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Motivation Al + Pt - AIPt (intermetallic phase)

Laser
Pulse

Exothermic heat generation upon ignition.

Self-propagating reaction.

1.6 um

Reactive foils may be ignited using shock
waves, static discharge, and heating.

Laser irradiation leads to more control over

energy delivered to foil. Applications: Joining, Soldering

Laser irradiation allows for remote ignition.

Study effects of ignition on rate of heat

input_ Braze Filler
Reactive Foil
Vary pulse length from femtosecond to Braze Filler

millisecond to study effects of heating rate
on ignition.




Reactive Multilayers

Al + Pt > AIPt (intermetallic phase) Al/Pt multilayer

TEM Cross-section
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DC Magnetron sputtered layers

 10- 15 A thickness variation

e 1to1Al/Ptratio

e Heat of reaction = - 100 kJ/mol

* Adiabatic reaction temperature = 2798 °C
* Reaction onset temperature =136 °C

 Melting not required for ignition




Ignition and
Reaction Propagation

lgnition by capacitive discharge

~ 600 microseconds after ignition
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Imaging Reaction Propagation

Equiatomic Al/Pt, bilayer thickness = 50 nm

Test Chamber
Patm
Phantom
High speed
camera
/ Al/Pt foil
Chamber 4
viewport I
Igniter (25V)

Point ignition in air.
Tested as freestanding foils.

Room temperature.

High speed photography of steady-state propagation.

plan view
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Bilayer Dependence

Pt * Propagation speed increases with decreasing bilayer

Bilayer .
thickness.

* Shorter diffusion distances lead to shorter reaction times.

_ * Pre-mixing affects propagation speed of thinnest bilayers.
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Laser Irradiation 100 fs pulse

SEM Cross-section

Reactive Foil

Layer Mixing

SiO, Substrate

Al/Pt Irradiated at 80% ignition threshold




Determining Laser

Ignition Threshold

Foil not on substrate

Single Pulse Irradiation

Flat-top Beam Profile

Irradiate Pt side

Focused Beam

Beam Profile

Foil

1000
Distance (um)

2000

e Laser energy is increased

until foil ignites.

* Non-irradiated region of

sample is used for each test.
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Laser Ignition Threshold

* Foil laser ignition threshold depends on pulse length.
e Laser-material interaction mechanisms depend on pulse length.
* Femtosecond and nanosecond thresholds may be strongly affected by material ablation.

e Bilayer thickness =123 nm
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Heat FIOW and Change interaction volume
Interaction Volume

Laser Spot Size

Q;,= Laser Power

100 pm 314 pm
Q generatea= Reaction
Heat Generation Rate O
Pt
Al
Qour= Conduction <€ > Pt
P A

Total thickness = 1.6 um

\ Bilayer Thickness
Pt

) 40 nm
0....= Radiation A

Pt




Energy Density Threshold

* Energy density (J/cm?) calculated using total laser pulse E and focused laser area.
* lgnition threshold depends on laser spot size and bilayer thickness.
e Larger interaction volume and larger volume-specific interfacial surface area lower the

threshold.
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Intensity Threshold

Intensity (W/cm?) calculated using energy density and pulse length.

Ignition threshold depends on intensity.
Longer pulse lengths lower the intensity threshold.

Longer pulse length may increase interaction volume via
conduction.
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Conclusions

Reactive foils are ignited using single laser pulses.
Laser pulse lengths ranging from femtoseconds to milliseconds can ignite foils.

Laser ignition threshold depends on pulse duration, laser spot size, and foil
bilayer thickness.

Increasing laser spot size and decreasing bilayer thickness increases the volume-
specific interfacial surface area, leading to decreased ignition threshold.

Dependence of threshold on laser pulse duration likely due to competition
between rate of heat input delivered by laser pulse and heat conductive losses.



