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Abstract

The advent of massively parallel computing environments has made the application of efficient
schemes to solve the transport equation in parallel a high priority. The parallelization of the transport
equation has been researched intensively for over two decades. Distributing work based on energy or
angular variable decomposition alone is inadequate when tens of thousands of processing elements
(PEs) are available. Alternatively, problems with ever-increasing numbers of spatial cells are highly
desired to analyze physically larger regions and/or to employ finer spatial meshes. Spatial domain
decompositions (SDD) have been developed to use the greater number of unknowns to achieve high
scalability on increasingly large computing clusters.

This work has focused on the development of a novel kernel for handling the local problem
within the PBJ framework of the global problem based on the integral transport matrix method
(ITMM). The ITMM seeks operators that act directly on the cells’ scalar flux and incoming angular
fluxes on the boundaries of the sub-domains. Such an approach abandons repetitive mesh sweeps and
other expensive iterative routines.
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Introduction: Parallel Solution of the Transport Equation
Integral Transport Matrix Method (ITMM)

The Parallel Gauss Seidel (PGS) Method

Weak Scaling Studies

Periodic Heterogeneous Layers (PHL) Studies
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1. Parallel Solution of the TE (S, Form)

- Domain Decomposition in Energy, Angle, and/or Space

* Current focus on Spatial Domain Decomposition (SDD)

— KBA/Wavefront
* Map m-dimensional mesh onto m—1 processor topology
« Compute angular flux for cell center and edges
« Communicate outward edge flux to neighbors along diagonal wavefront
* Sweep cells on wavefront concurrently; pipeline ordinates
* Synchronous method

— Parallel Block Jacobi (PBJ)
* Divide problem spatially into sub-domains
* Work on transport equation for sub-domains concurrently
* Communicate angular flux at boundaries
* Asynchronous method
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1. PBJ Forms a Local-Global Problem
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» Local: operators compute the scalar and outward angular flux of
each sub-domain = Sweeps, Krylov, other?
* Global iterations on angular flux — pass among sub-domains

— Sub-domains modify/update with own information
— Decoupling: sub-domains effects more local, less global
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2. Integral Transport Matrix Method (ITMM)

* Reconsiders the typical SI scheme as an iterative process to
determine a new iterate of scalar flux from previous value of the
scalar flux

00, (60 570) K v,

. J¢ is the iteration Jacobian, constructed with differential mesh
sweeps in all directions, per group, to attain full scalar flux coupling

* K, describes the attenuation of the BC flux throughout the system
and the contribution to the cell-average scalar fluxes

« At convergence limit:

(I_J¢)¢OO :J¢Z;1Q+K¢\I’m %(D(q’\l’m)
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2. Outgoing Angular Flux

« Computing the outgoing angular flux at system boundaries requires
additional equation of matrix-vector products

Your = J(// (d)oo + Zglq) + K(//\Iljn - T(‘b,q’\l’m)

+ J,and K are straightforward extensions of J ;and K, respectively

— Construction based on the coupling of the system’s cells to hypothetical cells
neighboring the system’s boundary cells

 Reflective BCs: Set y_,, to y, and re-solve ¢~ (iterative)
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2. ITMM Operator Sizes

* New algorithm partially limited by memory

« ITMM operators provide full coupling among cells, among cells to
boundaries, and among incoming/outgoing boundaries

« Operators are large and grow super-linearly with number of cells, N
- J;: O(N?)
- K;: O(N>3 M)
~ J, O(N>3 M)
- K, : O(N*3 M)
 Differential mesh sweep time grows linearly with angles, M

* |ITMM is applicable to higher order spatial discretizations and
anisotropic scattering—sizes of operators become dependent on
number of modeled spatial and angular moments of flux
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3. Global Solution as an Iterative Problem

* Global system of equations

(1-3,)8" = 3,2 'q + Ky}

in

B (1+1) (1+1) _ -1 (1)
J, 0"+ 1y =J, X, q+K, y

out in

— lterating on the outgoing angular flux, NOT scalar flux
— Not an inner/source iteration; departure from previous PBJ methods
— Scalar flux is an intermediate value for convenience and efficiency

- #of global iterations driven by the tightness of sub-domain coupling
— Decreasing optical thickness — o,h
— Increasing scattering ratio - ¢

« PBJ iterative solution is most straight-forward method: Incoming
interfacial angular fluxes lag one iteration
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3. Improving PBJ — Parallel Gauss-Seidel (PGS)

* Red/Black Parallel Gauss-Seidel (PGS)

Split single sub-domain into many smaller sub-domains — PRO:
Operators’ memory requirement and construction time super-

linearly decrease with N = Ix JxK

Each sub-domain is either red or black .. .. ..J ..f'
At each global iteration: .. .. .. ..

— Solve the local systems for ¢, v, .. .. .."..
— Copy/Send vy, 2 y,, e e e

— Solve the local systems for ¢, vy, .. .- .- ..J
— Copy/Send \l’oute Vin .. -. .. ..r

Competing effects |
— Faster convergence rate of PGS vs. PBJ .. == =="==f
]|

— Increase in number of global iterations ..
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3. Multiple Sub-Domains Per Processor

« Assign each P several, still independent, sub-domains — processing
elements (PEs) do not suffer idleness

« Construct (differential mesh sweep) and store the ITMM operators

for each
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4. Numerical Experiments in Weak Scaling

* Parallel Integral Discrete Ordinates Transport Solver (PIDOTS)

* Testing with one-group, S,, DD problems with isotropic scattering
* Testing on JaguarPF(JPF) [ORNL] up to P=32,768

* Evaluate performance as problem size grows with P

* Problem size per P fixed
« Start with LxLxL domain

— 4 materials
— Vary cell size h(0.1, 1.0, 10.0 cm) : 1
— ¢=0.9,0.99 i

* Choose L and S, together: memory

[~

D N

limited

L cells
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Number of Iterations

4. PGS-KBA (PARTISN) Comparison on Jaguar

* 16x16x16-cell model per P, Sq, up to P = 32,768

* PGS: 64 4x4x4-cell sub-domains per P 4,096 134,217,728
cells cells
e ¢=0.9, h=0.1cmresults:
1000 ¢ 1000 ——PGS-Tot
- - — PGS-Sol
|| e PGS-Con
100 L = S|
w - — — SI DSA
100 o
£
-
c 10
0
5
10 pemm=mms s 7 I A S
- i 1
1 Lo e L1l L1l Lorarrinl 11 01 £|’| |-|'|1|I 1 C Ll 1 Lt taanl [ Ll
1 10 100 1000 10000 1 10 100 1000 10000
Number of Processes, P Number of Processes, P

PENNSTATE ANS Winter 2011 — Washington, DC NC STATE UNIVERSITY
= 1 November 2011
12



4. PGS-KBA Comparison on Jaguar

 ¢=0.9, h=1.0cm results:
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4. PGS-KBA Comparison on Jaguar

« ¢=0.9, h=10.0 cm results:
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4. PGS-KBA Comparison on Jaguar

« ¢=0.99, h=0.1cmresults:
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4. PGS-KBA Comparison on Jaguar

« ¢=0.99, h=1.0 cm results:
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Number of Iterations

4. PGS-KBA Comparison on Jaguar

e ¢=0.99, h=10.0 cm results:

[ —eo—PGS-Tot
1000 JrerHHHHHHHHEHH X 1000 L = PGS-Sol
- S PGS-Con
i - —= G|
i w [ — = SIDSA
2 100 L SID
100 b e e o e e e e e e e e -2 £ -
- [= i
; :
I 2 10
[ o
Q - ”~
10 F n E—— P S
- I
1 L v grainl ol L1l Lo1aragsl [ 0.1 Loy vl L1y vl L1l 1§ 13t |-
1 10 100 1000 10000 1 10 100 1000 10000
Number of Processes, P Number of Processes, P

PENNSTATE ANS Winter 2011 — Washington, DC NC STATE UNIVERSITY

1 November 2011

o
17



5. Periodic Heterogeneous Layers (PHL)

* Examine the performance of ITMM-PGS compared to SI-KBA in the
presence of sharp material discontinuities

« S| DSA ineffectiveness in the presence of such heterogeneity

* Problem Description
— 8x8x%8, 56
—~ Periodic x-y planes (z-layers) of optically thin and thick layers
— Start with optical thickness ¢, =1, scale by a, a=10, 100, 1000
— Scattering ratio ¢=0.9
— Weak scaling, copy the base model as each dimension is increased
— Runupto P=4,096 on JPF
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5. PGS-KBA with PHL on Jaguar

* a=10results:
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5. PGS-KBA with PHL on Jaguar

« a=100 results:
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5. PGS-KBA with PHL on Jaguar

« a=1000 results:
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6. Summary

 |TMM operators
— Four operators dependent on problem size
— Constructed once per group with differential mesh sweep

« PGS compared to KBA:

— Standard weak scaling
* Very large differences when Sl is accelerated with DSA

» Gap closes as optical thickness and scattering ratio are increased — most
difficult SI problems

» Sl and SI DSA demonstrate larger growth in execution time as P increases
— PHL weak scaling
» DSA ineffective as heterogeneity is increased

« |TMM direct coupling resolves anisotropy faster
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6. Conclusions

« Method looks very good for a special set of problems
— Highly scattering, large optical thickness
— Lots of material discontinuities, sharply heterogeneous

* Performance should improve with the development and inclusion of
global acceleration technique
— Preliminary efforts in spatial multigrid
— Use of global Preconditioned GMRES solver
* Improve convergence rate and apply to higher R/B divisions

— Super-linear relationship of operators to sub-domain size

— Save on memory and operations
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