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Introduction )

= Graphics processors have been used for many non-graphics
applications with tremendous performance improvements.

= Medical-Scale Computed Tomography is one such example.

= Reconstruction now can be done on the order of seconds.

= |ndustrial-Scale Computed Tomography
= Medical-Scale algorithms frequently do not scale to large-scale data
= Many industrial applications do not have a fixed acquisition geometry

= Due to arbitrary acquisition configurations, Large-Scale CT
reconstruction is an Irregular Problem




Why Graphics Processors? ) .

= Well known facts:
= Massively Parallel Architecture
= Fast Device Memory

= Lesser Known facts:
= Unique Cache structure
= User Configurable Cache
= |nstruction Ordering
= Pinned-Memory

= A GPU can still require days to complete a large reconstruction




CT on GPUs ) p_

= “Porting” CT reconstruction on GPUs has shown major bottlenecks.

= Usually not an issue with medical datasets.
= Memory uploads/downloads to device (GPU).
= What ratio of x-ray data to volume should be allocated?

= Traditional CPU-based code reconstructed one slice at a time
= Predicable memory access even when multi-threaded.

=  GPU-based reconstruction

= Massively multithreaded environment creates scattered memory
reads if large x-ray data is utilized per kernel launch.

= Scattered Memory reads present for large volume storage too!
= Suddenly reconstruction becomes an Irregular Problem!




Approach ) e,

= We propose an optimized kernel that can support multiple GPUs working
simultaneously on a single system.

= Must optimize computation to an irregular memory access pattern

= Reading and Writing Data to and from storage must be approached
intelligently to minimize GPU downtime.

= The approach must be capable of reconstructing almost arbitrarily sized
datasets.

= Must have reasonable energy requirements
= Must not require a large cluster




GPU Kernel ) 5.

= Counter Intuitive: Maximize x-ray data uploads to device
= Small pieces of x-ray data input forces cache hit-rate improvements
= Ameliorate transfer times with pinned-memory

= Effective memory bandwidth on device is improved

= More device memory available for volume storage

= Less x-ray input data allows more image planes to be reconstructed
simultaneously per device

= Texture Memory: Store x-ray input data as textures
= Exploit hardware-based interpolation
= Exploit texture cache, as fast as L1-cache




GPU Kernel Continued... ) =,

= Constant Memory: User configurable cache

= Small amount of on-chip cache

= Store static values such as geometry parameters
= Like texture cache, reduces L1-cache pressure

= Block x-ray data and reconstructed sub volumes

= While x-ray data block is applied, use a CPU thread to queue the next
block of input data

= Qverlapping tasks improves efficiency and performance

= Dynamic Task Partitioning to determine blocking based on
= System parameters
= Reconstruction task size



GPU Cache Hierarchy )




Handling the I/O Bottleneck ) .

= The GPU kernel design described can accommodate up to 8
GPUs on a single system

= New Problem: Host storage cannot keep up!

= Up to 48 GB worth of image planes created every few seconds to
minutes

= GPUs requiring input at an increased rate due to improvement
= GPUs needlessly idling!

= Solution: A modularized Approach
= MIMD-like approach
= CPU threads performing various tasks simultaneously




/0O Bottleneck Continued ) i,

= Serialized Approach
= 1. Upload X-ray input data
= 2. Run GPU kernel
= 3. Download reconstructed sub volume
= 4. Write to storage media (GPU Idle)
= 5. Read next input subset (GPU Idle)

= Modularized Approach
= 1. Upload X-ray input data
= 2. Run GPU kernel while queuing next set of input data
= 3. Download sub volume
= 4, Write to storage and run next kernel




Evaluation )
= Supermicro workstation

* Dual Octo-core Intel Xeon E-2687W @ 3.1 GHz w/ hyper threading

= 512 GBRAM

= 4 PCI-E 2.0 x16 slots

= 2 NVidia S2090 Devices
= 4 Tesla M2090 GPUs each (8 total)
= Connected via 4 PCI-E host interface cards

= M2090
= 6 GB GDDR5 memory apiece
= 16 streaming multiprocessors (SM)
= 768 KB L2 Cache (load, store, and texture operations)
= 32 Compute cores per SM
= 48 KB L1 Memory (explicitly set, shared memory not used)
= 8 KB Constant Memory and Texture Cache



Evaluation Continued ) i,

=  Two datasets tested

= 64 Gigavoxels
= 4000 image planes, 16 megapixels each
= 1800 16-megapixel x-ray images
= 1 Teravoxel (Synthetic dataset)
= 10,000 image planes, 100 megapixels each
= 10,000 100-megapixel x-ray images

= Measure
= Performance Time
= Energy Consumption
= Scalability

= Performance compared to:
= CPU-based implementation (Hybrid OpenMP/MPI-based Implementation)
= “Naive” GPU-based Implementation



Naive Approach ) .

= This approach is a GPU-based solution

= Take a CPU-based implementation and “Port” to a kernel

= Approach

Only exploit massive parallelism

Reconstruct single image plane per kernel launch
No data processing overlap

No device optimization

No kernel optimization

No hardware interpolation
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Energy Performance- 64 Gigavoxels
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Energy Performance- Teravoxel
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Scalability
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Conclusions )

" |ndustrial Scale Computed Tomography can clearly benefit
from a multi-GPU based approach.

= Mindfulness of the Irregularity of Large-Scale Reconstruction
can result in a flexible algorithm.

= Computational Performance is dramatically improved while
improving energy efficiency.

"= Does the same apply to iterative algorithms?



