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—~. Operando measurements on energy materials Snda
’% p gy @m
using soft x-rays.
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Outline. it

= Motivation.

= Summarize efforts to build soft x-ray user platforms for
operando studies.
= Electrochemical methods
= Ambient pressure photoemission (APXPS)
= X-ray absorption (NEXAFS)

= Examples.
* Thermal redox of iron oxide
= Electrochemical reduction of O, on a perovskite cathode

= Challenges and plea to theoreticians.




= Metal oxides are in |mportant class of N
energy conversion materials.

Knowledge gaps:

= \What is the chemical state of

%\z H, or HEAT the reactive surface?
= What are the rate limiting
H,00r O, processes?

thermal chemical = How does the surface differ
energy energy from bulk?

electrical
energy o,




= Surface states.
= Core level XPS
= VB photoemission
= XAS partial electron yield
= Local potential

= Macroscopic behavior.
= |mpedance spectroscopy
= Potential steps/sweeps
= Reaction rates

(EIectrontic haIf—CeD/

J. A. Whaley et al., Note: Fixture for Characterizing Electrochemical Devices in-operando in Traditional Vacuum Systems, Rev. Sci.
Instrum. 81, 086104 (2010).




Two-environment configuration. )

m Surface states. ALS BL 11.0.2

= Core level XPS
= VB photoemission
= XAS partial electron yield

= |ocal potential

= Bulk states.
= XAS fluorescent yield
" Macroscopic behavior.
" |mpedance spectroscopy

= Potential steps/sweeps
= Reaction rates

micro-probe contac =
(WE)
. x-ray fluorescence detector




Suite of characterization tools available. s
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thermal “ chemical ()
energy energy

3Fe + 20, — Fe,0,

LEEM image

= Fe(ll/Ill) redox is an important reaction.

= Chemical looping

= Fischer-Tropsch
=  Water splitting
= Thermal storage

= Formation of surface Fe;O, during oxidation
at 650 °C observed by LEEM.

@ew Fe must come from buD

S. Nie et al., Insight into Magnetite’s Redox Catalysis from Observing Surface Morphology during Oxidation, Journal of the American
Chemical Society 135, 10091-10098 (2013).




a-Fe,0; inclusions form during oxidation. ) i

AFM

= Heterogeneous surface
composition discovered by
Raman.
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" o-Fe,0; region recessed

from surface.
= 2-D array of hematite stripes
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= Surface Fe;O, grows faster
near inclusions

= v-Fe,0; phase not found
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=y XPSand XAS show bulk more oxidized s
than surface.

Fe-L;, edge

= PEY and FY spectra differ at
low Temperature.
= Evidence for Fe?* on surface

B: 400 °C O,

= XPS best described by mixture | _______ o .
of Fe2* and Fe3* peaks. |

Intensity (arb. units)

C: 600 °C O,

= After oxidation at 600 °C: | TN
= PEY and FY spectra similar "

Intensity (arb. units)

D: coolingin Ar
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Picture of Fe,0, oxidation. e

3Fe™ + 20,+ 6e —»Fe.0,

D

= O, dissociates everywhere on the surface.

= Magnetite forms on surface creating Fe vacancies.
3Fe?* + 20, + 6e- — Fe,0,

= Subsurface nucleation and growth of hematite inclusions.
3Fe;0, + V> — 4Fe,0, + 2e-
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Z YSZ crystal |

= Fully functioning SOFC.
= T~650°C,0.67 mbar O, on cathode, 0.67 mbar H,/H,0 on anode
= 1.0V Nernst potential




electrlcaIH chemical k-
energy energy

= Oxygen reduction reaction (ORR).
= |mportant rate limiting step

ALS BL 11.0.2 300
= State-of-the-art cathodes. 200}
La, ¢Sty 4COq gFey 5,055 (LSCF) 100t
" BaysSrysCoygFe,0;. 5 (BSCF) N:E: 0
S 300
N
= Ba substitution dramatically 0
increases ORR rate. Rategecr >> Rate gor | 100F o
" Rga(24) > Riaz+) €Xpands lattice 1O2 +2e- > 0% Oo'&jéo 200 300
= Charge difference affects B-site 2 7' (© cm?)

(BaSr)2*(B’B)** vs. (LaSr)25+(B'B)3-5+




N . . . Sanda
XAS reveals differences in bulk behavior. @i,
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LSCF
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= Fereduced in BSCF when Vo6 form electrochemically.

= Coreduced in LSCF when Vo form electrochemically.

= BSCF more strongly reduced at lower overpotentials.
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Theory needed for detailed understanding ) &z.

too simple?
= TM likely in mixed ground states. LSCF
3dn + 3d1L,
= Correlate TM-O covalency to:
= Vacancy formation energy

= Vacancy concentration
= ORR activity

= Where do the electrons go?
= Localized to TM-V06 defect

= De-localized
= Disproportionate

M. Pavone, A. M. Ritzmann, E. A. Carter, Quantum-mechanics-based design principles for solid oxide fuel
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cell cathode materials, Energy Environ. Sci. 4,4933 (2011)
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Sandia
XPS reveals differences in surface composition. () s,
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= Surface Ba-rich in BSCF (stoichiometric = 50%).
= Surface Sr-rich in LSCF (stoichiometric = 40%).

= Perovskite phase no longer predominant at surface




2p-(Fe,Co)3d hole states diminished at surface. () e,

= Surface composition dominated O-K
by oxides of Ba and Sr. )

= O stoichiometry very different £ w@/ﬂ
>
S
s /
= BO,symmetry broken? z
§ — 10V
k= y — 07V
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= High surface vacancy @ L2°7 .0, - 5
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concentration?

= Can theory improve our
understanding?
= Very complex systems...
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=»; Willthere be a day when we have e
unlimited access to x-rays?

medicine

eptember 27, 2013

Menlo Park, Calif — In an advance that could dramaticalry shrink p
rezearchers used a lazer to accelerate electrons at a rate 10 times
glass chip smaller than a grain of rice.

The achievement was reported today in Mafure by a team including
SLAC Mational Accelerator Laboratory and Stanford University.

“We =till have a number of challenges before this technology becon
substantially reduce the size and cost of future high-energy particlk
particles and forces,” said Joel England, the SLAC physicist who le
accelerators and X-ray devices for security scanning, medical ther
science.”

Researchers Demonstrate 'Accelerator on a Chip’

Technology could spawn new generations of smaller, less expensive devices for science,

Nanofsbricated chips of fused 2ilics just 3
miflimeters long were uzed fo sccelerste
s'ssrrﬂrs gt & rate 10 times higher than
conventional paricle sceelersfor fechnology
(Erad FiummerSLAC)
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Thermochemical fuel production. ()

MW scale concentrating solar
power facilities exist today.

Concentrated
solar heat

thermal reduction:

Two-step non-volatile metal oxide cycle :

0
CeO, — CeO, +502 STEP 1 @ Ty, REDUCTION

Thigh! Piow

CeO, ;+0-H,0—CeO,+0-H, STEP2 @ T,,,, OXIDATION
5-H20—>é02+5-H2 NET RESULT
2

= The challenge is to develop efficient and
scalable solar-powered reactors.
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SunShot Initiative

Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for
Engineering New Thermochemical Storage (CSP: ELEMENTS)

Funding: Up to $20M Over 4 Years Total

= Simple, non-volatile metal
oxide thermal storage cycle.
= Store reduced oxide at night

= Recover oxidation enthalpy to
run power block

MO, & MO._, +é02 .
2 MW scale concentrating solar

power facilities exist today.
23




~. Revealing insights near ambient =
pressure
= Challenge:
= Spectroscopy of electrified
interfaces exposed to gases
= Solution:

REPORT

Elactron SP““‘”C‘?P?,?]' &

= Ambient pressure X-ray
photoelectron spectroscopy

q\.l‘ﬂ“s S¢

= Soft X-rays and electrochemist
on BL11.0.2 and BL9.3.2

hv
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=1 STXM images of a biased liquid cell s

containing LiFePO, particles
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