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Abstract

Estimating the number of triangles in a graph given as a

stream of edges is a fundamental problem in data mining

and has been the focus of extensive research. The goal is

to design a single pass space-efficient streaming algorithm

for estimating triangle counts. While there are numerous

algorithms for this problem, they all (implicitly or explicitly)

assume that the stream does not contain duplicate edges.

However, data sets obtained from real-world graph streams

are rife with duplicate edges. The work around is typically

an extra unaccounted pass (storing all the edges!) just

to “clean up” the data. Can we estimate triangle counts

accurately in a single pass even when the stream contains

repeated edges? In this work, we give the first algorithm

for estimating the triangle count of a stream of edges of a

multigraph.

Keywords: triangle counting, streaming graphs,
clustering coefficient, birthday paradox, Streaming
algorithms, multigraphs.

1 Introduction

The abundance of triangles has been observed in many
applications of networks, such as social interaction,
computer communications, financial transactions, pro-
teins, or ecology. This abundance is noted as a criti-
cal feature that distinguishes real graphs from random
graphs. In social sciences triangle counts are used as
a guide to understand graphs [Col88, Por98, Bur04,
WDC10]. Triangle counts are also used in some graph
mining applications such as spam detection [EM02] and
finding common topics on the WWW [BBCG08]. Fre-
quency of triadic patterns is a standard part of mo-

∗This work was funded by the DOE ASCR Complex Intercon-

nected Distributed Systems (CIDS) program and Sandia’s Labo-
ratory Directed Research & Development (LDRD) program. San-

dia National Laboratories is a multi-program laboratory managed

and operated by Sandia Corporation, a wholly owned subsidiary
of Lockheed Martin Corporation, for the U.S. Department of En-

ergy’s National Nuclear Security Administration under contract

DE-AC04-94AL85000.
†Sandia National Laboratories, Livermore, CA,

mjha@sandia.gov
‡Sandia National Laboratories, CA, scomand@sandia.gov
§Sandia National Laboratories, CA, apinar@sandia.gov

tif detection in bioinformatics [MSI+02]. Triangles are
also used in modeling and characterizing real-world net-
works [SKP12, DPKS12].

Many massive graphs come from modeling an con-
tinuing set of interactions between the entities of a sys-
tem. People call each other on the phone, exchange
emails, or co-author a paper; computers exchange mes-
sages; animals come in the vicinity of each other; com-
panies trade with each other. Each such interaction
is modeled as an edge in the graph. These interactions
(edges) manifest as a stream of edges. The edges appear
“one at a time” with timestamps and the final graph is
an accumulation of the observed edges. In all these ex-
amples, interactions are repeated events (e.g., multiple
phone calls or emails; many papers co-authored together
etc.), hence the graph is naturally a multigraph. (A
multigraph allows multiple, also called parallel, edges
between vertices, while a simple graph has no parallel
edges.)

There are algorithmic methods to deal with
such massive graphs, such as random sam-
pling [SW05, TKMF09, SPK13], MapReduce
paradigm [SV11, Pla12], distributed-memory par-
allelism [AKM12, CBB+11], adopting external
memory [CGG+95, AGS10], and multithreaded
parallelism [BHKK07]. All of these methods start with
preprocessing the data to remove the duplicate edges, a
potentially expensive operation.

1.1 Triangle counting in multigraph streams
In this paper we study triangle counting in multi-
graph streams. We first formalize the setting we study.
The input multigraph is given as a sequence of edges
e1, e2, . . . , em. Some of the edges may be repeated,
meaning that we may have, for example, e1 = e100 =
e125 = (u, v). All edges are undirected. The fi-
nal multigraph G is obtained by taking all the edges
e1, e2, . . . , em. Most graph analyses are performed on
the underlying simple graph G′, which is obtained by
deleting all multiple copies of edges. Our aim is to esti-
mate the number of triangles in G′, denoted by T . We
also wish to estimate the transitivity (sometimes called
global clustering coefficient), which is 3T/W , where W
is the number of wedges in G′.

Our aim is to do this using a small space stream-
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ing algorithm that makes a single pass over the stream
e1, e2, . . . , em. At any timestamp t, such an algorithm
retains a very small random subset of the edges seen
so far (e1, e2, . . . , et). This is called the “sketch” and is
updated rapidly as new edges appear. Using the sketch
and some auxiliary data structures, the algorithm com-
putes an accurate estimate for the number of triangles
for the graph seen so far. The size of the data struc-
tures is orders of magnitude smaller than the size of
the graph. Because of the single pass and small space,
the algorithm cannot revisit edges that it has forgot-
ten. Furthermore, it cannot always determine if the
new edge, et, has already appeared before.

1.2 The multigraph issue Practical streaming al-
gorithms for massive graphs is an increasingly impor-
tant subject. We refer the reader to a recent tutorial on
network sampling at KDD 2013 [HAN13]. There have
been numerous streaming algorithms specifically for tri-
angle counting [BFL+06, TPT13, PTTW13], with the
state of the art arguably being recent previous work of
the authors [JSP13]. All these results ignore the prob-
lem of duplicate edges in multigraphs. This is a conve-
nient and standard assumption that allows for algorith-
mic progress. But this avoids a practical difficulty in
processing a real-world graph stream. For example, the
classic Enron email dataset is really a multigraph with
790K edges, while the underlying simple graph has 167K
edges. Similarly, a DBLP co-authorship graph recently
collected is actually a multigraph with 8.9M edges, but
the underlying simple graph has only 5.1M edges.

We believe that for streaming algorithms to be
actually useful in practice, the problem of multiple
edges must be dealt with. We stress that all previous
streaming algorithms break down when given multiple
edges, and there are almost no attempts on triangle
counting in this setting. Previous work on multigraph
mining explicitly states triangle counting of streaming
multigraphs as an open problem [CM05].

Triangle counting becomes quite tricky in multi-
graphs. Consider edges a, b, and c that form a
triangle. These edges may appear in the multi-
graph stream in many different ways. For example,
these edges could come as a, a, . . . , b, b, . . . , c, c, . . ., or
a, b, c, a, b, c, a, b, c, . . .. (Observe how this is not an is-
sue for simple graphs.) In the first case, if the algorithm
does not sample the edge a from the first stretch of a,
then the triangle will not be found. But in the latter
case, it appears that random sampling is more likely
to find the triangle. For an unbiased estimate of T ,
the algorithm should detect each triangle with the same
probability, and the multigraph poses serious problems
for such estimates. The stream might have some com-

plicated pattern of a, b, c, but we must count the trian-
gle only once regardless of this pattern. Because of the
small space, it is not possible to store enough of the his-
tory to determine if a triangle has already been detected
before.

1.3 Our Contributions Previous work of the au-
thors [JSP13] gives a practically (and provably) accu-
rate, small-space algorithm for counting triangles in a
simple graph stream. The main contribution of this
work is extending this algorithm for multigraphs.

• Sampling with multiple edges and unbias-
ing estimates: The major problem with previous
work is that random sampling in multigraph stream
creates biases leading to incorrect estimates. Fur-
thermore, the same triangle may appear numerous
times (in many different ways) in the stream, but
we must count it exactly once. We handle all these
issues and provide a provably correct algorithm.

• Simplicity of multigraph “fix”: Our hash-
based sampling and unbiasing methods to deal
with multigraphs is extremely simple to implement.
This leads to a practical algorithm that deals with
multigraphs. We freely admit that the algorithmic
change looks quite incremental over the basic algo-
rithm of [JSP13]. But this simple change handles
the rather challenging problem of multigraphs, and
is one of the first provably practical algorithms in
this setting.

• Empirical studies that show effectiveness in
practice: We have conducted detailed experiments
on real and artificially generated data sets to show
that our proposed algorithm performs well in prac-
tice. By using the orders of magnitude smaller stor-
age than the full graph, we were able to predict the
transitivity and the number of triangles accurately.
We showed that the algorithm rapidly converges to
the true values with increasing storage. Moreover,
our experiments also showed that the algorithm is
robust to different orderings of the stream.

1.4 Related Work The most closely related work
from the perspective of computing on mulitgraph
streams are the works of [VSGB05] and [CM05]. As
mentioned earlier, [CM05] explicitly mentions the ques-
tion of counting subgraphs in multigraph as directions
for future work.

There is significant history on triangle counting in
various settings, and we simply refer to reader to the
references and discussion in [SPK13, JSP13]. There is
much work on triangle counting in graph streams [JG05,



BFL+06, AGM12, KMSS12, TPT13, PTTW13, JSP13].
As mentioned earlier, all this work focuses on simple
graphs. This work builds heavily on the methods and
algorithm of [JSP13].

2 Idealized algorithm

In this section, for the ease of theoretical analysis, we
present an idealized version of our algorithm. Our
algorithm is based on detecting closure of wedges.
In [JSP13], the notion of a future closed wedge was
introduced. A wedge w formed by edges et1 and et2
is a future closed wedge if and only if there exists an
edge et3 with t3 > max{t1, t2} such that edges et1 , et2
and et3 form a triangle. The algorithm of [JSP13] is
conceptually trying to estimate the number of future
closed triangles. The idea is appealing because (i) a
future closed wedge can be detected in the streaming
setting, and (2) every triangle has precisely one future
closed wedge.

However, the latter does not hold in multigraph
stream, as one or more of the wedges can be future
closed, since edges will be repeated. As mentioned in
the introduction, the number of future closed wedges
of a triangle depends on the ordering of the stream.
Our main insight is that for a stream of edges of a
multigraph, a new notion called last future closed wedge
satisfies both the above two properties. Given a triangle
τ = {a, b, c} formed by edges a, b, and c, let last(τ) ∈ τ
be the last occurrence of an edge of τ . Then the wedge
opposite last(τ), namely, τ \ last(τ) is the last future
closed wedge. By definition, every triangle has precisely
1 last future closed wedge.

Algorithm 1 maintains a small uniform sample
(called edge-sample) of the set (not multiset) of edges
of the graph seen so far. In addition, the algorithm
tracks every wedge formed by edges in edge-sample for
closure. Specifically, for every wedge w, the algorithm
maintains a Boolean value Fw that is 1 if and only if w
is the last future closed wedge.

Algorithm 1 gets a sampling rate parameter α which
is the probability with which it includes an edge of the
graph in the sample. Concretely, for every edge e in the
stream, the algorithm computes a hash value hash(e)
which is uniformly distributed in [0, 1]. Therefore, to
select an edge e with probability α, it suffices to include
it in the sample if and only if hash(e) ≤ α. Observe
that the number of occurrences of an edge does not
affect it’s inclusion (or non-inclusion) in edge-sample.
Moreover, the behavior of the algorithm is deterministic
across all occurrences of an edge. In particular, if the
first occurrence of an edge is not included in the sample,
then none of the later occurrences will.

How do we track the last future closed
wedge? The main observation is that an edge not only
witnesses the fact that a wedge may be future closed,
but also certifies that another wedge is no longer the
last future closed wedge. In other words, it invalidates
the last future closed wedge status of every wedge con-
taining the edge. This is the main bias correction step
of the algorithm and is implemented in Step 11.

The bias correction is deceptively simple. Consider
some wedge w formed by edges in edge-sample. If the
new edge et closes w, then we set Fw = 1. If et
happens to be an edge of w, we simply set Fw = 0.
(Otherwise, Fw does not change.) This is enough for
the bias correction, and together with the hash-based
sampling, gives a streaming algorithm for multigraphs.

Algorithm 1: IdealCountTriangles (α)

1 Initialize edge-sample as an empty set.
2 foreach edge et in the stream do
3 Let x← hash(et) be a random value in [0, 1].
4 if x ≤ α and et /∈ edge-sample then
5 Insert et in edge-sample.

6 foreach wedge w in edge-sample do
7 Let w = {{u, v}, {u,w}}.
8 if et is the closing edge {v, w} then
9 Set Fw to 1.

10 else if et ∈ {{u, v}, {u,w}} then
11 Reset Fw to 0. // bias-correction

12 Output F = 1
α2

∑
w Fw where the sum is over

wedges w in edge-sample.

Theorem 2.1. (Main) Fix some parameter α ∈ (0, 1).
Let F be the output of Algorithm 1 when run on the
stream of edges of the underlying (simple undirected)
graph G with T triangles. Then E[F ] = α2T .

Proof. To prove this theorem, we first extend the defi-
nition of Fw to every wedge w in graph G. We define
Fw = 0 if Fw is never assigned (set or reset) during the
invocation of the algorithm. This happens precisely if
one of the edges of w is not sampled. Then F =

∑
w Fw

where the sum is over all wedges w in G. For every edge
e in G, let tmax(e) be the maximum value of t such that
et = e. Fix a triangle τ = {a, b, c} formed by edges a,
b and c and assume (by relabeling if required) that c is
the last edge to appear in the stream among a, b, and
c. In other words, tmax(c) > max{tmax(a), tmax(b)}.
Then the following holds.



Lemma 2.1. Fwbc
= Fwca

= 0. Moreover, Fwab
= 1 if

and only if both edges a and b are in edge-sample.

Proof. Consider the moment t = tmax(c) when et = c.
If wedge wbc is not in edge-sample, then by definition,
Fwbc

is 0. On the other hand, if wbc is in edge-sample,
then by Step 11 of Algorithm 1, the value of Fwbc

is reset
to 0. No subsequent change is made to this value. An
identical argument shows the same for Fwca

. Finally,
Fwab

is set to 1 at this moment if and only if wedge
wab is in edge-sample, and once again, this value is not
changed subsequently.

From the above lemma, it follows that E[Fwab
] +

E[Fwbc
] + E[Fwca ] = α2. Since this is true for every

triangle τ = {a, b, c}, we get by linearity of expectation,
E[F ] = α2T , as required.

3 Implementing Algorithm 1.

In this section, we detail our efforts to implement the
ideal algorithm of the previous section. Here, we heavily
build on the algorithm of [JSP13]. For completeness,
we give the full algorithm in Algorithm 2. The main
distinction from the idealized algorithm is that the
value Fw is not maintained for every wedge w in edge-
sample. Instead, the value Fw is tracked only for a small
sample of wedges sampled from wedges in edge-sample.
This random pool of wedges (sometimes referred to as
the wedge reservoir) is a fixed size array called wedge-
sample. The corresponding Fw values are stored in a
Boolean array of the same size called isClosed. Thus,
the main data structures maintained by Algorithm 2 are
(i) a set of edges (edge-sample), (ii) an array of wedges
(wedge-sample) and (iii) a Boolean array isClosed. The
capacities of these data structures are bounded by input
parameters se (for the first one) and sw (for the last
two). The other key value maintained by the algorithm
is tot wedges giving the number of total wedges formed
by edges in edge-sample. Next we describe key steps of
the algorithm.

1. (Maintaining uniform edge sample.) As in the
idealized algorithm, we use a hash function which
hashes the edge to a uniform value in [0, 1]. We
sample the edge only if it’s hash value is at most α.
The hash function that we use is Murmur3 [A. 08].

2. (Maintaining uniform wedge sample.) As in
[JSP13], this is maintained by doing a reservoir
sampling on the set of wedges in edge-sample with-
out explicitly maintaining this set. The main trick
here is that the value of tot wedges together with
the set of newly formed wedges involving the cur-
rent edge et is enough to simulate reservoir sam-

pling over the set of wedges. See [JSP13] for de-
tails.

3. (Bias correction.) This is the trickiest part of
the implementation. In principle, we follow the
same steps as the idealized algorithm. Steps 10-
15 of Algorithm 2 correspond to Steps 6-11 of
Algorithm 1.

4. (Keeping size of edge-sample in check.) If size
of edge-sample reaches se, we roughly throw away
half the edges from edge-sample. Specifically, every
edge in edge-sample is evicted with probability 1/2
and the sampling rate α is reduced by 1/2, as well.
This is implemented in Steps 3-9.

4 Experiments.

We have implemented the proposed algorithm in C++

and using the Boost Library, and experiments with a
large set of graphs.

4.1 Real datasets e have conducted experiments on
the DBLP co-authorship and Enron email networks.

DBLP Co-authorship network: One advantage
of our approach is that it allows working directly with
the raw data. That is we can compute the transitivity
of a graph without explicitly constructing this graph.
To this end, we downloaded the raw data from DBLP
(dblp.xml) and used our algorithm to estimate the
number of triangles without any preprocessing. One
advantage of our approach is that one can work with
raw dataset. To this end, we downloaded the raw
dataset from DBLP (dblp.xml) and used our algorithm
to estimate triangles without any preprocessing. The
dataset consists of metadata entry of papers on dblp
with each entry describing the paper title and list of
authors. Observe that a list of authors of the form
{a, b, c} give rise to three edges (a, b), (b, c) and (c, a).
Also, observe that the dataset is such that it inherently
creates multiple edges. Our algorithm estimates triangle
count by only making a single pass over these edges.
To compute exact results to evaluate our performance,
we did process the data. The underlying undirected
simple graph has 1, 259, 252 vertices, 5, 086, 694 edges,
11, 460, 675 triangles and has a transitivity value 0.1743.
Our algorithm run with se = sw = 30K and α =
0.01 reports 0.1733 as the transitivity estimate and
11, 299, 160 as the estimate for triangles! We note
that the multigraph itself (i.e., when not discounting
for repeated edges) has 8, 977, 356 edges, 90, 003, 489
triangles, and a transitivity of 0.2622.

Enron email network: We also experimented
with the Enron email network, which has 19, 133 ver-



Algorithm 2: CountTriangles(se, sw)

1 Let α = 0.5. Initialize wedge-sample as an empty
array of size sw and edge-sample as an empty
set.

2 foreach edge et in the stream do
/* If edge-sample size limit is

reached, probabilistically remove

half the edges. Decrease sampling

rate α to α/2. */

3 if |edge-sample| ≥ se then
4 Set α to α/2.
5 foreach edge e in edge-sample do
6 Let x← hash(e).
7 if x > α then
8 Remove e from edge-sample.
9 Update tot wedges.

/* Set/Reset isClosed based on et. */

10 for i ∈ 1, . . . , sw do
11 Let {{u, v}, {u,w}} ← wedge-sample[i]
12 if et is the closing edge {v, w} then
13 Set isClosed[i] to 1.

14 else if et ∈ {{u, v}, {u,w}} then
15 Reset isClosed[i] to 0.

/* Insert et with probability α by

deterministically hashing et to a

uniform value in [0, 1] */

16 Let x← hash(et).
17 if x > α or et already in edge-sample then
18 Proceed to the next edge in the stream.

19 Insert et in edge-sample. Update tot wedges.
20 Determine Nt (wedges involving et in

edge-sample) and let new wedges = |Nt|.

/* Refresh (probabilistically) every

wedge sample with a new wedge */

21 for i ∈ 1, . . . , sw do
22 Pick a random number y in [0, 1]
23 if y ≤ new wedges/tot wedges then
24 Pick uniform random w ∈ Nt.
25 wedge-sample[i]← w.
26 isClosed[i]← false.

27 Let ρ be the fraction of values in isClosed which
are set to 1. Output 3 · ρ as the transitivity
estimate. Output α−2 · tot wedges · ρ as the
estimate for triangles.

tices, 167, 273 edges, 996, 306 triangles, and a transi-
tivity of 0.1058. The corresponding multigraph on the
other hand has 790, 871 edges, 370, 721, 337 triangles,
and transitivity of 0.3939. Our estimate with 30K edges
and 30K wedges is 0.1193 for transitivity and 1, 104, 100
for the number of triangles.

4.2 Other networks For a thorough empirical
study, we have extended our data set to include net-
works obtained from the SNAP database [SNA13]. The
vital statistics of all the simple graphs are provided in
Tab. 1. In this table, |V |, |Es|, W , T , and κ correspond
to the number of vertices, number of edges, number of
wedges, number of triangles, and the transitivity, re-
spectively.

To generate multi graphs form these simple graphs,
we artificially injected multiple edges in the dataset as
follows. For every edge e in the dataset, we flipped
a coin and based on the coin toss decided to either
replicate the edge or leave it as it is. More precisely,
for every edge independently, with one-third probability,
we replicated the edge many times and with two-third
probability left the edge as it is. (When selected for
replication, the edge was replicated x times where x
was chosen equiprobably from 2, 4, 8, 16, and 32.

We applied our algorithm to these multi graphs to
estimate the transitivity and the number of triangles
in the underlying simple graphs. The results of our
experiments are presented in Fig. 1. The results show
that our algorithm always estimates the transitivity
very accurately. The number of triangles however,
can be off. This is because the number of triangles
is estimated by multiplying the transitivity with the
estimate for the number of wedges. For graphs where
the transitivity is low and the the number of wedges
is high, this multiplication amplifies tiny errors in
transitivity into large differences in the number of
triangles.

4.3 Convergence of estimates In this set of ex-
periments, we show that our algorithm converges to
the true value as we increase the space. For this pur-
pose, We run our algorithm on amazon0505 graph (af-
ter converting into a multigraph as described earlier)
by gradually increasing the space (re + rw) available
to the algorithm. For convenience, we keep the size of
edge reservoir and wedge reservoir the same. Fig. 2 dis-
plays the estimates for the transitivity and the number
of triangles in our experiments. As the figure shows,
the estimates converge to the true value as the available
memory increases. The estimates oscillate for smaller
sizes at first, but stabilize after about 10K edges. After
that the return in improved accuracy for increased stor-



Table 1: Properties of the graphs used in the experiments

Graph |V | |Es| W T κ
amazon0302 262K 900K 9.1M 718K 0.236
amazon0505 410K 2439K 73M 3951K 0.162
amazon0601 403K 2443K 72M 3987K 0.166
as-skitter 1696K 11095K 16022M 28770K 0.005
cit-Patents 3775K 16519K 336M 7515K 0.067

DBLP 317K 1049K 21M 2240K 0.3064
roadNet-CA 1965K 2767K 6M 121K 0.060

web-BerkStan 685K 6649K 27983M 64691K 0.007
web-Google 876K 4322K 727M 13392K 0.055

web-NotreDame 326K 1090K 305M 8910K 0.088
web-Stanford 282K 1993K 3944M 11329K 0.009

wiki-Talk 2394K 4660K 12594M 9204K 0.002
youtube 1158K 2990K 1474M 3057K 0.006

livejournal 5284K 48710K 7519M 310877K 0.124

(a) Transitivity (b) Triangles

Figure 1: Output of a single run of CountTriangles on a variety of real datasets with 25K edge reservoir and 25K
wedge reservoir. The plot on the left gives the estimated transitivity values (labelled streaming) alongside their
exact values. The plot on the right gives the relative error of CountTriangles’s estimate on triangles T .

age starts diminishing. We have observed similar trends
in other data sets.

4.4 Sensitivity to the stream order To under-
stand how we generate different edge orderings of a
multigraph, consider the following operations. Given
a stream of edges σ, let Repeat10(σ) denote the stream
obtained by replacing each edge e of σ by 10 copies of e.
Likewise, let RepeatV ariable(σ) denote the stream ob-
tained by replacing each edge of the stream by i copies
where i is 1 with probability 2/3 and is distributed uni-
formly in {2, 4, 8, 16, 32} with the remaining probabil-
ity. Finally, Permute(σ) means randomly permuting
the stream while BlockPermute(σ) means breaking the
stream into blocks of equal size (5000) and then only
permuting the blocks.

Let σ0 be the original stream of edges of ama-
zon0505 dataset. Then the first order (Order 1) is the
stream σ1 = Repeat10(σ0) while the second order (Or-
der 2) is the stream σ2 = BlockPermute(σ1). The third
order (Order 3) is the stream σ3 = RepeatV ariable(σ0)
while the fourth order (Order 4) is the stream σ4 =
Permute(σ3). Finally, the fifth order (Order 5) is the
stream σ5 = RepeatV ariable(σ0) and the last order
(Order 6) is the stream σ6 = BlockPermute(σ5).

The results of our experiments are presented in
Fig. 3. In the figures, the first column always corre-
sponds to the true value, and the remaining 6columns
correspond to the estimates of our algorithm based on
streams ordered as described above. It can be seen that
the estimates of the algorithm are not sensitive to the
ordering used and always accurate. Note that the 6
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Figure 2: Concentration of estimate on multi-amazon0505: We plot the transitivity and triangles estimate as a
function of total space (se + sw) and observe that they converge to their true values. In our experiment, we keep
se = sw.

orders are not merely random orders. they have been
designed to expose a sensitivity of the algorithm to the
stream order. Yet, the results show that the algorithms
robust to stream orderings.

5 Conclusions

We have described a streaming algorithm to compute
the number of triangles and the transitivity (global clus-
tering coefficient) of a multigraph (a graph with parallel
edges). This new algorithm extends our previous work
that described a streaming algorithm that required the
graph to be simple. Our new method adopts a random-
ized hash function to identify repeated edges. However,
a randomized hash function by itself is not sufficient as
the order of the sequence may affect the prediction. To
correct for this problem, we use an unbiasing technique
that makes sure only one wedge per triangle is being
considered for closure.

We provide experimental results that show that the
proposed techniques work well in practice. We were able
to analyze the DBLP co-authorship network by directly
processing the raw data, without explicitly constructing
a graph. We estimate the transitivity as 0.1733, when
the true value is 0.1743 and the number of triangles as
11, 299, 160 when the true vale is 11, 460, 675. We have
also experimented with artificially generated data sets,
and various stream orders, and always achieved accurate
estimations.
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