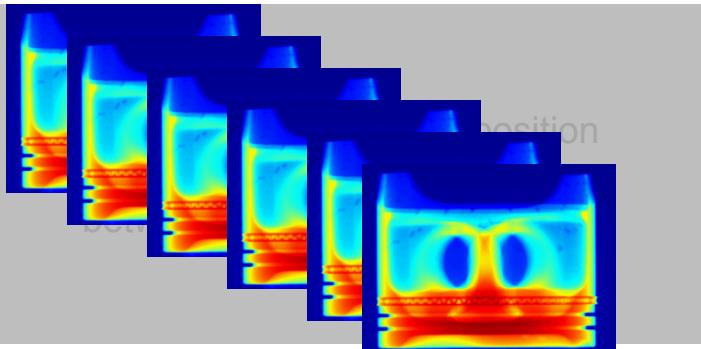
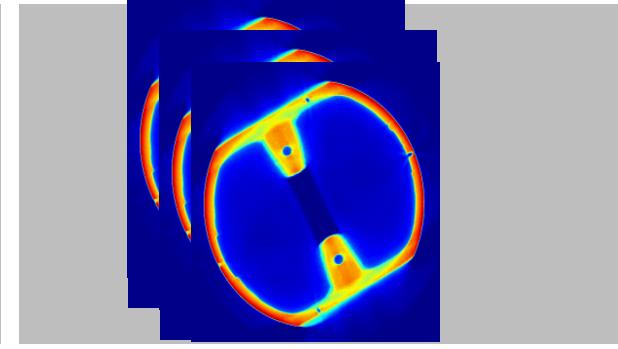


Exceptional service in the national interest



A High-Performance and Energy-Efficient CT Reconstruction Algorithm for Multi-Terabyte Datasets

Edward S. Jimenez⁽¹⁾, Laurel J. Orr⁽¹⁾, and Kyle R. Thompson⁽²⁾

(1) Software Systems R&D

(2) Structural Dynamics and X-ray Non-Destructive Evaluation

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

Introduction

- Graphics processors have been used for many non-graphics applications with tremendous performance improvements.
- Medical-Scale Computed Tomography is one such example.
 - Reconstruction now can be done on the order of seconds.
- Industrial-Scale Computed Tomography
 - Medical-Scale algorithms frequently do not scale to large-scale data
 - Many industrial applications do not have a fixed acquisition geometry
 - Due to arbitrary acquisition configurations, Large-Scale CT reconstruction is an Irregular Problem

Why Graphics Processors?

- Well known facts:
 - Massively Parallel Architecture
 - Fast Device Memory
- Lesser Known facts:
 - Unique Cache structure
 - User Configurable Cache
 - Instruction Ordering
 - Pinned-Memory
- A GPU can still require days to complete a large reconstruction

CT on GPUs

- “Porting” CT reconstruction on GPUs has shown major bottlenecks.
 - Usually not an issue with medical datasets.
 - Memory uploads/downloads to device (GPU).
 - What ratio of x-ray data to volume should be allocated?
- Traditional CPU-based code reconstructed one slice at a time
 - Predictable memory access even when multi-threaded.
- GPU-based reconstruction
 - Massively multithreaded environment creates scattered memory reads if large x-ray data is utilized per kernel launch.
 - Scattered Memory reads present for large volume storage too!
 - Suddenly reconstruction becomes an Irregular Problem!

Approach

- We propose an optimized kernel that can support multiple GPUs working simultaneously on a single system.
- Must optimize computation to an irregular memory access pattern
- Reading and Writing Data to and from storage must be approached intelligently to minimize GPU downtime.
- The approach must be capable of reconstructing almost arbitrarily sized datasets.
- Must have reasonable energy requirements
 - Must not require a large cluster

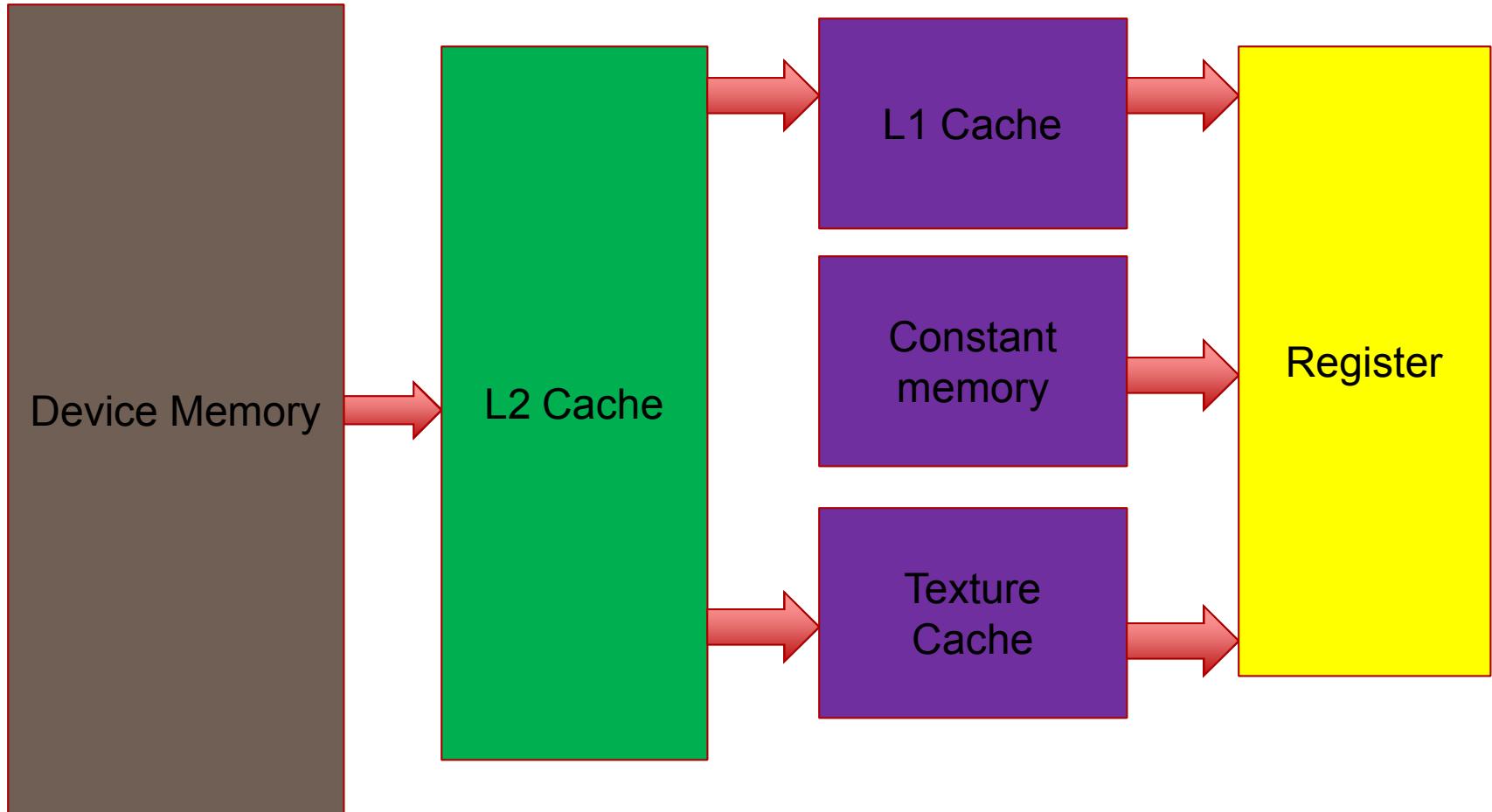
GPU Kernel

- Counter Intuitive: Maximize x-ray data uploads to device
 - Small pieces of x-ray data input forces cache hit-rate improvements
 - Ameliorate transfer times with pinned-memory
 - Effective memory bandwidth on device is improved
- More device memory available for volume storage
 - Less x-ray input data allows more image planes to be reconstructed simultaneously per device
- Texture Memory: Store x-ray input data as textures
 - Exploit hardware-based interpolation
 - Exploit texture cache, as fast as L1-cache

GPU Kernel Continued...

- Constant Memory: User configurable cache
 - Small amount of on-chip cache
 - Store static values such as geometry parameters
 - Like texture cache, reduces L1-cache pressure
- Block x-ray data and reconstructed sub volumes
 - While x-ray data block is applied, use a CPU thread to queue the next block of input data
 - Overlapping tasks improves efficiency and performance
- Dynamic Task Partitioning to determine blocking based on
 - System parameters
 - Reconstruction task size

GPU Cache Hierarchy



Handling the I/O Bottleneck

- The GPU kernel design described can accommodate up to 8 GPUs on a single system
- New Problem: Host storage cannot keep up!
 - Up to 48 GB worth of image planes created every few seconds to minutes
 - GPUs requiring input at an increased rate due to improvement
 - GPUs needlessly idling!
- Solution: A modularized Approach
 - MIMD-like approach
 - CPU threads performing various tasks simultaneously

I/O Bottleneck Continued

- Serialized Approach
 - 1. Upload X-ray input data
 - 2. Run GPU kernel
 - 3. Download reconstructed sub volume
 - 4. Write to storage media (GPU Idle)
 - 5. Read next input subset (GPU Idle)
- Modularized Approach
 - 1. Upload X-ray input data
 - 2. Run GPU kernel while queuing next set of input data
 - 3. Download sub volume
 - 4. Write to storage and run next kernel

Evaluation

- Supermicro workstation
 - Dual Octo-core Intel Xeon E-2687W @ 3.1 GHz w/ hyper threading
 - 512 GB RAM
 - 4 PCI-E 2.0 x16 slots
- 2 NVidia S2090 Devices
 - 4 Tesla M2090 GPUs each (8 total)
 - Connected via 4 PCI-E host interface cards
- M2090
 - 6 GB GDDR5 memory apiece
 - 16 streaming multiprocessors (SM)
 - 768 KB L2 Cache (load, store, and texture operations)
 - 32 Compute cores per SM
 - 48 KB L1 Memory (explicitly set, shared memory not used)
 - 8 KB Constant Memory and Texture Cache

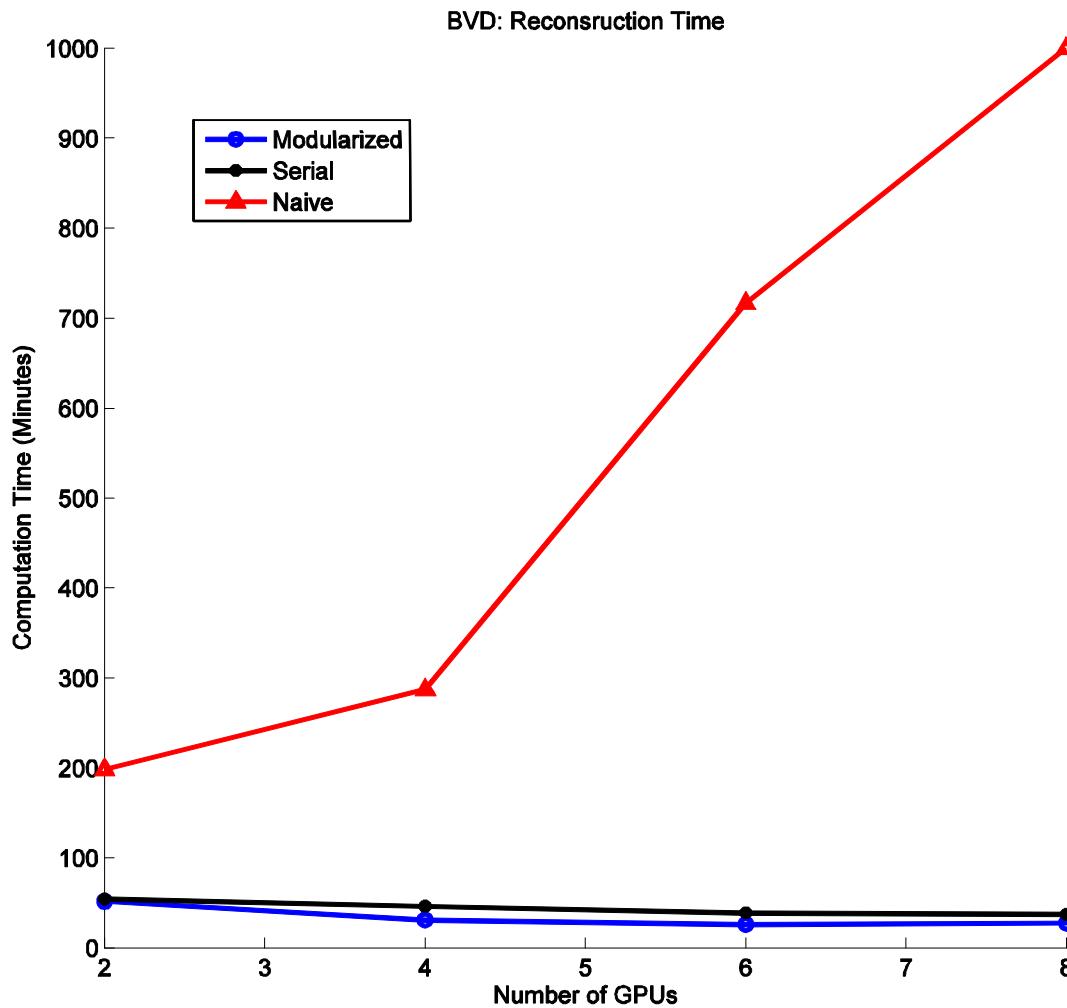
Evaluation Continued

- Two datasets tested
 - 64 Gigavoxels
 - 4000 image planes, 16 megapixels each
 - 1800 16-megapixel x-ray images
 - 1 Teravoxel (Synthetic dataset)
 - 10,000 image planes, 100 megapixels each
 - 10,000 100-megapixel x-ray images
- Measure
 - Performance Time
 - Energy Consumption
 - Scalability
- Performance compared to:
 - CPU-based implementation (Hybrid OpenMP/MPI-based Implementation)
 - “Naïve” GPU-based Implementation

Naïve Approach

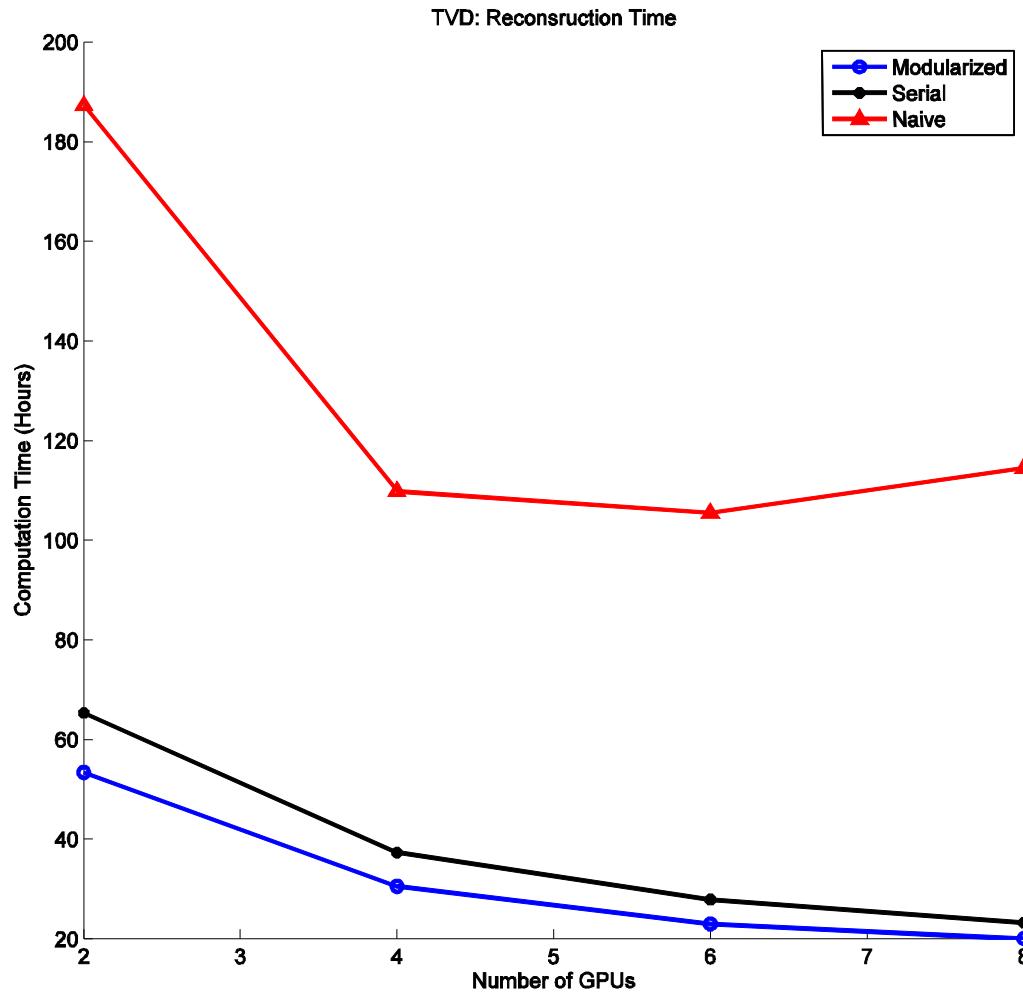
- This approach is a GPU-based solution
 - Take a CPU-based implementation and “Port” to a kernel
- Approach
 - Only exploit massive parallelism
 - Reconstruct single image plane per kernel launch
 - No data processing overlap
 - No device optimization
 - No kernel optimization
 - No hardware interpolation

Computational Performance: 64 Gigavoxels



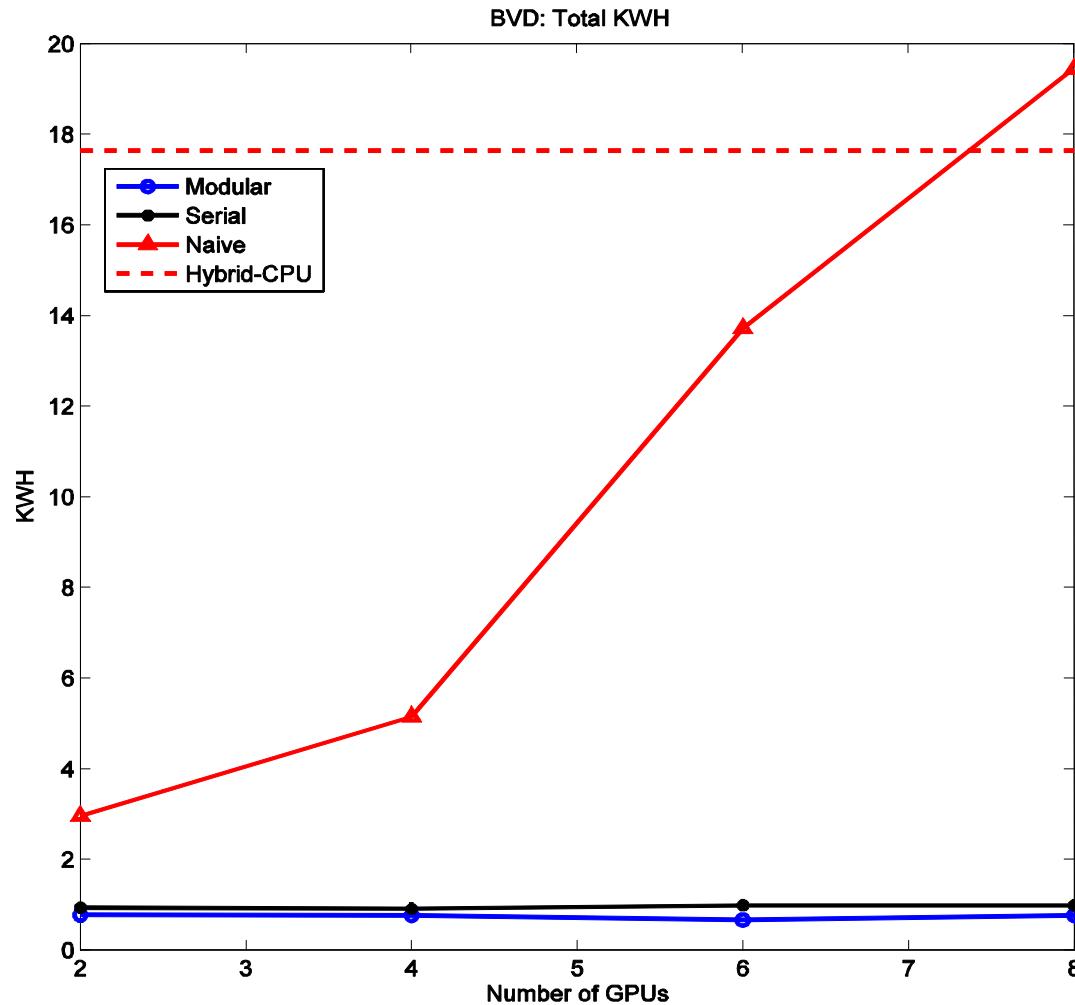
Note: CPU Implementation required over 36 hours

Computational Performance: Teravoxel

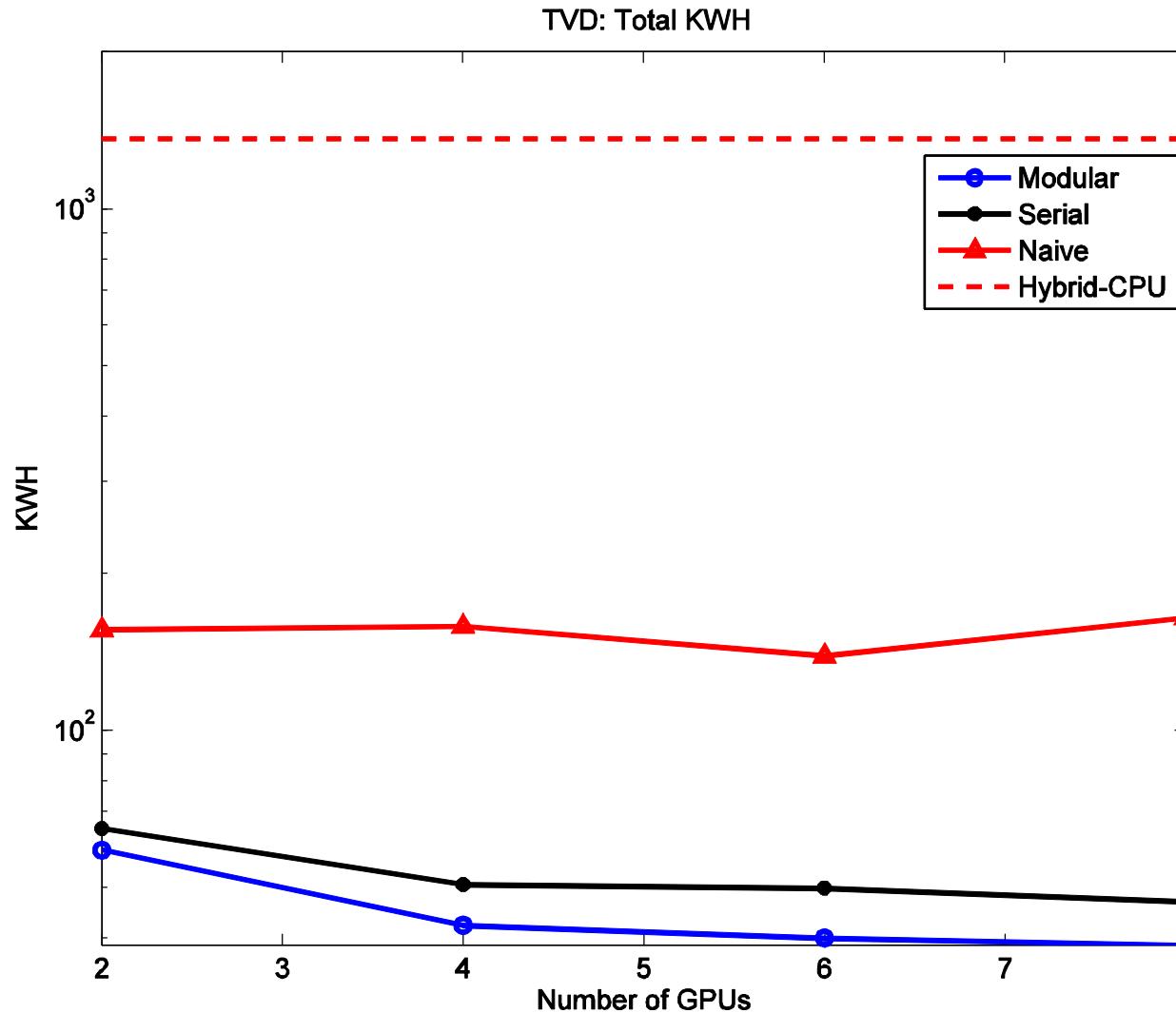


Note: CPU Implementation required over 2500 hours

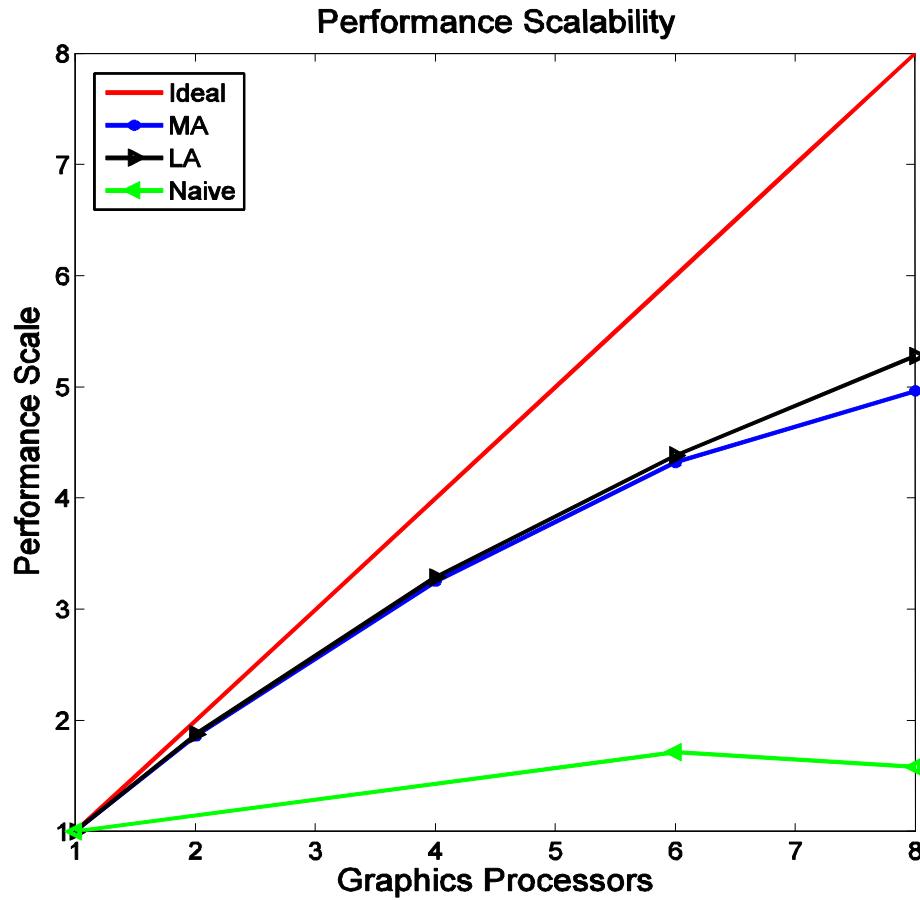
Energy Performance- 64 Gigavoxels



Energy Performance- Teravoxel



Scalability



Conclusions

- Industrial Scale Computed Tomography can clearly benefit from a multi-GPU based approach.
- Mindfulness of the Irregularity of Large-Scale Reconstruction can result in a flexible algorithm.
- Computational Performance is dramatically improved while improving energy efficiency.
- Does the same apply to iterative algorithms?