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• How DDSI works 

• Conceptual design 

• FY13 achievements 

• Upcoming work 
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How DDSI Works 

• Neutrons from spontaneous fission isotopes in spent fuel slow down as 

they scatter through a spent fuel pool, and induce fission in fissile 

isotopes. This increases an otherwise difficult to measure signal 

• We record the time of arrival of each neutron (list-mode) to perform 

neutron coincidence counting. A coincidence is detection of two 

correlated neutrons and it is used to detect spontaneous and induced 

fission events 

• Use list-mode data to produce a Rossi-alpha distribution (RAD), which 

is a histogram of times between captures of two neutrons 

• RAD allows for flexible post-processing; traditional shift-register 

technique requires pre-selection of gate of interest 

 

 

 

 

Fission 
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Time between captures = 10 μs, add to 

histogram 



U N C L A S S I F I E D 

U N C L A S S I F I E D 

Operated by the Los Alamos National Security, LLC for NNSA 
NGSI-SF Inter-Lab Meeting, December 16-17, 2013  

• RAD can be broken down into two components 
– Fast Component composed of neutrons arriving from the same fission event 

– Slow Component composed of neutrons arriving from different fission events in the 

same chain 

• Fast and slow components from broken down RAD help us 

characterize spent fuel assemblies; they reflect fissile/fertile content 
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How DDSI Works 
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How DDSI Works 

• Die-away time of the slow component along with the relative 

magnitudes of both components shape RAD and reflect system 

multiplication 
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• 56 3He tubes, 4 detector pods, lead shield, centered assembly 
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Design 

• Air-filled insert for BWR assemblies 
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• We utilize 44 SFL2a assemblies to observe changes in parameters 

such as multiplication, fissile/fertile masses, fast/slow component 

shape 

– Initial Enrichment (IE): 2%, 3%, 4% and 5% 

– Burnup (BU):  15, 30, 45 and 60 GWd/tU 

– Cooling time (CT): 1, 5, 20, 80 years  
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FY13: SFL Exploration 

= 44 SFAs 



U N C L A S S I F I E D 

U N C L A S S I F I E D 

Operated by the Los Alamos National Security, LLC for NNSA 
NGSI-SF Inter-Lab Meeting, December 16-17, 2013  

• MCNPX PTRAC capability and MCNPX-PoliMi used to produce pulse 

trains including accidentals 

• Algorithms developed to build Rossi-alpha distributions from pulse 

trains 

• Very good agreement between pulse train RAD and F8 capture tally 

RAD production (MCNPX approximation, free of accidentals) 
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FY13: Pulse Train Simulation 

F8 Capture Tally PoliMi Pulse Train 
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• The shape of the RAD is 

strongly affected by the 

fissile/fertile material 

• Relative magnitude of the slow 

and fast components change 

with addition of fissile or fertile 

material, and change the shape 

of the RAD as a result 

• Longer, slower die-away of slow 

component with more fissile 

material and fewer neutron 

absorbers 
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FY13: RAD Dependence on Fissile/Fertile 

Homogenized 

Assemblies 

SFL-2a 

Assemblies 
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• Ratio of doubles count rate in a late gate over total counts (singles) 

has been used in the past, and is sensitive to (α,n) neutrons 

• We found that a single exponential fit to the early time-domain of the 

RAD correlates very well with multiplication 
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FY13: Determining Multiplication 

Early die-away time domain 
• Insensitive to neutrons from 

other sources besides 

spontaneous fission 

• Improvement upon previously 

used method of 

Doubles/Singles to determine 

multiplication 
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FY13: Determining Multiplication 
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  SF Source Only (α,n) Source Only 
Combined 

Sources 

Τearly [μs] 86 86 86 

D/S 0.28 0.18 0.21 
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FY13: Determining Multiplication 

• The worst case for (α,n) influence is the 15 GWd/tU, 5% IE, 80 year 

cooled assembly with the highest alpha ratio of all SFL2a assemblies 

considered 

• Alpha ratio = 
𝛼,𝑛 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠

𝑆𝐹 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠
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FY13: Determining Multiplication 

• D/S changes with SF or (α,n) source 
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Doubles/Singles 

SF Source 
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FY13: Determining Multiplication 

• Early die-away does not change with SF or (α,n) source 
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• Building upon DDA work on the same topic, we apply the 

same physics but utilize the early die-away time instead 

of multiplication, eliminating two calibration constants 

• 𝑀𝑝𝑢 = 𝑐 𝐶𝑇
𝜏𝑒𝑎𝑟𝑙𝑦+2𝑒

𝜏𝑒𝑎𝑟𝑙𝑦+𝑒

𝑃𝑁

𝜏𝑒𝑎𝑟𝑙𝑦+2𝑒

𝑑(𝐶𝑇)

 

• Compute calibration constants c, d, and e 

• Determine total Pu mass with mean variation of 2.5% 
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FY14: Total Pu Mass Determination 
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FY14: Total Pu Mass Determination 
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• For some IE/BU 

combinations, 

longer CT are more 

accurate. Others, 

short CT are more 

accurate. 

• When Multiplication 

is used instead of 

early die-away, we 

find the same 

calibration constant 

as DDA 
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• Simulate assemblies to be measured at CLAB 

• Carry out experiments to validate simulations 

• Work toward initial enrichment and burnup determination 

• Partial defect detection with SFL6 

• Simulate SFL 3 and 4 to verify multiplication and total Pu correlations 

for more unusual fuel assemblies 

• Utilize isotope-specific pulse trains from homogenized assemblies to 

further develop discrimination ratio 
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Upcoming work 
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Bonus: Rossi-Alpha Distributions (RAD) 

• By measuring the time of detection of neutrons following each trigger, 

a histogram is created that reflects correlations in the system 
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Bonus: Rossi-Alpha Distributions (RAD) 

• By measuring the time of detection of neutrons following each trigger, 

a histogram is created that reflects correlations in the system 

Time Window 

Time after Trigger 

O
c
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n
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s
  

• This process repeats until adequate statistics are obtained 

• If the arrival of the pulses is random, a flat distribution is created, but if 

correlations exist, the familiar shape of a RAD is produced 
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• Rossi-alpha distribution (RAD) is a histogram of times of coincident 

neutron captures following a trigger neutron capture 

• In real life, this is filled with accidentals 

• Simulate pulse train with PTRAC or PoliMi to make a RAD with 

accidentals, dead time, etc… 

• Simulate RAD with MCNPX tally of structured, sequential 

“coincidence” gates that count neutron arrivals at certain times after 

trigger neutron. One history at a time = no accidentals 

Slide 20 

Bonus: Simulating Rossi-Alpha Distributions 
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Bonus: Simulating Rossi-Alpha Distributions 

• Agreement point-by-

point is not excellent, 

die-away agreement is 

better 

• 19.4 μs for F8 tally vs. 

19.0 μs for PoliMi pulse 

train 
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Bonus: Alpha Ratio for SFL-2a 
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• A.K.A. unusual 

cases 
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Bonus: Alpha Ratio for SFL-2a 
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Bonus: Alpha Ratio for SFL-2a 
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Bonus: Evolution of Design 
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Bonus: PTRAC Example Output 


