modern
computers. Since GPUs are now becoming a crucial component
in computing, in this paper, we investigate the effectiveness of
these techniques on multicore CPUs with multiple GPUs. While
we present the detailed performance studies of a matrix-power
kernel on the GPUs, we particularly focus on the orthogonal-
ization strategies which have a great impact not only on the
numerical stability of GMRES but also on its performance,
especially as the coefficient matrix becomes sparser or more ill-
conditioned. We present the experimental results on two six-cores
Intel Sandy Bridge CPUs with three NDIVIA Fermi GPUs and
demonstrate that significant speedups can be obtained avoiding
the communication both on a single GPU and between the GPUs.
As a part of our studies, we investigate several optimization
techniques for the GPU Kkernels that are also used in other sparse
solvers beside GMRES. Hence, our studies not only demonstrate
the importance of avoiding communication on the GPUs, but
they also provide several insights about the effects of these
optimization techniques on the performance of the sparse solvers.

I. INTRODUCTION

Many scientific or engineering simulations require the so-
lution of sparse linear systems of equations. A direct method
provides a numerically stable way to solve such a linear system
with a predictable number of floating point operations (flops).
However, for a large-scale linear system, the required memory
and/or the required flop count of the direct factorization of
the coefficient matrix could become unfeasibly expensive.
A parallel computer with a large aggregated memory and
a high computing capacity may provide a remedy to this
large cost of the direct factorization, but the per-CPU memory
requirement or the factorization time of a parallel direct solver
may not scale due to the extensive amount of communication
and of the associated memory overhead for the message
buffers. As a result, an iterative method may become more
attractive or could be the only feasible alternative. Among the
most widely-used iterative methods are the Krylov subspace
iterative methods [[1], [2]], that as they usually provide smooth
sequences of solution approximations at low computational

cost. For unsymmetric linear systems, the Generalized Mini-
mum Residual (GMRES) method [3] is often the method of
choice as it combines high robustness with flexibility allowing
for problem-specific optimization.

On modern computers, in comparison to flops, communi-
cation is becoming increasingly expensive in term of both
required cycle time and energy consumption. To overcome this
challenge, in recent years, several techniques to avoid com-
munication in various algorithms including GMRES [4] have
gained attention. While graphic processing units (GPUs) have
often become crucial components in scientific and engineering
computing, the gap between the arithmetic and communication
costs is growing on these as well. In this paper, we study
the potential of using communication-avoiding techniques on
multicore CPUs with multiple GPUs, providing the detailed
performance studies of both a matrix-power kernel and several
orthogonalization procedures that often dominate the GMRES
iteration time. As a part of our studies, we investigate several
optimization techniques for the GPU kernels that are required
for GMRES. Since these kernels are also needed for other
sparse solvers, the current studies not only emphasize the
importance of avoiding communication on both a single GPU
and between the GPUs, but they also provide insights on the
effects of these optimization techniques on the performance of
a sparse solver.

The rest of the paper is organized as follows: in Section [II]
we first survey the related works. Then in Section [III, we
review the communication-avoiding GMRES (CA-GMRES)
and provide the high-level description of our implementation
on multicore CPUs with multiple GPUs. Next in Sections
and [V] we describe our implementations of the matrix-
power kernel and of several orthogonalization procedures,
respectively, and demonstrate their performance. Finally, in
Section we study the performance of CA-GMRES on the
GPUs, and in Section we conclude with final remarks.
Throughout this paper, the i-th row and the j-th column of
a matrix V' are denoted by v;. and v. ;, respectively, while
Vj. is the submatrix consisting of the j-th through the k-
th columns of V, and V(i,j) is the submatrix consisting
of the rows and columns of V' that are given by the row
and column index sets i and j, respectively. All of our



X:=v;1 and v, 1 := b/||b|2.
repeat
Projection Subspace Generation:
for j =1,2,...,m do
SpMV: Generate a new vector v, j+i1 := Av, ;.
Orth: Orthogonalize v. ;i1 against v.1,V.2,...
end for
Projected Subsystem Solution:
Compute the solution X in the generated subspace,
which minimizes its residual norm.
Set v.1 :=r/||r|2, where r := b — AX.
until solution convergence do
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Fig. 1. Pseudocode of GMRES(m).

§ =V and V.1 = b/Hb||2
repeat
Projection Subspace Generation:
for j=1,s+1,2s+1,...,m do
MPK: Generate new vectors v. p41 := AV,
for k=3,7+1,...,min(j + s,m).
BOrt: Orthogonalize Vj41.j4541 against V7.;.
TSQR: Orthogonalize the vectors within Vj1.j4s41.
end for
Projected Subsystem Solution:
Compute the solution X in the generated subspace,
which minimizes its residual norm.
Set v.1 :=r/||r||2, where r := b — AX.
until solution convergence do

Fig. 2. Pseudocode of CA-GMRES(s, m).

experiments were conducted on a single compute node of the
Keeneland System [S] at the Georgia Institute of Technology,
which consists of two six-core Intel Sandy Bridge (Xeon ES5)
processors and three NVIDIA M2090 GPU accelerators.

II. RELATED WORKS

a) Communication-avoiding, CA-GMRES, in particular
any work done on multiple GPUs?:
b) SpMV, MPK, on GPUs?: MPK: [6]..
GPU: different storage formats [7]],
c) Orthgonalization, TSQR, on GPUs?:

III. COMMUNICATION-AVOIDING GMRES

Figure [I] shows a pseudocode of the standard restarted
GMRES iterations. At each iteration, a new Krylov basis
vector is generated through a sparse matrix-vector multipli-
cation (SpMV), and the resulting vector v. ;i1 is orthonor-
malized (Orth) against the previously-generated orthonormal
basis vectors v. 1, V. 2,...,V. ;. Both SpMV and Orth require
communication since the vector v. ; need to be loaded into
the local memory. Figure [2] shows a pseudocode of CA-
GMRES iterations that aims to reduce this communication.
The main idea is that by having special kernels to generate
and to orthogonalize a set of s vectors at once, it becomes
possible not only to communicate the vector v.; once for
every s steps but also to optimize the data-access to both A

Total Solution Time (s)

CPU 1GPU 2GPUs 3GPUs CPU 1GPU 2GPUs 3GPUs

Fig. 3. Performance of GMRES on 16-core Sandy Bridge CPUs with up to
three NDIVIA M2090 GPUs. CPU code is linked to MKL 2011_sp1.8.273,
and SpMV uses the CSR format on the CPU, while ELLPACKT format is
used on the GPUs. The detailed description of the GPU implementation is
provided in the remaining of the paper.

and v.1,V.2,...,V. ;. In Sections[V]and [V] we discuss these
two computational kernels SpMV and Orth in more details.

To reduce both the computational and storage requirements
of computing a large projection subspace, the GMRES itera-
tion is restarted after a fixed number m+1 of the basis vectors
is computed. At restart, the approximate solution X is updated
by solving a least-square problem y := argmin, ||c — Hz||,
where ¢ = ViL v, H = VI AVi,,, and X :=
X + Vi.ny. The matrix H is not only a by-product of the
orthogonalization procedure (see Section but is also in
a Hessemberg form. Hence, the least-square problem can be
efficiently solved, requiring only about 3(m + 1) flops, while
for an n-by-n matrix A with nnz(A) nonzeros, SpMV and
Orth require total of about 2m - nnz(A) and 2mn? flops
over the m iterations, respectively (n > m).

To utilize the GPUs, we distribute the matrix A in a
block row format among the GPUs. Then, the basis vec-
tors v. 1,V 2,...,V. py1 are generated entirely on the GPUs,
while the Hessenberg matrix H is copied to the CPUs and the
least-square problem is solved on the CPUs. Our main focus
in this paper is to compare the performance of CA-GMRES
on the GPUs with that of GMRES on the GPUs. Figure
compares the performance of GMRES on the GPUs with
that of our GMRES implementation on CPUs that uses MKL
routines for SpMV and Ortho. Clearly, this may not be a fair
comparison since MKL routines may not be optimized for the
matrices arising from GMRES. However, we provide the figure
just to give a reference point to our GMRES performance on
the GPUs.

IV. MATRIX-POWER KERNEL

For the sparse matrix-vector multiplication on multiple
GPUs, the communication of the distributed vector through the
PCI-express could become a bottleneck. To reduce this bot-
tleneck, given a starting vector v. ;, the matrix-power kernel



Communication: exchange elements of v. 1 to form v(D
for d=1,2,...,n4 do
compress elements of v:(f? needed by other GPUs into w(d

asynchronously sends w(® to CPU

end for
ford=1,2,...,n4 do
expand w'? into a full vector w on CPU
end for
ford=1,2,...,ny do

compress elements of w required by d-th GPU into w(d
asynchronously sends w@ to d-th GPU

copy the local vector v:(.dl) into zi((d (;}3) )
expand w@ into a full vector z(*"
end for
Matrix-power Generation: generate véd), véd), ce. ,vi‘i)l

for k=1,2,...,s do
ford=1,2,...,n4 do
SpMV: compute y(@ = AR
expand y@ into a full vector z
copy the local part yffd),l) of y¥ into v,(le
end for
end for

£ (d:k%2)
(d,(k+1)%2)

Fig. 4. Pseudocode of Matrix-Power Kernel, MPK(s, V. 1).

communicates all the required vector elements at once so that
each GPU can independently compute the local components of
the s matrix vector multiplications Av. ;, A%v.;,..., A%V, ;.
Here, in Section [V-A] we first describe this matrix-power
kernel that we implemented on multiple GPUs, and then in
Section we analyze its performance using different test
matrices. For our discussion, we use A(@ and V(@ to denote
the local matrices on the d-th GPU and use n, to denote the
number of available GPUs.

A. Algorithm to Generate Matrix-Power

Figure 4] shows the pseudocode of the matrix-power kernel,
where v(4k) — Vitd k1) & and i(***1) is the row index set of
the k-th column vector v. , which are required to compute the
local part V:(i)ﬂ of the (s+1)-th vector v. 1. This row index
set i(4F+1) is composed of two disjoint sets; i.e., i(®F+D) =
i) | Jo(dk+1) | where i(41) is the row index set of the d-th
local submatrix (i.e., A@ = A(i(®V 1)) and §@++D is the
set of the remaining row indexes in i(***1)_1In the adjacency
graph of A, the set i{***+1) is the set of the vertices that are
reachable through at most % edges from a vertex in i(®1) and
§(@k+1) is the set of the vertices whose shortest shortest path
from a vertex in i(*1) is k (see Figure |5 for an illustration). In
our implementation, before the iteration begins, the (k -+ 1)-th
boundary set SR g computed on the CPU based on the
following recursion for k =1,2,...,s:

§ldk+1) — U str (agd.’k)> \i(d’k)7

igild:F) 7
where str(agf)) are the column index set of the nonzeros
in the i-th row of the local submatrix A(4*) and AF) is

i(d:1)
5((1,2)

5(d:4)

Fig. 5.

Tllustration of Surface-to-Volume Ratio.

the submatrix of A consisting of the rows given by i(%*)

(e AR = AGER) 2)).

Though this matrix-power kernel reduces the latency by
the factor of s, the d-th GPU requires the additional mem-
ory to store the boundary submatrix A(8®1*+) ) where
§ldlikrl) Ur<iin 89 Furthermore, at the k-th step
of the matrix-power kernel, in addition to the matrix-
multiplication with the local submatrix A(d), the d-th GPU
performs the additional multiplication with the k-th boundary
submatrix A(6@1#*V ). Finally, to generate the m basis
vectors over the GMRES restart-loop, the d-th GPU must
gather the total of O(%|6(d71:5+1)|) vector elements, where
6(15 4D | s the size of the index set @1+ For s > 1,
this total communication volume could be greater than that
required by the standard algorithm to compute one sparse
matrix-vector multiplication at a time over the restart-loop
(i.e., s = 1). The amount of these storage, computational, and
communication overheads depend on the sparsity structure of
the matrix A, and we study these in Section for different
test matrices.

Generating the monomial basis vectors based on the above
matrix-power kernel is often numerically unstable, leading to
a stochastic convergence of the CA-GMRES iterations. This
is because the generated vectors converges to the eigenvec-
tor corresponding to the largest eigenvalue of A with the
ratio |Aa/A1|, where A; and Ao are the dominant and the
second dominant eigenvalues of A, respectively. To avoid this
numerical instability, our matrix-power kernel can generate
a Newton basis v. ;41 = (A — 0I)v., where the k-th
shift 6, is an eigenvalue of the Hessemberg matrix H from
the first restart and approximates an extreme eigenvalue of
the matrix A [8]. To further improve the stability, these shifts
are ordered in a Leja ordering such that the distance between
two consecutive shifts is maximized. When we encounter a
complex shift for a real-precision matrix A, we rearrange
the procedure so that the complex arithmetic is avoided [4}
Section 7.3.2]. Since these shifts are not available for the first



restart-loop, we use the standard GMRES iterations for the
first restart-loop.

B. Performance Studies of Matrix-Power Kernel

The performance of the matrix-power kernel strongly de-
pends on the sparsity structure of the matrix A. In particular,
the main factor determining the performance is a so-called
surface-to-volume ratio [] which quantifies how the local di-
agonal block A(i(%1) (1) is connected to the other diagonal
blocks through the off-diagonal submatrix A(i(41), §(@Ls+D)y,
In Figures [6(a)] and we study the increase in this
surface-to-volume ratio nnz(A(i(%9),:) /nnz(A(§ @Y )
with respect to the parameter s for two of our test matrices
(see Figure [13| for matrix properties). Since the natural matrix
ordering in some cases leads to the full index set i(***1) even
for a small value of s, we tested using two matrix reorder-
ing algorithms, the reverse Cuthill-McKee (RCM) [9] from
HSI_E] and a k-way graph partitioning (KWY) of METISﬂ
We observe that for G3_circuit, the matrix reordering
significantly reduces the surface-to-volume ratio, but the ratio
still increases superlinearly with respect to s. On the other
hand, cant is naturally banded, and the surface-to-volume
ratio increases almost linearly with all the ordering schemes.

Figures @] and [7(a)] also illustrate the additional computa-
tion W (%*) required by the matrix-power kernel; for a fixed
value k£ of s, this is given by the area under the curve over
s =1 through k (i.e., Wdk) — Zle nnz(A(6419) 1)),
Then, the total computational overhead over the m it-
erations is given by %W(d’k). For instance, if the sur-
face nnz(A(6¥ +)) increases linearly with s, then W (d:%)
is a quadratic function of s and the total computational
overhead over a restart-loop increases linearly with s.

In Figure [6(b) and we show the required to-
tal communication volume for different value of s:
ie., %(\Udé(d’lzsﬂn + 3,181 ))  where the first
term |{J, 81TV represents the communication to gather
the required vector elements from the GPUs to the CPU, while
the second term ) _ , |6 (d:1:54+1)| represents the communication
to scatter the required elements to the GPUs. In particular, for
cases where the index set size |6(d’115+1)| increases linearly
with s, the total communication volume will stay constant or
even decrease with s. For both G3_circuit and cant, the
increase of |§(%1*FV)] is relatively fast for small s, and slows
down for larger ones. Hence, in comparison to the standard
algorithm (s = 1), the matrix-power kernel requires a greater
communication volume (s > 1), but the communication vol-
ume grows slowly for a larger value of s (e.g., s > 5). For the
naturally banded cant, KWY leads to greater communication
volume than RCM. However, KWY computes a partitioning
to minimize the edge cut while balancing the load among the
GPUs, and it often renders smaller communication volume for

Uhttp://www.hsl.rl.ac.uk/catalogue/mc60.xml

Zhttp://glaros.dtc.umn.edu/gkhome/metis/metis/overview, We have also
tested using recursive vertex and edge bisection algorithms, and observed the
k-way partitioning algorithm that minimizes the edge-cut often gives smaller
surfaces with better load balances.

other matrices For instance for G3_circuit, the communi-
cation volume using KMY is smaller than for RCM, especially
for small values of s. However, with KWY, the communication
volume increase is larger, and for large s, the two algorithms
need about the same amount of communication.

Finally, Figure [§] shows the performance of our matrix-
power kernel to generate the total of one hundred vectors
(i.e., m = 100). In addition to the total run time including
the communication (solid line), we show the time spent in
SpMV (bashed line). As we discussed above (see Figures
and [7(a)), the flop count increased almost linearly with s
for these two test matrices, and we see in Figure B] that the
computation time with SpMV also increases linearly. On the
other hand, the communication time (the gap between the
solid and dashed lines) decreases significantly from that with
the standard algorithm (s = 1). This is because though the
communication volume increases (see Figures and [7(D))),
the latency is reduced with the inversely proportional rate
with s. As a result, the communication time decreases quickly
with a small value of s, and then it starts to increase slightly
as the communication bandwidth becomes dominant for a
larger value of s. This indicates that the latency together
with the setups required for calling MPK (e.g. gathering and
scattering of the vector elements) often has a greater impact
on the performance of CA-GMRES than the bandwidth does,
especially on a small number of GPUs.

V. ORTHOGONALIZATION KERNELS

Beside the sparse matrix-vector multiplication, the orthog-
onalization process often dominates the iteration time of
GMRES:; i.e., Bort to orthogonalize V;1.; 4511 against V7.
and TSQR to orthogonalize the column vectors Vji1.j4sy1
with each other. Here in Sections through we first
describe the four orhogonalization procedures that we have
implemented for CA-GMRES on the GPUs. While for the
matrix-power kernel in Section we focused on reducing
the communication between the GPUs, in this section we
consider the communication both between the GPUs and
between the computing cores on a single GPU. In Section[V-F
we study the performance of these different orthogonalization
procedures using random matrices (the numerical stability of
these procedures within CA-GMRES for different test matrices
are studied in Section |VI]).

A. Modified Gram-Schmidt Procedure

In the modified Gram-Schmidt (MGS) procedure to orthog-
onalize the s + 1 columns Vji.;1,41 against each other,
each vector vy is incrementally orthogonalized against the

previously-orthogonalized columns v 1,Vjt2,...,Vi_1;
k—1
T
Vi = H (I —vevy )Vi.
f=j+1

3With either the natural or RCM ordering, the matrix is distributed such
that each GPU has an equal number of rows.
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We observed that this procedure is often stable in practice.
However, the procedure requires 2(k — j — 1) communication
among the GPUs for computing the s dot-products ryj =
vgvk; specifically, to orthogonalize v, against each vy, the d-
th GPU first forms its local dot-product rédk) = vgd) ,(Cd) and
asynchronously sends the result to the CPU. Then, the CPU
computes the final product by summing the local products
Tk = Zi1 réfik? and then copies the product back to the
GPUs for the local orthogonalization v,(gd) = v,(gd) Ty kvéd).
This procedure can be used for a block orthogonaliza-

tion Borh to orthogonalize the set of vectors Vjii.jys11
against the previous vectors V7.;:

J

Vigrgrsrt = | [ = vevi ) Viprsjaeta-

(=1
Though the s + 1 vectors Vjii.4541 are orthogonalized
against the vector v, at once, the procedure still communicates
J times.

B. Classical Gram-Schmidt Procedure

To orthogonalizes the column vectors V1.1 441 With each
other, the classical Gram-Schmidt (CGS) procedure assumes
the orthogonality of the previous basis vectors, and orthog-
onalizes the vector vy against the previous basis vectors at
once:

Vi = (I = Vi1 Vi 1) Vi

Hence, all the required communication can be aggregated into
a single message, and in comparison to MGS, CGS reduces
the latency by a factor of k for orthogonalizing the k-th
vector vy. Specifically, the GPU first independently computes
its local matrix-vector multiplication ry.;_1 % = V(d)T ( ).
Then, the CPU accumulate these local results, ri.;—1 5 =

ne rgdz 1 Finally, the CPU broadcasts ry.x—1 to the

GPUs, and each GPU independently orthogonalizes its local
vector, vfcd) = vlid) - Vl(:[;i),Tlrl:kak- In comparison to MGS
that uses BLAS-1 dot-products, CGS relies on a BLAS-2
matrix-vector multiplication. As a result, in comparison to
MGS, CGS not only reduces the latency by a factor of &
between the GPUs, but it also improves the data locality to

access vlg.d) on the distinct GPUs
Just like MGS, CGS can be used in Bort,

I T
Vittgts+1 = (L = VigVi) Vit js+1-

Unfortunately, in practical implementations, the orthogonality
often suffers from rounding errors in the simultaneous orthog-
onalization procedure. Though restarting the iteration helps

4We have also investigated a fused CGS where the computation of the
norm ||vy||2 is fused with the matrix-vector multiplication V;I, vy [10].
Since it requires a check to ensure the numerical stability, this approach
replaces the reduction with a synchronization on the GPU. We have not seen a
significant performance improvement from this approach in our experiments.
In addition, we have studied a pipelined GMRES [10]] to overlap SpMV
to compute v;jy1 on the GPU with the matrix-vector multiplication to
orthogonalize the previous vector v; on the CPU. Since the matrix-vector
multiplication with the tall-skinny matrices on the GPU was more efficient
than that on CPU, using the CPU for the multiplication often slowed down
the procedure in our experiments.

to maintain the orthogonality, a re-orthogonalization is often
required to ensure the orthogonality of the vectors.

C. Cholesky QR Factorization

In the Cholesky QR (CholQR) factorization, a set of s + 1
vectors Vjy1.j154+1 are orthogonalized against each other
in the following three steps; first the Gram matrix B :=
Vjﬂl: jts +1Vj+1:5+s+1 is computed, then its Cholesky factor-
ization RT R = B is derived, and finally Vj1.j4+s+1 is orthog-
onalized by a triangular solve: Vj1.j 1541 := j+1;j+s+1R_1
Hence, the set of s+1 vectors can be orthogonalized with a sin-
gle pair of the GPU-to-CPU and CPU-to-GPU communication,
while MGS and CGS would require (s+1)(s+2)/2 and s+ 1
reductions, respectively. Furthermore, the computation of B is
based on the BLAS-3 matrix-matrix operation instead of the
BLAS-1 vector-vector or the BLAS-2 matrix-vector operations
in MGS or CGS, respectively. As a result, the data locality to

access not only the single vector V1(<; ) but also all the previous

vectors V1(; k)71 can be optimized on the GPU.

Unfortunately, the condition number of B is the square of
the condition number of Vj1.;4441. This often causes numer-
ical problems, especially in CA-GMRES, where the condition
number of Vj 1441 can become large (see Section [VI).

D. Singular Value QR Factorization

When the matrix V11,441 is ill-conditioned, or one of the
column vectors is a linear combination of the other columns,
the Cholesky factorization of its Gram matrix may fail. To
overcome this numerical challenge, in the Singular Value
QR (SVQR) factorization [11], we compute the singular value
decomposition (SVD) of the Gram matrix, UXU T .= B,
and then compute the QR factorization of »2U7T to obtain
the upper-triangular matrix R. Though computing the SVD
and QR factorization is more expensive than computing the
Cholesky factorization, the matrix dimension of the Gram
matrix is much smaller compared to the original matrix A
(i.e., s < n). Hence, most of the flops is computed by
the BLAS-3 matrix-matrix multiplication to form the Gram
matrix, and the factorization requires only a pair of the CPU-
GPU communication, just like the CholQR factorization.

Unfortunately, we observed that CA-GMRES, based on
SVQR factorization may suffer from a larger element-wise
error than when using CholQR factorization, which may result
in loss of convergence (see Section [VI). The main reason
for this is that the vectors Vjii.j4.41 generated from the
matrix-power kernel become increasingly linearly-dependent
and ill-conditioned as s increases, and the condition number
of the leading matrix B(1 : k,1 : k) is the square of the
condition number of Vj1.;4%. In the Cholesky factorization,
the matrix B is factorized from top-left of the matrix to the
bottom-right, and the error introduced during the Cholesky fac-
torization of the trailing submatrix B(k+1: s+1,k+1: s+1)
is localized within itself. As a result, when the factorization is
successful, we often observe that both norm-wise and element-
wise backward errors of the factorization are relatively small.
Furthermore the Gram matrix from the matrix-power kernel is



scaled, and this property seems to help maintain the positive
diagonals during the Cholesky factorization. Similarly, in the
first step of SVD to bidiagonalize the Gram matrix through
the Householder transformations, the numerical errors are
localized. However, during the SVD of the bidiagonal matrix,
the errors from the bottom-right of the matrix propagate to
the leading submatrix and at the end, though the norm-wise
error is relatively small, we observe relatively large element-
wise errors, especially on the top-right corner of the matrix.
Fortunately, unlike CholQR, we observe that this numerical
issue of SVQR is often resolved by scaling the Gram matrix
such that its diagonals are one. However, were unable to
identify a test case where CA-GMRES converges with SVQR
but not with CholQR.

E. Communication-Avoiding QR Factorization

In the communication-avoiding QR (CAQR) algorithm, a
set of vectors V41441 is orthogonalized against each other
through a tree reduction of the local QR factorizations; in other
words, each GPU first computes the QR factorization of the
local matrix Vj(f)h j+s+1- then the local R-factors are gathered
on the CPU, and the final QR factorization is computed on the
CPU. Just like CholQR, CAQR requires only a single pair of
the GPU-to-CPU and CPU-to-GPU communication to orthog-
onalize V1 1.j4.4+1. However, the local QR factorizations are
based on BLAS-1 and BLAS-2 operations, which often obtain
only a fraction of the BLAS-3 performance in CholQRE]

To summarize this subsection, Figure [J] shows the pseu-
docdes of our TSQR implementations, and Figure [T0] lists
some properties of the implementations.

F. Performance Studies of Orthogonalization Procedures

The performance of orthogonalization depends strongly on
the performance of the BLAS kernels (see Figure [I0). Fig-
ure shows the performance of DGEMM that is used for
TSQR with CholQR and SVQR (and for Bort with CGS). We
clearly see that the standard implementation (e.g., CUBLAS) is
not optimized for the typical tall-skinny shape of the matrix in
CA-GMRES (i.e., hundreds of thousands of rows, n, and tens
of columns, s). In fact, the performance of CUBLAS DGEMM
was lower than that of MKL or that of MAGMA DGEMY,
making the performance of CholQR based on CUBLAS lower
than that of CGS based on MAGMA. To improve the perfor-
mance of CholQR and SVQR, we investigated the performance
of a batched DGEMM, where we first divided the n-by-
(s+ 1) matrix V}.441 into h-by-(s+ 1) submatrices, and then
called the batched DGEMM of CUBLAS and performed a
reduction operation to sum up the results of each DGEMM.
To alight the memory access within each DGEMM of the
batched DGEMM, we round up the number of rows, h, to
be a multiple of 32. Furthermore, since the batched DGEMM

SCurrently, we explicitly form the orthogonal matrix Q. Though this makes
the interfaces to the rest of the routines (e.g., reorthogonalization) simpler, it
doubles the flop count. We plan to investigate the potential of storing () as
the set of Householder transformations.

. . Classical Gram-Schmidt
Modified Gram-Schmidt
fork=1,2,...,5+1do fork=1,2,...,s+1do
for £ =1,2,...,k—1do f"r(j)*L?ww(gde"(d)
ford=1,2,...,n, do i1,k = Viik—1Ve
Téfilz — VEd)TVI(cd) end for @
end for Flk—1,k = D Ty, (comm)
reg = rédg (comm.) end for
f0rd:1,2,.,..,nq do Vi = Ve = Vig-1T1Le—1,%
(d) . (d) d) Tk, k = ||[Vk|l2 (comm)
Vi T Ve TV Tek ford=1,2,...,n4 do
end for (d) (d)
end for ‘:lkf =V [Tk
T,k = || V|2 (comm) e(;lf or
ford=1,2,...,n4 do end lor
v,gd) = v,(ed)/rk,;C
end for
end for
Cholesky QR Communication-Avoiding QR
ford=1,2,...,n, do ford=1,2,...,n,4 do
B = Vl(:(?JrTl Vl(:i)+1 [Q(d,1)7 R(d"l)] = qr(A(d))
end for copy Ry to CPU
B := Y B@ (comm) end f"?
R := chol(B) on CPU [@™%;...,Q9?), R,] =
ford =1,2,...,n4 do qr([R(l’l);...;R("g’l)])
copy R to d-th GPU on CPU
(d) . _ y/(d) -1 =
Viewr 7= Vi B for d 1’(2d’ 2 ng do
end for copy Q% to GPU—d
Q(d) = Q(dyl)Q(dﬂ)
end for
Fig. 9. Pseudocodes of TSQR algorithms.

I1 — QTQJ [ # flops [ # GPU-CPU comm. ]

MGS O(er) 2sn2, BLAS-1 xDOT (s+1)(s+2)
CGS O(er®™1) 2sn2, BLAS-2 xGEMV 2(s +1)
CholQR | O(ex?) 3sn?, BLAS-3 xGEMM 2
SVQR O(er?) 3sn?, BLAS-3 xGEMM 2
CAQR O(e) 4sn?, BLAS-1,2 xGEQR2 2

Fig. 10. TSQR(Vjt1:j4+s+1), & is the condition number of Vj 1.5 4541.

expects the size of each DGEMM to be the same, we set
the leading dimension to store Vi.;41 to be a multiple of A
and padded the bottom with zeros. This routine has the same
interface as the standard DGEMM but internally uses an array
of pointers that point to the beginnings of the submatrices for
calling the batched DGEMM. We clearly see that this batched
DGEMM outperforms the other implementations and is used
for our orthogonalization procedures.

Figure[TT(b)|shows the performance of DGEMYV that is used
for TSQR based on CGS (and Bort based on MGS). Similar
to DGEMM, the performance of the standard implementation
(i.e., CUBLAS) was poor. For instance, the performance of
CUBLAS DGEMV was lower than that of MKL or that of
CUBLAS DDOT, making the performance of CGS lower than
that of MGS when CUBLAS is used to implement these
two algorithms. We also tried using the batched DGEMM to
compute the matrix-vector multiplication with this tall-skinny
matrix, but the performance was improved only slightly. To
improve the performance of CGS, we developed an optimized
MAGMA DGEMYV kernel for tall-skinny matrices, which
uses a thread block to perform a dot-product between a
column of Vj.s11 with a vector need to ask stan about the
implementation. This improves the performance of DGEMV
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by a factor of about five over the other implementations and
is used for our orthogonalization proceduresﬁ

Finally, Figure [T2] shows the performance of our orthogo-
nalization routines on up to three GPUs. On a single GPU,
these routine obtain the performance of the optimized BLAS
kernels; i.e., MGS, CGS, and CholQR and SVQR obtain the
performance of DDOT, DGEMYV, and DGEMM, respectively.
The performance of CAQR is close to that of MGS because
TSQR on each GPU is based on BLAS-1 and BLAS-2
operations. The figure also shows that each routine scales well
over the three GPUs.

OWe are investigating other batched kernels (e.g., GEMV, SYRK, and
GEQRF) and potential of using auto-tuner to improve the performance of
the dense kernels.

251
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—
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(b) DGEMYV to compute V1T5+1v:,s+2.

Performance of DGEMM and DGEMYV for a tall-skinny matrix Vi.s41 (s + 1 = 30).

Name Source n. /1000 nnz/n 01/0m | 61/62 |
cant FEM Cantilever 62 64.2
kkt_power KKT optimization 2,063 6.2
G3_circuit Circuit simulation 1,585 4.8
StocF-1465 Fluid dynamics 1,465 14.3
dielFilterV2real FEM in EM 1,157 41.9

Fig. 13.  Test Matrices.

VI. PERFORMANCE STUDIES OF CA-GMRES

Finally, in this section, we first study the numerical be-
havior of the different orthogonalization procedures within
CA-GMRES. We then study the performance of CA-GMRES
on multiple GPUs. One of the parameters that affect the
performance of GMRES is the number of iterations before
each restart, m (a small value of m helps maintain the orthog-
onality of the basis vectors and reduces the cost of generating
a larger projection subspace, while if m is too small, then
GMRES could suffer from slow convergence or stagnation).
For each test matrix in this section, we use the parameter
m that obtained the shortest solution time on a single GPU
among the values of m = 30,60,90,...,180 (the optimal
value of m may differ on a different number of GPUs). The
computed solution is considered to have converged when the
£o-norm of the initial residual is reduced by at least six orders
of magnitude. To improve the stability and the convergence
rate of the iteration, before the iteration starts, the matrix is
equilibrated; namely, the rows of the matrix are first scaled by
their norms, and then the columns are scaled by their norms.
Our code was compiled using the GNU gcc 4.4.6 compiler and
CUDA nvce 4.2 compiler with the optimization flag -03, and
then linked with MKL 2011_sp1.8.273. Figure [[3]lists the test
matrices used for our experiments. These matrices are from a
wide range of applications and available from the University
of Florida Matrix Collection|
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Fig. 14.  Effects of orthogonalization on 1 GPU, G3_circuit.

A. Numerical Studies of Orthogonalization

Figure [T4(a)] shows the errors of the TSQR factoriza-
tion using different orthogonalization procedures in CA-
GMRES(20,30) on a single GPU, where || - || denotes the
max-norm (i.e., |E| = max; ;|e; ;|) and E./A denotes the
element-wise division (i.e., (E./A); ; is e; j/a; ;). All the or-
thogonalization procedures obtained obtained almost the same
residual norm convergence and most of the factorization errors
in the similar ranges. The only exceptions were ||[I — QT Q||
of MGS due to the lack of the reorthogonalization, and
I — QTQ| and ||[A — QR||/||A|| of CAQR which was one
and two order of magnitude greater than those of the other
procedures even with the reorthogonalization. Figure [T4(b)]

Thttp://www.cise.ufl.edu/research/sparse/matrices/

Ortho/Itr

[ .

ng ‘ Basis H ‘ Restarts TSQR ‘ SpMV/Itr ‘

Schemes Total Total/Itr
cant, natural ordering
GMRES(GO)
—— - CGS 7 25.7 —— 35.7 62.9
—— 2 - CGS 7 17.1 - 22.9 40.0
—— 3 —— CGS 7 14.3 —— 12.4 37.1
CA-GMRES(60)

1 1 Newt CGS 7 75.7 14.3 37.1 115.7
10 1 Newt CGS 7 20.0 11.4 35.7 58.6
10 1 Newt 2% CHO 7 20.0 10.0 35.7 58.6
10 2 Newt 2 x CHO 7 12.9 7.1 22.9 40.0
10 3 Newt 2 x CHO 7 11.4 5.7 18.6 32.9

G3_circuit, k-way partitioning
GMRES(30)
- 1 - CGS 15 206.7 - 60.0 273.3
- 2 - CGS 15 106.7 - 33.3 153.3
—— 3 —— CGS 15 73.3 —— 26.7 106.7
CA-GMRES(30)

1 1 Mono CGS 15 606.7 160.0 66.7 680.0
10 1 Mono 2 X CGS 15 320.0 273.3 66.7 386.7
10 1 Newt 2 X CHO 15 173.3 126.7 66.7 3.7
10 2 Newt 2 x CHO 15 93.3 66.7 40.0 140.0
10 3 Newt 2 x CHO 15 60.0 46.7 26.7 93.3

diclFilterV2real, k-way partitioning
GMRES(ISO)
10 —— MGS
10 1 —— CGS 179 3807.8 —— 3458.1 7284.4
10 1 - 2% CGS 166 7347.6 —— 3439.8 10806.0
10 2 - 2xCGS 177 3500.6 - 1744.1 5258.2
10 3 —— 2 X CGS 137 2321.9 —— 1132.8 3467.9
CA-GMRES(180)
10 1 Mono CGS |
10 10 Newt CGS
10 10 Newt 2XCGS 187 2114.4 1179.1 | 3472.2 | 5610.7 |
10 1 Newt 2% CHO
10 2 Newt 2 x CHO 108 763.0 283.3 2046.3 2825.9
10 3 Newt 2 X CHO 135 508.9 194.1 1743.7 2268.9
Fig. 15.  Performance of CA-GMRES, times are in milliseconds.

shows the same results in CA-GMRES(30, 30). The results
were similar to those in CA-GMRES(20, 30), except that the
element-wise errors ||(A—QR)./A|| were significantly greater
using CholQR and SVQR. For these particular setups, CA-
GMRES with CGS or CholQR failed to converge without
reorthogonalization, and it failed to converge with a larger
value of s (i.e., s = 40) using all the orthogonalization
procedures even with reorthogonalization, except for using
MGS and using CAQR with reorthogonalization.

B. Performance Studies of CA-GMRES
VII. CONCLUSION

In this paper, we compared the performance of CA-GMRES
with that of GMRES on multiple GPUs. Our performance
results on two six-cores Intel Sandy Bridge CPUs with three
NDIVIA Fermi GPUs demonstrated the significant speedups
can be obtained avoiding the communication both on a single
GPU and between the GPUs. As a part of this study, we
investigated the performance of the GPU kernels required
for the sparse matrix-vector multiplication SpMV and for
the orthogonalization procedures Orth, and discovered new
optimization techniques are needed especially for tall-skinny
dense matrices to obtain the high-performance of GMRES
on the GPUs. Since tall-skinny dense matrices appears in
many other sparse solvers (e.g., sparse factorization), and both
SpMV and Orth are needed in many other sparse solvers
(e.g., subspace projection methods for linear and eigenvalue
problems). the current studies have greater impact beyond
GMRES. We also surveyed the numerical behavior of different
orthogonalization strategies, in the combination with a matrix-
power kernel.

Currently, we studying the performance of CA-GMRES on
a larger number of GPUs, in particular, on distributed GPUs,
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where the CPU-GPU communication becomes more dominant.
Since the performance of the GPU kernels are critical to obtain
the high-performance of CA-GMRES, we are also looking to
further optimize these GPU kernels. We also plan to study the
potential of reducing communication of MPK on a single GPU,
other partitioning algorithms (e.g., hypergraph partitioning) or
orthogonalization strategies (e.g., QR with column pivoting
or use of mixed precisions) to improve the performance
of CA-GMRES, and adaptive schemes to select or switch
orthogonalization strategies or to adjust input parameters (e.g.,
m and s).
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