skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Phebus FP thermal-hydraulic analysis with Melcor

Conference ·
OSTI ID:111447
;  [1];  [2];  [3]
  1. Nuclear Power Engineering Corporation, Tokyo (Japan)
  2. Hitachi Engineering Company, Ltd., Hitachi-shi Ibaraki-ken (Japan)
  3. Nuclear Engineering Ltd., Tosabori Nishi-ku (Japan)

The severe accident analysis code MELCOR, version 1.8.2, has been applied for thermal-hydraulic pre-test analysis of the first test of the Phebus FP program (test FPT-0) to study the best test parameters and the applicability of the code. The Phebus FP program is an in-pile test program which has been planned by the French Commissariate a L`Energie Atomique and the Commission of the European Union. The experiments are being conducted by an international collaboration to study the release and transport of fission products (FPs) under conditions assumed to be the most representative of those that would occur in a severe accident. The Phebus FP test apparatus simulates a test bundle of an in-pile section, the circuit including the steam generator U-tubes and the containment. The FPT-0 test was designed to simulate the heat-up and subsequent fuel bundle degradation after a loss of coolant severe accident, using fresh fuel. Two options for fuel degradation models in MELCOR have been applied to fuel degradation behavior. the first model assumes that fuel debris will be formed immediately after the fuel support fails by cladding relocation due to the candling process. The other is the uncollapsed bare fuel pellets option, in which the fuel pellets remain standing in a columnar shape until the fuel reaches its melting point, even if the cladding has been relocated by candling. The thermal-hydraulic behaviors in the circuit and containment of Phebus FP are discussed herein. Flow velocities in the Phebus FP circuit are high in order to produce turbulent flow in a small diameter test pipe. The MELCOR calculation has shown that the length of the hot leg and steam generator are adequate to attain steam temperatures or 700{degrees}C and 150{degrees}C in the respective outlets. The containment atmosphere temperature and humidity derived by once through integral system calculation show that objective test conditions would be satisfied in the Phebus FP experiment.

Research Organization:
US Nuclear Regulatory Commission (NRC), Washington, DC (United States). Div. of Systems Technology; American Nuclear Society (ANS), La Grange Park, IL (United States); American Institute of Chemical Engineers, New York, NY (United States); American Society of Mechanical Engineers (ASME), New York, NY (United States); Canadian Nuclear Society, Toronto, ON (Canada); European Nuclear Society (ENS), Bern (Switzerland); Atomic Energy Society of Japan, Tokyo (Japan); Japan Society of Multiphase Flow, Kyoto (Japan)
OSTI ID:
111447
Report Number(s):
NUREG/CP-0142-Vol.4; CONF-950904-Vol.4; ON: TI95017080; TRN: 95:021635
Resource Relation:
Conference: 7. international topical meeting on nuclear reactor thermal-hydraulics (Nureth-7), Saratoga Springs, NY (United States), 10-15 Sep 1995; Other Information: PBD: Sep 1995; Related Information: Is Part Of Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Sessions 17-24; Block, R.C.; Feiner, F. [American Nuclear Society, La Grange Park, IL (United States)]; PB: 825 p.
Country of Publication:
United States
Language:
English