

LA-UR- 11-06175

Approved for public release;
distribution is unlimited.

Title: A Synopsis of Uranium Enrichment: The Technology, the Safeguards, and the International Concerns

Author(s): Brian D. Boyer

Los Alamos National Laboratory, Los Alamos, NM, USA

Intended for: Pennsylvania State University Student INMM Meeting
University Park, PA
November 7, 2011

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

TITLE: A Synopsis of Uranium Enrichment: The Technology, the Safeguards, and the International Concerns

AUTHOR: Brian D. Boyer

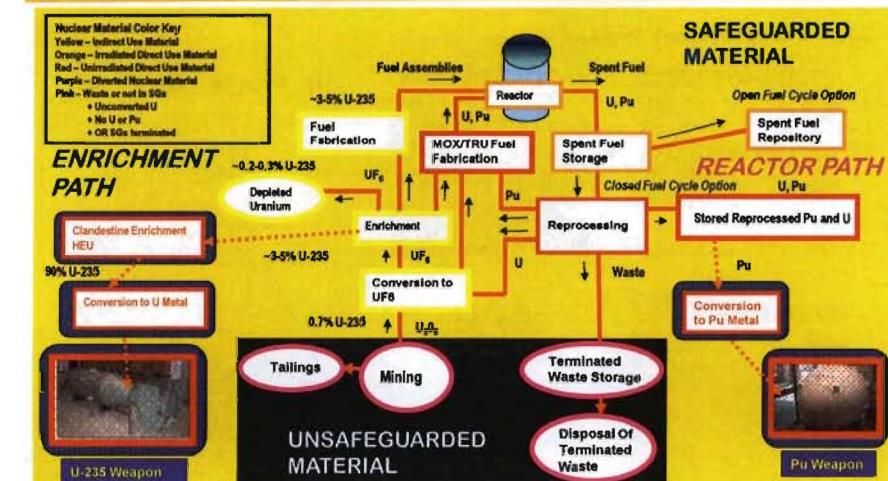
ABSTRACT:

Once during WWII it became apparent that enrichment of the uranium's U-235 isotope was needed to produce a uranium-fueled weapon, the U.S. raced to produce technologies to get an enrichment level capable of use in a weapon. While the gas centrifuge was too immature a technology to work during the wartime Manhattan Project, developments by captured German scientists in the USSR and later in the West made the gas centrifuge the state of the art for producing enriched uranium for peaceful use in power reactors by the last decades of the 20th Century. However, the technology drifted to States who could use this technology for building nuclear weapons. This talk covers the above issues and gives some insight into the technology and science behind enriching uranium. The speaker also will talk about International Atomic Energy Agency (IAEA) safeguards on enrichment and his own experiences as an IAEA inspector working in the field at various enrichment facilities. The talk will culminate in a discussion of the headlines and proliferation possibilities in Iran and other States with possible nuclear weaponization ambitions and how the world community might respond.

The Pennsylvania State University Student Chapter of the INMM

A Synopsis of Uranium Enrichment: The Technology, the Safeguards, and the International Concerns

Dr. Brian D. Boyer
R&D Engineer 5 / Project Leader International Safeguards
Nuclear Nonproliferation Division / N-4
Los Alamos National Laboratory


UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for NNSA

Slide 1

Nuclear Fuel Cycle – Proliferation Aspects Enrichment – Key to the Uranium Path

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for NNSA

Slide 2

Safeguards Concerns at LEU GCEPs

Why So Much Concern Over Indirect Use Material?

Detectability of Undeclared Facilities		Detectability (Selected Criteria)			Weapons
		Identifiable Structure	Thermal Signature	Effluents	
Plutonium Production	Reactor	Yes	Yes	No	 Fat Man
	Reprocessing	No	No	(Yes)	
Uranium Enrichment	Calutron/EMIS	No	Yes	Yes	 Little Boy
	Gaseous diffusion	Yes	Yes	Yes	
	Centrifuge	No	No	No	

Enrichment with Centrifuges has potential to go from Natural Uranium or LEU to HEU
By misuse of declared facility or through undeclared facility

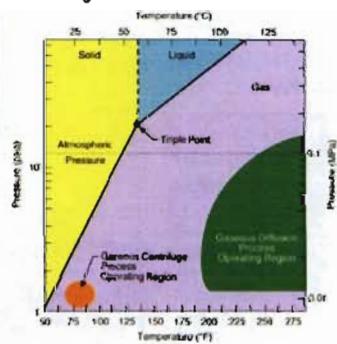
NATIONAL LABORATORY

1945

Operated by the Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Slide 3


What is a UF₆ Cylinder

Where U and U-235 Material Spend Most of Their Time

30B Product (2.5 ton)- Product

48G (14 ton) - Tails

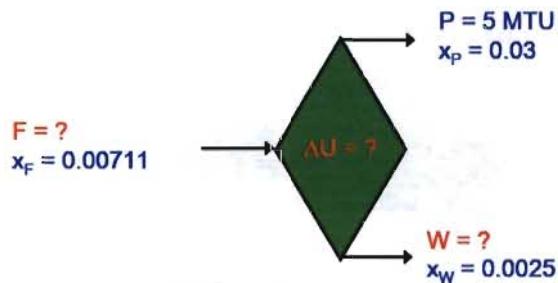
UF₆ PHASE DIAGRAM

48Y (14 ton) - Feed

5a (25 kg) - HEU

NATIONAL LABORATORY

1945


Operated by the Los Alamos National Security, LLC for NNSA

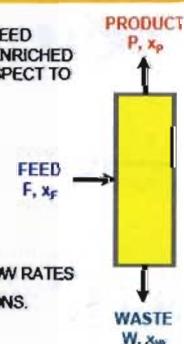
UNCLASSIFIED

Slide 4

Enrichment Physics Separative Work Problem

HOW MUCH SEPARATIVE WORK IS REQUIRED TO PRODUCE
5 MTU CONTAINING 3% ^{235}U FROM NATURAL FEED CONTAINING
0.711% ^{235}U WITH WASTE CONTAINING 0.25% ^{235}U ?

Opened by the Los Alamos National Security, LLC for NNSA


UNCLASSIFIED

Slide 5

Separation Element Definitions

A **SEPARATING ELEMENT** DIVIDES A FEED STREAM INTO TWO STREAMS – ONE ENRICHED AND THE OTHER DEPLETED WITH RESPECT TO THE FEED

F , P , AND W ARE TOTAL URANIUM FLOW RATES
 x_F , x_P , and x_W ARE ^{235}U CONCENTRATIONS.
 NOTE THAT $x_P > x_F > x_W$

Where x_F is the concentration of ^{235}U in the **feed** stream
 Where x_P is the concentration of ^{235}U in the **product** stream
 Where x_W is the concentration of ^{235}U in the **tails** stream

Opened by the Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Slide 6

Solve for Masses

SOLVE FOR MASSES

TOTAL URANIUM: $F = P + W$

^{235}U :

$$Fx_F = Px_P + Wx_W$$

$$\frac{F}{P} + \frac{1}{\theta} = \frac{(x_P - x_W)}{(x_P + x_W)} = \frac{0.03 - 0.0025}{0.00711 - 0.0025} = 5.9653$$

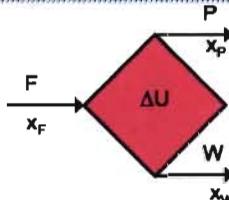
$$F = \left(\frac{F}{P} \right) P = 5.9653 \times 5 \text{ MTU} = 29.8265 \text{ MTU}$$

$$W = F - P = 29.8265 - 5 = 24.8265 \text{ MTU}$$

NATIONAL LABORATORY

1945

Operated by the Los Alamos National Security, LLC for NNSA


UNCLASSIFIED

Slide 7

Define Value Function

$$\Delta U = P V(x_P) + W V(x_W) - F V(x_F)$$

$$V(x_P) = (2x_P - 1) \ln \left(\frac{x_P}{1 - x_P} \right)$$

$$V(x_W) = (2x_W - 1) \ln \left(\frac{x_W}{1 - x_W} \right)$$

$$V(x_F) = (2x_F - 1) \ln \left(\frac{x_F}{1 - x_F} \right)$$

NATIONAL LABORATORY

1945

Operated by the Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Slide 8

The Solution

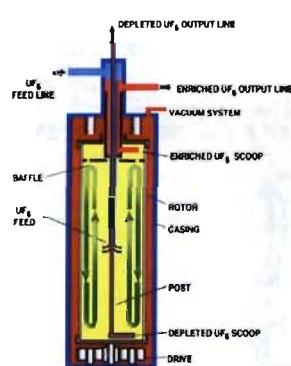
$$\Delta U = P V(x_p) + W V(x_w) - F V(x_f)$$

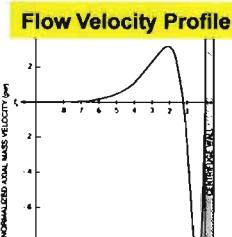
MASS (MTU)	VALUE FUNCTION	COL 1 x COL 2 (MTU)
P = 5.0000	V(0.03) = 3.267533	16.338
W = 24.8265	V(0.0025) = 5.959017	147.941
F = 29.8265	V(0.00711) = 4.868883	145.222

$$\begin{aligned}\Delta U &= 16.338 + 147.941 - 145.222 \text{ MTSWU} \\ &= 19.057 \text{ MTSWU} = 19057 \text{ kgSWU}\end{aligned}$$

Operated by the Los Alamos National Security, LLC for NNSA

UNCLASSIFIED


Slide 9


Technology for Enrichment What Is a Centrifuge?

Countercurrent Gas Centrifuge

- UF_6 gas enters the interior of the centrifuge from
 - Pipe at the center of the centrifuge rotor.
- Gas is removed
 - More ^{235}U at one end of centrifuge rotor
 - More ^{238}U at the opposite end of centrifuge rotor
- Gas is removed inside the centrifuge by
 - "Scoops" - stationary pipes

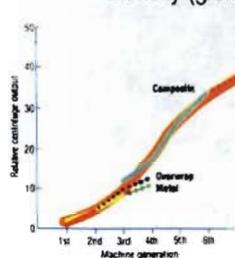
Schematic of Gas Centrifuge

URENCO
Almelo, NL Plant
"WURX"Source: ORNL - SAFEGUARDS TRAINING COURSE
NUCLEAR MATERIAL SAFEGUARDS FOR URANIUM ENRICHMENT PLANTS

Operated by the Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Slide 10



Rotor Materials

Strength allows size and speed

- Need high strength-to-density ratio – speed stressed outer walls
- Calculating V_{max} , Maximum Peripheral Velocity with
 T = Tensile Strength (kg/mm^2)
 ρ = Density (g/cm^3)

$$V_{max} = \sqrt{\frac{T}{\rho}}$$

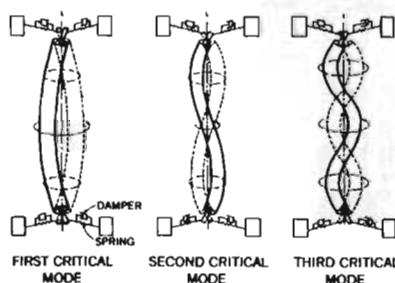
Source: ORNL - SAFEGUARDS TRAINING COURSE
NUCLEAR MATERIAL SAFEGUARDS FOR URANIUM ENRICHMENT PLANTS

Material	T (kg/mm^2)	(g/cm^3)	V_{max} (m/sec)
Aluminum Alloy	50	2.8	425
Titanium Alloy	90	4.6	440
High-Tensile Steel	170	8	455
Maraging Steel	250-300	8.1	550-600
Glass Fiber/Resin	70	1.9	600
Carbon Fiber/Resin	160	1.55	950

$$\omega = \frac{2\pi}{T} = 2\pi f = \frac{V}{r} \quad \text{Relationship of Frequency and } v$$

Opened by the Los Alamos National Security, LLC for NNSA

UNCLASSIFIED


Slide 11

Challenges in Making Centrifuges

- Spinning the rotors at near bursting strength
- Run for years with low MTBF – repair or discard mode of operation
- Supercritical speeds
- Design and Fabrication
 - Low cost
 - Mass production
 - Thousands of machines
 - High quality standards

MODE SHAPES OF FIRST THREE FLEXURAL CRITICALS OF A CENTRIFUGE ROTOR

Source: ORNL - SAFEGUARDS TRAINING COURSE
NUCLEAR MATERIAL SAFEGUARDS FOR URANIUM ENRICHMENT PLANTS

UNCLASSIFIED

Slide 12

Opened by the Los Alamos National Security, LLC for NNSA

Centrifuge Data: Dimensions / Operating Conditions

3rd Workshop On Gases In Strong Rotation, Rome, 1979*

Radius Of Centrifuge, $a = 25$ cm, $Z = 500$ cm	Assume: $Z \gg a$
Optimum Rectifier Length, $Z_p^* =$ determined by axial position of feed length, Z_p	$Z(1 - \theta)(1 + L/F) / (1 - \theta + L/F)$
Countercurrent-to-feed ratio, k	Assume $\mu L/F^* = 2$
Feed rate, $F \sim F^*$	51.4 mg/s of UF6
Cut, θ	Assume ~ 0.5
Radii of two-shell profile, r_1, r_2	in m
Average Operating Temperature, T_0	320°K
Pressure At Rotor Wall, $p(a)$	100 torr
Peripheral Velocity of Centrifuge, v_a	600 m/s
Uranium Gas-Phase Inventory	~50 g U
Molecular Weight of the Process Gas, M	0.352 kg/mole UF6
Mass Difference Between The Components, ΔM	3
The Gas Constant, R	8.31×10^7 erg/mol°K
No. of Scale Heights In Centrifuge, A^2 with $A^2 = MV^2 / (2RT_0)$	23.8
Density Diffusivity of UF6 at Temperature T_0 , pD	2.4×10^{-5} kg/m-s
Assume that $r_2/a \sim 0.975$ Assumption from Rätz, <i>Analytische Lösungen</i>	
Assume $\rho = 1000$ kg/m3	

*The ROME MACHINE

Composite standard centrifuge useful for academic research and discussion in open forum

Source: ORNL - SAFEGUARDS TRAINING COURSE
NUCLEAR MATERIAL SAFEGUARDS FOR URANIUM ENRICHMENT PLANTS

Los Alamos
NATIONAL LABORATORY

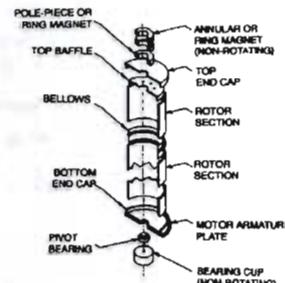
EST. 1942

Operated by the Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Slide 13

Centrifuge Design


Maximum Theoretical Separative Capacity Equation

P.A.M. Dirac Equation

$$\Delta U(\max) = \frac{\rho D \pi Z}{2} \left[\frac{\Delta M V^2}{2 R T_0} \right]^2$$

With Z = Length of the Centrifuge:

1. $\Delta U(\max)$ is proportional to Z
2. $\Delta U(\max)$ is proportional to V^4
3. $\Delta U(\max)$ is independent of a

Source: ORNL - SAFEGUARDS TRAINING COURSE
NUCLEAR MATERIAL SAFEGUARDS FOR URANIUM ENRICHMENT PLANTS

Los Alamos
NATIONAL LABORATORY

EST. 1942

Operated by the Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Slide 14

Centrifuge Design

Maximum Theoretical Separative Capacity Equation

E. Rätz Equation(1983) Ph.D. Thesis T.U. Berlin –
Analytische Lösungen fuer die Trennleistung von Gaszentrifugen zur Urananreicherung

$$\delta U_{Raetz}(L, F, \theta, Z_P) = \frac{1}{2} F \theta (1 - \theta) \left(\frac{\Delta M}{2 R T} v_a^2 \right)^2 \left(\frac{r_2}{a} \right)^4 \left[1 - \left(\frac{r_1}{r_2} \right)^2 \right]^2$$

$$\times \left[\left(\frac{1 + L/F}{\theta} \right) (1 - \exp[-A_P(L, F, \theta) Z_P]) \right.$$

$$\left. + \left(\frac{L/F}{1 - \theta} \right) (1 - \exp[-A_W(L, F, \theta) (Z - Z_P)]) \right]^2$$

Where

$$A_P = \frac{2\pi D\rho}{\ln(r_2/r_1)} \frac{1}{F} \frac{\theta}{(1 + L/F)(1 - \theta + L/F)}$$

$$\text{and } A_W = \frac{2\pi D\rho}{\ln(r_2/r_1)} \frac{1}{F} \frac{(1 - \theta)}{(L/F)(1 - \theta + L/F)}$$

$$D\rho = \frac{RT}{M} D\rho = \text{const.} \quad \text{and} \quad D\rho \approx 2.2 \times 10^{-5} \text{ kg/(m s)}$$

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for NNSA

Slide 15

Centrifuge Design

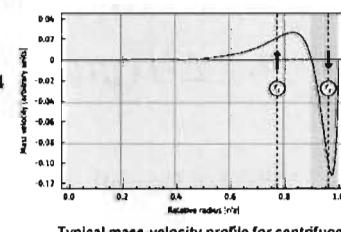
Maximum Theoretical Separative Capacity Equation

Mass Velocity Profile and defining r_1 and r_2 – from E. Raetz work

For Slower Machines

$$\max \left\{ \left[1 - \left(\frac{r_1}{r_2} \right)^2 \right]^2 \times \left[\ln \left(\frac{r_2}{r_1} \right) \right]^{-1} \right\} \rightarrow \left(\frac{r_1}{r_2} \right) \approx 0.534$$

Rätz, *Analytische Lösungen*, ch. 8, p. 8.17.


For Fast Machines

$$\left(\frac{r_1}{r_2} \right) \approx \left(\frac{r_1}{a} \right) = \sqrt{1 - \frac{2 R T}{M} (\ln x) \frac{1}{v_a^2}}$$

Assume pressure ratio x of, say, 1000:1 Rätz, *Analytische Lösungen*, ch. 2, pp. 2.4–2.5.

This table gives K values for the equation $\Delta U \propto V^K$

Rotor velocity (m/s)	Separative capacity Scaling Exponent, K
313	4
344	3.4
438	2.7
563	2.4
751	2.2

Typical mass-velocity profile for centrifuge

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for NNSA

Slide 16

Compare Dirac vs. Rätz for Rome Machine From Our Dirac and Rätz Equations

Dirac	Rätz
-------	------

166 SWU/yr	35.0 SWU/yr
------------	-------------

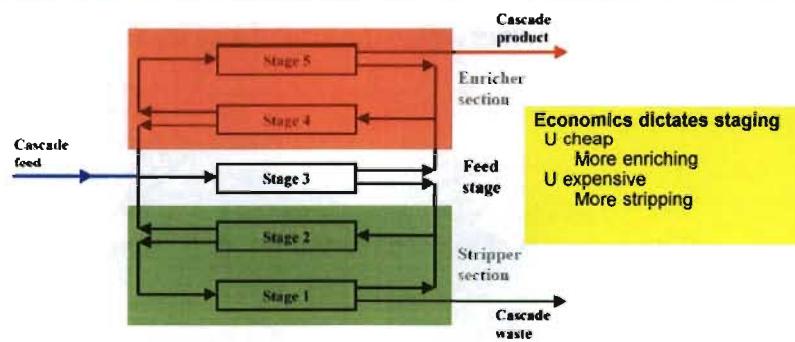
Eff. = 21%

- 1) Dirac overestimates the SWU capacity of faster machines – Rätz is more empirical and gives a better estimate of performance. (V^4 vs. V^2)
- 2) My conversations with URENCO engineers shows that URENCO has a lot of empirical engineering experience that the textbook equations do not show.
- 3) What URENCO knows – classified and proprietary
- 4) You cannot look at a CENTRIFUGE and "eyeball" performance

Source: Carl Taylor – Urenco (Jan 2011) – TC11 vs. TC12

NATIONAL LABORATORY

EST. 1943


Operated by the Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Slide 17

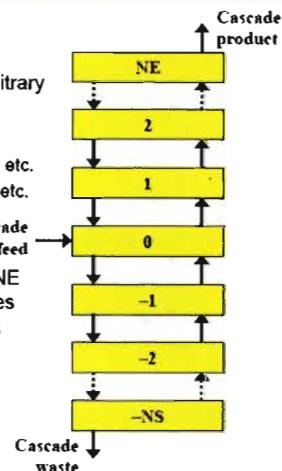
Enricher and Stripper Sections

- ENRICHER SECTION: ALL STAGES "ABOVE" THE FEED STAGE
 - ADD ENRICHMENT STAGES TO INCREASE % ^{235}U OF CASCADE PRODUCT
- STRIPPER SECTION: ALL STAGES "BELOW" THE FEED STAGE
 - ADD STRIPPER STAGES TO DECREASE CASCADE UF_6 FEED REQUIREMENT

NATIONAL LABORATORY

EST. 1943

Operated by the Los Alamos National Security, LLC for NNSA

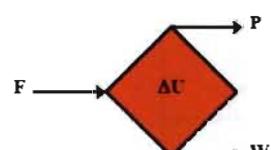

UNCLASSIFIED

Slide 18

Stage Numbering and Order

- Numbering of stages is somewhat arbitrary
- Equations are simplest if
 - Feed stage is labeled "0"
 - Enricher stages are labeled "+1", "+2", etc.
 - Stripper stages are labeled "-1", "-2", etc.
- Cascade consists of one feed stage, NE enricher stages, and NS stripper stages
 - Total number of stages = $1 + NE + NS$

Operated by the Los Alamos National Security, LLC for NNSA


UNCLASSIFIED

Slide 19

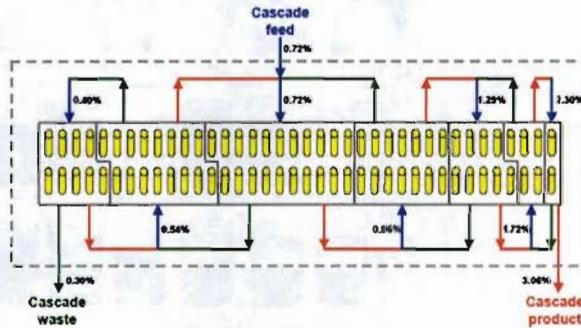
Determining Size of a Cascade

- FOUR Parameters define the size of a cascade

$$\begin{array}{l} F \\ P \\ W \\ \Delta U = N_{\text{cent}} \Delta u \end{array}$$
- Given any one of these parameters – determine other 3 using

$$\begin{array}{l} P = \theta F \\ W = (1 - \theta)F \\ \Delta U = (\Delta U / F)F \\ N_{\text{cent}} = \Delta U / \Delta u \end{array}$$

Operated by the Los Alamos National Security, LLC for NNSA


UNCLASSIFIED

Slide 20

A Typical Layout

- Centrifuges usually arranged in two parallel rows
- Stages determined by piping, not location

NATIONAL LABORATORY

EST. 1945

Operated by the Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Slide 21

Safeguards Concerns at LEU GCEPs Three Major Concerns and IAEA Goals

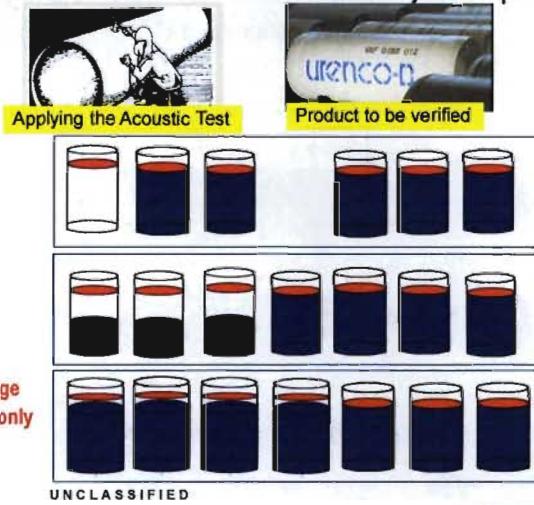
- **Safeguards Concerns**
 - Production of a SQ of undeclared HEU ($\geq 20\% {}^{235}\text{U}$)
 - Misuse of plant to create HEU for weapons program
 - Diversion of a SQ of declared LEU, NU, or DU (DNLEU)
 - Divert declared material for weapons program and enrich in clandestine HEU plant
 - Production of LEU in excess of declared amounts
 - Take undeclared material / enrich as feed for weapons program clandestine HEU plant
- **IAEA Safeguards Detection Goals (Quantity & Timeliness)**
 - Detection of HEU ($\geq 20\% {}^{235}\text{U}$) Production
 - Detect 25 kg ${}^{235}\text{U}$ in U in one MONTH
 - Detection of Diversion of DNLEU ($< 20\% {}^{235}\text{U}$)
 - Detect 75 kg ${}^{235}\text{U}$ in U in one YEAR

NATIONAL LABORATORY

EST. 1945

Operated by the Los Alamos National Security, LLC for NNSA

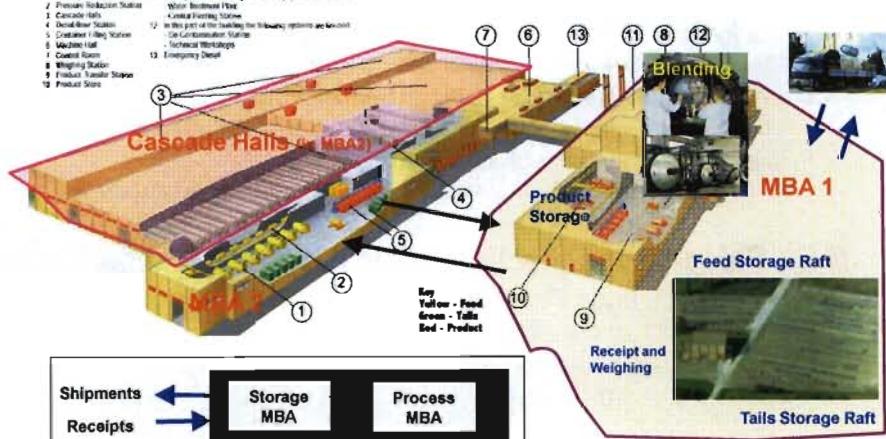
UNCLASSIFIED


Slide 22

IAEA Accountancy Verification Methods

Application to Centrifuge – Cylinder Verification

- Three levels of defects to detect with NDA Instruments – Key concept
 - Gross defect
 - Partial defect
 - Bias defect
- Examples in GCEPS:
 - Gross defect
 - No U present
 - Cylinder diverted
 - Partial defect
 - Lower ^{235}U content
 - Part of U missing
 - Bias defect
 - Minor ^{235}U content change
 - Detectable at bias level only


Operated by the Los Alamos National Security, LLC for NNSA

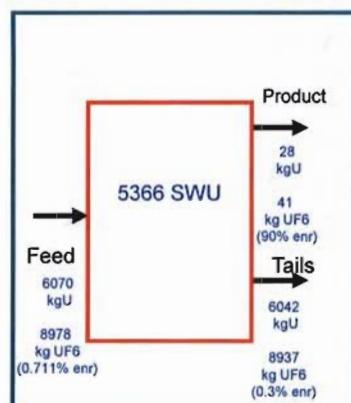
Slide 23

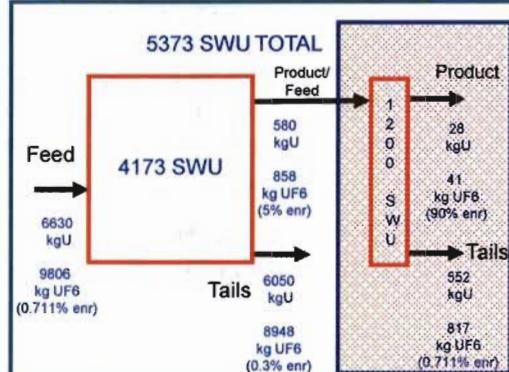
Gas Centrifuge Enrichment Plant (GCEP) Process Areas

1. Heating - Cooling Building
 2. Pressure Reducing Station
 3. Cascade Halls (or MBAZ)
 4. Deionizer Station
 5. Control Room
 6. Vacuum Hall
 7. Control Room
 8. Emergency Duct
 9. Product Sampler Station
 10. Product Sampler Station
 11. In this part of the building the following operations are done:
 12. In this part of the building the following operations are done:
 13. Technical Workshops
 14. Emergency Duct

Operated by the Los Alamos National Security, LLC for NNSA

UNCLASSIFIED


Slide 24

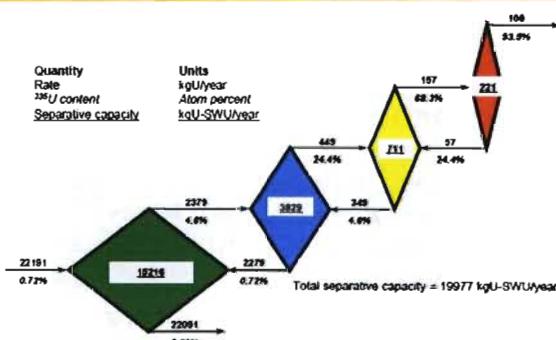

Centrifuges and Cascades

Proliferation Scenarios

Single Facility – NU-to-HEU

Declared LEU Facility and Clandestine HEU Facility – NU-to-LEU/LEU-to-HEU

Operated by the Los Alamos National Security, LLC for NNSA


UNCLASSIFIED

Slide 25

Coupled Cascades:

WGU from Natural Uranium

COUPLED CASCADES ARE AN ALTERNATIVE TO A
SINGLE CASCADE FOR WGU PRODUCTION

Operated by the Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Slide 26

IAEA Measures to Detect Diversion of Uranium

- Inspection regime includes:
 - Annual PIT/PIV
 - 11 monthly interim inspections for flow verification
 - IAEA verifies feed, product, and tails cylinders - receipts and shipments
 - OPERATOR holds feed before feeding to process
 - OPERATOR holds tails and product before shipment off-site
- Auditing of records and reports (ICR, PIL, MBR)
- Verification of nuclear material quantities (flows and inventories)
- Material balance evaluation
- Application of seals to UF₆ cylinders

Operated by the Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Slide 27

Performing Verification of UF6 Cylinder

- PIV or IIV – shipments/receipts
 - PIV or IIV – Cylinders in Process
 - PIV or IIV – Sampling of Cylinders
 - By Stratum
 - UFN, UFE, UFD – Feed, Product, Tails
 - Method H – NDA – acoustic, detect with NDA U, ²³⁵U
 - Method F,B – NDA – weigh cylinder, get ²³⁵U enrichment with NDA
 - Method D,B – DA samples - weigh cylinder, take DA sample for ²³⁵U enrichment
- PIV - Static UFD tails cylinder inventory
 - PIV - Sampling of Cylinders
 - UFD - Tails
 - Method H,F,B

Operated by the Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Slide 28

Iran - Questions for IAEA BOG and UNSC

- Iran has enough LEU feed for weapon
- >3/4 of the SWU for getting 90% HEU complete
- Will Iran divert LEU to Qom? Make HEU at Qom?
- Will Iran breakout at Natanz? Qom?
- Can Iran make HEU?
- STUXNET – what is the result?
- Less than optimal LEU production so far
- Breakout? 3 months? 6 months?
- Consequences?
 - More sanctions?
 - More isolation?
 - Military action?

IAEA
Nackaerts and
Yonemura - Fall 2009
Trip to Qom

Operated by the Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Slide 31

Summary of Gas Centrifuge Enrichment

- Present SOA enrichment technology
 - How much future improvements are possible?
 - Challenge from GE Hitachi – GLE – laser enrichment?
- Safeguards – what to reach for in the future
 - Unattended systems – flow (mass) and enrichment
 - RFIDs/Laser ID – follow cylinders
- Sensitive technology – export/import watch
- Will more States try to be like DPRK?
 - DPRK has bomb – wasn't attacked
 - Iraq had no bomb – attacked
 - Libya gave up weapons works – regime collapsed
 - Lesson for Iran and others?

Centrifuges From Libya

Former LANL
Director Sig
Hecker in DPRK

Operated by the Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Slide 32

Iran – GCEPs In the News – Status 2011

NU to LEU		Conversion NU UF6	FEP Feed	Product	Tails
kg UF6		371000	64366	4543	59823
Purity		0.6761	0.6761	0.6761	0.6761
kg U		250833	43518	3071	40446
Enrichment		0.711%	0.711%	3.490%	0.5%
kg U-235		1783	309	107	202
SQ DNLEU U-235		24	4.1	1.4	2.7
SQ U-235 (25kg)		71	12.4	4.3	8.1
Cylinders 48 in		30	5		5
Cylinders 30 in				2	

LEU to HEU

	PFEP Feed	PFEP Product	PFEP Tails
kg UF6	673	71	602
Purity	0.6761	0.6761	0.6761
kg U	455	48	407
Enrichment	3.490%	20%	1.6%
kg U-235	16	9.6	6.3
SQ DNLEU U-235	4.1		0.08
SQ U-235 (25kg)	0.6	0.4	0.3
Cylinders 30 in	0.3		0.3
Cylinders 5 in		2	

Operated by the Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Slide 29

Isfahan UCF

Natanz FEP
PFEP GCEP

Qom GCEP

NNSA

Iran Dilemma – GCEPs In the News – Status 2011

STAGE	CYCLE 1				CYCLE 2				CYCLE 3				CYCLE 4			
	Feed U235 atom%	Cut	Feed Rate (kgU/yr)	Sep Cap (SWU/yr)	# of Cent./Cascade	Feed U235 atom%	Cut	Feed Rate (kgU/yr)	Sep Cap (SWU/yr)	# of Cent./Cascade	Feed U235 atom%	Cut	Feed Rate (kgU/yr)	Sep Cap (SWU/yr)	# of Cent./Cascade	
9	3.0%	16.9%	58.0%	90.4%	2.8											
8	2.6%	14.4%	53.3%	88.6%	5.3											
7	2.2%	12.2%	48.5%	86.5%	7.6											
6	1.9%	10.3%	43.7%	84.1%	9.3											
5	1.6%	8.6%	39.1%	81.3%	11.1											
4	1.4%	7.2%	34.6%	78.3%	12.8											
3	1.2%	6.1%	30.4%	74.8%	14.6											
2	0.98%	5.1%	26.5%	71.0%	16.2											
1	0.84%	4.2%	23.0%	67.0%	17.9											
FEED 0	0.71%	3.5%	19.8%	62.6%	19.9											
-1	0.61%	2.9%	16.9%	58.0%	20.0											
-2	0.52%	2.4%	14.4%	53.3%	21.5											
-3	0.44%	2.0%	12.2%	49.5%	9.3											
-4	0.37%	1.7%	10.3%	43.7%	6.2											
-5	0.32%	1.4%	8.6%	39.1%	3.1											
FINAL XP	3.5%	19.7%	62.6%	91.9%	164.0											
FINAL XW	0.27%	1.1%	7.2%	34.6%												
CASCADES	53	32	32	5												
TIME (DAYS)		105	17	23												
PREP			14	14	14											
TOTAL DAYS		173														

Los Alamos
NATIONAL LABORATORY

Operated by the Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Slide 30

Gregory S. Jones assessed that Iran could currently enrich a stock of 3.5 percent LEU and existing 19.75 percent LEU to enough weapon-grade material for one bomb's worth in 62 days at the FEP.

The Washington Post, The New Republic, and a Bipartisan Policy Center publication

D. Albright analysis = 6 months for breakout

My one afternoon rough estimate = 6 months

NNSA