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Leading technology today is Si-based
IGBTs

= Si-based devices are limited in operating

temperature
Bandgap . . .
(eV) ' ' 4 = Costs and low mobility associated with
SiC technology makes GaN devices

T °C)  300°C  600°C 700°C attractive

= Particularly useful for 600 V applications
Mobility =~ 4500 260 1500 -
(cm2/Vs) = Voltage controlled devices (such as
Breakdown MOSFETs) based on GaN have seen
Field 0.3 3.5 2.0 limited deployment owing to issues
(Mviem) with the insulating switch

Data adapted from: R.S. Pengelly, et al. IEEE Trans. M.T.T., 60 (6) (2012) 2



Project Overview ) s,
= Oxide materials are critical components of metal-oxide
semiconductor (MOS) devices

= The oxide is a dielectric layer that allows a semiconductor switch to
open and close

= Wide bandgap semiconductor (WBG) MQOS power transistors
have seen limited deployment owing to key technological issues
all related to oxide defects:
= Low channel mobility = poor switch conduction
= Threshold voltage instability = unpredictable switch performance
= High drain resistance = poor switch conduction

= Preparation of low defect density gate insulators is vital to
alleviating these issues and realizing efficient, reliable, and
high-performance devices

= This project focuses on the preparation of reliable gate oxides
on WBG semiconductors 5




Wide Band Gap Switch Needs for ESS

Low defect density,
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Substantial overall
efficiency improvement
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Oxide/GaN Strain States — Controlling ...
Threading Defects and Interface States

0% Strain ~< 10% Strain ~>10% Strain
Coherent Interface Pseudomorphic Incoherent
Satisfied Bonds With Dislocations With Dislocations
—\I W “l \‘I =

Ln,O; La Nd
Ecub 0.7% -10% Sm Gd Dy Ho Er Tm Yb Lu

19 1 16.9 -3% 4% -54% -59% -64% -69% -7.4% -7.7%
(0}

ghex
Yo %

 If cubic, alloy to minimize strain — Minimize Dislocations
« Hexagonal structure likely to be too high of strain

Data from: G-Y. Adachi and N. Imanaka, Chem. Rev. (1998) 5




Oxide Electronic Properties:
Importance of Band Gap

Sandia
ﬂ'l National
Laboratories

ECN=3.4 eV

LnO; La Nd Sm Gd Dy Ho Er

K 20-30 10 11 12 12 12 14

Metal Metal
Low Bandgap Large Bandgap
Low Band Offsets Potentially Large Band Offsets
Low Efficiency

Data from: J-P. Maria in High Dielectric Constant Materials (2005). 6




Oxide/GaN Growth and Structural e
Issues

Volmer-Weber Stranski-Krastanov Frank-van der Merwe
(3-D) (2-D—3-D) (2-D)

V

“Vgate

Metal Gate

3-D Growth

2-D Growth
Mode Oxide

Mode Oxide

-1

n-type GaN

= Rough growth results in grain boundaries that act as defect sources for gate
leakage = poor performance

=  Smooth growth should have fewer threading defects =2 greater reliability
and performance

= Amorphous oxides (e.g. SiO,) do not work well for WBG gates owing to poor
interface bonding 7




First Step: La,0; Growth
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Cha racte ristics = Hexagonal growth observed for

thicknesses of £ 6nm

X-ray Diffraction

10 g ) = Transitions to rough cubic
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Second Step: Band Alignments and
Electronic Properties
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GaN __ La,0, o = |deally want band offsets >1 eV
AE_=1.47 eV to maximize performance and
GaN . e
Es reliability
= Valence band offset of 0.63 eV
ESN AE, = 0.63 1 0.04 &V = Conduction band offset of 1.47 eV
E,*: : e e
400 ) = C-V curves enable identification
350 | — 1 MHz | of interface defects
™ : —800 kHz |
S 300 b —500 kHz | = Low frequency peak (red arrow)
@ 250 ¢ B ROAE indicates presence of interface trap
= g —50kHz | . states
S 200 : l —20 kHz |
g 150¢ —_ o211 = La,0;looks great on paper, but
S 100 L = i i
m : ] is not a good option
© 50 :
0 - 1 1 1 1 1

6 4 2 0 2 a2 6
Gate Voltage (V) 9




Must Improve Morphology and
Offsets: MgO-CaO alloys

MgO on GaN = MgO-CaO alloys can be grown

B with 0% strain
AE.=3.2¢eV
E" = Band offsets > 1 eV at both

bands for both materials
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Es—:/aN
T b b AE =126V TR N S—
MCO ;o GaN
CaO on GaN O O 5:OA’ . O
ECe0 _ /
o | | AEc=25eV e » o > e
)

/
GaN MgO‘
EV
T b Y AE, =106V ,+6.9%\

e S

The MgO0-CaO system is a viable solution
to the threading defect and trap issue

In collaboration with Prof. Jon-Paul Maria at North Carolina State University




Controlling Growth for Smooth =,
Surfaces

= MgO and CaO want to grow
as 3-D pyramids on GaN
= Rough growth

Conventional Growth

= Threading defects

= Poor performance and
reliability

= A AE(OH), surfactant on

MgO or CaO would result in

a smooth surface

= Minimal threading defects

H,O-Assisted Growth

GaN [0100] Greatly improved
performance and reliability

In collaboration with Prof. Jon-Paul Maria at North Carolina State University 11
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Controlling Growth for Smooth s

Su rfaces = Conventiona 2
growth results in
MgO-Conventional Growth rough surface
= Similar to cubic
La,0,
= Likely high

threading defect
concentration

H,0-assisted
MgO-H,O0 Surfactant growth results in a
smooth growth
surface

= Minimizes threading
defects

= Potentially
improved
In collaboration with Prof. Jon-Paul Maria at North Carolina State University pe rformance 12

Jon lhlefeld, Sandia National Laboratories 2013 DOE ESS Peer Review



Controlling Growth for Smooth i
SU rfaces E— Conventiona@

Laboratories
growth results in
CaO-Conventional Growth rough surface

= Similar to cubic
La,0,

= Likely high
threading defect
concentration

H,O-assisted
growth results in a
smooth growth
surface

= Minimizes threading
defects

Ca0-H,0 Assisted

= Potentially
3 . improved
In collaboration with Prof. Jon-Paul Maria at North Carolina State University _ pe rformance 13




Controlling Growth for Smooth o
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Surfaces
10" 4.5 nm thick films: = Smooth film has 10%-103
N Ca0- 0, decrease in dielectric
“c 10?2 leakage
L = Substantial
< 100 improvement over
E, 04 conver.wtionaI.Iy prepared
3 CaO- H,0 gate dielectrics
o 10° = H,O-assisted growth
S results in greatly
o 10" - improved structural
- 5 and electrical
%1000 -500 0 500 1000 properties
Electric Field (kV/cm)
In collaboration with Prof. Jon-Paul Maria at North Carolina State University 14




FY13 Summary ) s,
= FY13 Milestones:

Characterize growth of lanthanide oxides on GaN
v Completed; hexagonal phase unavoidable; grows as rough cubic phase
Measure band offsets of lanthanide oxides on GaN and electrical response

v Completed; ~0.63 eV valence band offsets measured; electrically active defects
identified in capacitance-voltage analysis

Upfit growth instruments to enable surfactant-enhanced growth
v Initiated and ongoing; surfactant growth established at SNL

Establish collaboration with NCSU to optimize surfactant-enhanced growth
technique

v Initiated; technology and samples transferred to Sandia for analysis
Submit manuscripts for publication in peer-reviewed journal

v" 1 papers already published

= J.F.Ihlefeld, M. Brumbach, and S. Atcitty, “Band offsets of La,0; on (0001) GaN grown by reactive
molecular-beam epitaxy,” Applied Physics Letters, 102, 162903 (2013)

15



FY14 Milestones ) g,

= Develop process to prepare strain-free alloys on GaN

= Fully characterize physical and electrical defects

= High temperature measurements to explore reliability
" |nvestigate passivation anneal effects on MOSCap performance

= Develop understanding of GaN surface quality role on oxide
growth, performance and reliability

= Submit 21 manuscript for publication in peer-reviewed journals

= Explore partnership with commercial manufacturer(s)

16
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