
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation,  for  the  U.S.  Department  of  Energy’s  National  Nuclear  Security  Administration  under  contract  DE-AC04-94AL85000. SAND NO. 2013-XXXXP 

Operando spectroscopy: 
Insights into chemical and 
electrochemical activity of 
oxides used for energy 
conversion 

Anthony H. McDaniel 
Sandia National Labs 

SAND2013-8869C



Acknowledgments. 

 Sandia Labs 
 Farid El Gabaly 
 Kevin McCarty 
 William Chueh (Stanford) 

 ALS BL 11.0.2 
 Andrey Shavorskiy 
 Tolek Tyliszczak 
 Hendrik Bluhm 

 ALS BL 9.3.2 
 Zhi Liu 
 Michael Grass 

 ALS BL 5.3.2 
 David Kilcoyne 

2 



Operando measurements on energy materials 
using soft x-rays. 
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Outline. 

 Motivation. 
 Summarize efforts to build soft x-ray user platforms for 

operando studies. 
 Electrochemical methods 
 Ambient pressure photoemission (APXPS) 
 X-ray absorption (NEXAFS) 

 Examples. 
 Thermal redox of iron oxide 
 Electrochemical reduction of O2 on a perovskite cathode 

 Challenges and plea to theoreticians. 
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Metal oxides are in important class of 
energy conversion materials. 

Knowledge gaps: 
 What is the chemical state of 

the reactive surface? 
 What are the rate limiting 

processes? 
 How does the surface differ 

from bulk? 
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One environment configuration. 

 Surface states. 
 Core level XPS 
 VB photoemission 
 XAS partial electron yield 
 Local potential 

 Macroscopic behavior. 
 Impedance spectroscopy 
 Potential steps/sweeps 
 Reaction rates 

 

 Electrolytic half-cell. 
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Two-environment configuration. 
 Surface states. 

 Core level XPS 
 VB photoemission 
 XAS partial electron yield 
 Local potential 

 Bulk states. 
 XAS fluorescent yield 

 Macroscopic behavior. 
 Impedance spectroscopy 
 Potential steps/sweeps 
 Reaction rates 

 

 Galvanic full-cell. 
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Suite of characterization tools available. 
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 Fe(II/III) redox is an important reaction. 
 Chemical looping 
 Fischer-Tropsch 
 Water splitting 
 Thermal storage 

 Formation of  surface Fe3O4 during oxidation 
at 650 C observed by LEEM. 

 New Fe must come from bulk. 
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-Fe2O3 inclusions form during oxidation. 

 Heterogeneous surface 
composition discovered by 
Raman. 
 

 -Fe2O3 region recessed 
from surface. 
 2-D array of hematite stripes 
 Surface Fe3O4 grows faster 

near inclusions 
 -Fe2O3 phase not found 

 

10 

2, 3 = Fe3O4 

1 = -Fe2O3 

AFM 

RAMAN 



XPS and XAS show bulk more oxidized 
than surface. 

 PEY and FY spectra differ at 
low Temperature. 
 Evidence for Fe2+ on surface 

 
 XPS best described by mixture 

of Fe2+ and Fe3+ peaks. 
 

 After oxidation at 600 C: 
 PEY and FY spectra similar 
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Fe-L3,2 edge Fe 2p 



Picture of Fe3O4 oxidation. 

 O2 dissociates everywhere on the surface. 
 Magnetite forms on surface creating Fe vacancies. 
 3Fe2+ + 2O2 + 6e-  Fe3O4 

 Subsurface nucleation and growth of hematite inclusions. 
 3Fe3O4 + VFe

2-  4Fe2O3 + 2e- 
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Custom chamber for SOFC studies. 

 Fully functioning SOFC. 
 T  650 C, 0.67 mbar O2 on cathode, 0.67 mbar H2/H2O on anode 
 1.0 V Nernst potential 
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 Oxygen reduction reaction (ORR). 
 Important rate limiting step 

 
 State-of-the-art cathodes. 

 La0.6Sr0.4Co0.8Fe0.2O3- (LSCF) 

 Ba0.5Sr0.5Co0.8Fe0.2O3-  (BSCF) 

 
 Ba substitution dramatically 

increases ORR rate. 
 RBa(2+) > RLa(3+) expands lattice 

 Charge difference affects B-site 
(BaSr)2+(B’B)4+ vs. (LaSr)2.5+(B’B)3.5+ 
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XAS reveals differences in bulk behavior. 

 Fe reduced in BSCF when Vö form electrochemically. 
 Co reduced in LSCF when Vö form electrochemically. 
 BSCF more strongly reduced at lower overpotentials. 
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BSCF LSCF 



Theory needed for detailed understanding. 

 TM likely in mixed ground states. 
3dn + 3dn+1L0 

 Correlate TM-O covalency to: 
 Vacancy formation energy 
 Vacancy concentration 
 ORR activity 

 Where do the electrons go? 
 Localized to TM-Vö defect 
 De-localized 
 Disproportionate 
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XPS reveals differences in surface composition. 

 Surface Ba-rich in BSCF (stoichiometric = 50%). 
 Surface Sr-rich in LSCF (stoichiometric = 40%). 

 Perovskite phase no longer predominant at surface 
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2p-(Fe,Co)3d hole states diminished at surface. 

 Surface composition dominated 
by oxides of Ba and Sr. 
 O stoichiometry very different 

 
 BO6 symmetry broken? 

 
 High surface vacancy 

concentration? 
 

 Can theory improve our 
understanding? 
 Very complex systems... 
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Will there be a day when we have 
unlimited access to x-rays? 
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THANK YOU 
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Backup Slides 
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Thermochemical fuel production. 
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Two-step non-volatile metal oxide cycle : 
 
 
 

 
 The challenge is to develop efficient and 

scalable solar-powered reactors. 

2222 HδCeOOHδCeO δ 

222 2
OδCeOCeO δ   STEP 1 @ Thigh, REDUCTION 

STEP 2 @ Tlow, OXIDATION 

MW scale concentrating solar 
power facilities exist today. 

222 2
HδOOHδ 

 NET RESULT 



Thermochemical energy storage. 

 Simple, non-volatile metal 
oxide thermal storage cycle. 
 Store reduced oxide at night 
 Recover oxidation enthalpy to 

run power block 
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MW scale concentrating solar 
power facilities exist today. 
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Revealing insights near ambient 
pressure 

 Challenge: 
 Spectroscopy of electrified 

interfaces exposed to gases 

 Solution: 
 Ambient pressure X-ray 

photoelectron spectroscopy 

 Soft X-rays and electrochemistry 
on BL 11.0.2 and BL 9.3.2 

 

Bluhm, H. et al., MRS Bulletin-Materials Research Society, 32, 1022 (2007) 
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707 eV 1 m 

539 eV 1 m 

STXM images of a biased liquid cell 
containing LiFePO4 particles 


