
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

A High-Performance and Energy-Efficient CT Reconstruction
Algorithm for Multi-Terabyte Datasets

Edward S. Jimenez(1), Laurel J. Orr(1), and Kyle R. Thompson(2)

(1) Software Systems R&D

(2) Structural Dynamics and X-ray Non-Destructive Evaluation

SAND2013-8959C

Introduction

 Graphics processors have been used for many non-graphics
applications with tremendous performance improvements.

 Medical-Scale Computed Tomography is one such example.
 Reconstruction now can be done on the order of seconds.

 Industrial-Scale Computed Tomography
 Medical-Scale algorithms frequently do not scale to large-scale data

 Many industrial applications do not have a fixed acquisition geometry

 Due to arbitrary acquisition configurations, Large-Scale CT
reconstruction is an Irregular Problem

Why Graphics Processors?

 Well known facts:
 Massively Parallel Architecture

 Fast Device Memory

 Lesser Known facts:
 Unique Cache structure

 User Configurable Cache

 Instruction Ordering

 Pinned-Memory

 A GPU can still require days to complete a large reconstruction

CT on GPUs
 “Porting” CT reconstruction on GPUs has shown major bottlenecks.

 Usually not an issue with medical datasets.

 Memory uploads/downloads to device (GPU).

 What ratio of x-ray data to volume should be allocated?

 Traditional CPU-based code reconstructed one slice at a time

 Predicable memory access even when multi-threaded.

 GPU-based reconstruction

 Massively multithreaded environment creates scattered memory
reads if large x-ray data is utilized per kernel launch.

 Scattered Memory reads present for large volume storage too!

 Suddenly reconstruction becomes an Irregular Problem!

Approach

 We propose an optimized kernel that can support multiple GPUs working
simultaneously on a single system.

 Must optimize computation to an irregular memory access pattern

 Reading and Writing Data to and from storage must be approached
intelligently to minimize GPU downtime.

 The approach must be capable of reconstructing almost arbitrarily sized
datasets.

 Must have reasonable energy requirements

 Must not require a large cluster

GPU Kernel

 Counter Intuitive: Maximize x-ray data uploads to device
 Small pieces of x-ray data input forces cache hit-rate improvements

 Ameliorate transfer times with pinned-memory

 Effective memory bandwidth on device is improved

 More device memory available for volume storage
 Less x-ray input data allows more image planes to be reconstructed

simultaneously per device

 Texture Memory: Store x-ray input data as textures
 Exploit hardware-based interpolation

 Exploit texture cache, as fast as L1-cache

GPU Kernel Continued…

 Constant Memory: User configurable cache
 Small amount of on-chip cache

 Store static values such as geometry parameters

 Like texture cache, reduces L1-cache pressure

 Block x-ray data and reconstructed sub volumes

 While x-ray data block is applied, use a CPU thread to queue the next
block of input data

 Overlapping tasks improves efficiency and performance

 Dynamic Task Partitioning to determine blocking based on
 System parameters

 Reconstruction task size

GPU Cache Hierarchy

L2 Cache

L1 Cache

Texture
Cache

Constant
memory

Device Memory
Register

Handling the I/O Bottleneck

 The GPU kernel design described can accommodate up to 8
GPUs on a single system

 New Problem: Host storage cannot keep up!
 Up to 48 GB worth of image planes created every few seconds to

minutes

 GPUs requiring input at an increased rate due to improvement

 GPUs needlessly idling!

 Solution: A modularized Approach
 MIMD-like approach

 CPU threads performing various tasks simultaneously

I/O Bottleneck Continued

 Serialized Approach
 1. Upload X-ray input data

 2. Run GPU kernel

 3. Download reconstructed sub volume

 4. Write to storage media (GPU Idle)

 5. Read next input subset (GPU Idle)

 Modularized Approach
 1. Upload X-ray input data

 2. Run GPU kernel while queuing next set of input data

 3. Download sub volume

 4. Write to storage and run next kernel

Evaluation
 Supermicro workstation

 Dual Octo-core Intel Xeon E-2687W @ 3.1 GHz w/ hyper threading

 512 GB RAM

 4 PCI-E 2.0 x16 slots

 2 NVidia S2090 Devices

 4 Tesla M2090 GPUs each (8 total)

 Connected via 4 PCI-E host interface cards

 M2090

 6 GB GDDR5 memory apiece

 16 streaming multiprocessors (SM)

 768 KB L2 Cache (load, store, and texture operations)

 32 Compute cores per SM

 48 KB L1 Memory (explicitly set, shared memory not used)

 8 KB Constant Memory and Texture Cache

Evaluation Continued
 Two datasets tested

 64 Gigavoxels

 4000 image planes, 16 megapixels each

 1800 16-megapixel x-ray images

 1 Teravoxel (Synthetic dataset)

 10,000 image planes, 100 megapixels each

 10,000 100-megapixel x-ray images

 Measure

 Performance Time

 Energy Consumption

 Scalability

 Performance compared to:

 CPU-based implementation (Hybrid OpenMP/MPI-based Implementation)

 “Naïve” GPU-based Implementation

Naïve Approach

 This approach is a GPU-based solution
 Take a CPU-based implementation and “Port” to a kernel

 Approach
 Only exploit massive parallelism

 Reconstruct single image plane per kernel launch

 No data processing overlap

 No device optimization

 No kernel optimization

 No hardware interpolation

Computational Performance: 64 Gigavoxels

Note: CPU Implementation required over 36 hours

Computational Performance: Teravoxel

Note: CPU Implementation required over 2500 hours

Energy Performance- 64 Gigavoxels

Energy Performance- Teravoxel

Scalability

Conclusions

 Industrial Scale Computed Tomography can clearly benefit
from a multi-GPU based approach.

 Mindfulness of the Irregularity of Large-Scale Reconstruction
can result in a flexible algorithm.

 Computational Performance is dramatically improved while
improving energy efficiency.

 Does the same apply to iterative algorithms?

