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Geometrically induced surface
polaritons in planar nanestructured
metallic cavities

P. 8. Davids', F. IntravaiaZ, D.A.R. Dalvi(?

VApplicd Photonics and Micrasystems, Sandia National Laboratories,
Albuguergue, NM 87185, USA
Theoretical Division, MS B213. Los Alamos Narional Laboratory,
Los Alamos, NM 87545, USA

Abstract: We examine the modal structure and dispersion of periodically
hanostructured planar metallic cavities within the scattering matrix formu-
lation. By nanostructuring a metallic grating in a planar cavily, artificial
surface excitations or spoof plasmon modes are induced with dispersion
determined by the periodicity and geometric characteristics of the grating.
These spoof surface plasmon modes are shown to give rise 10 new cavily
polaritonic modes at shorl mirror separations that modify the density of
modes in nanostructured cavitics. The increased modal density of stales
from the cavity polaritons have a large impact on the fluctuation induced
clectromagnetic forces and enhanced heat transfer at short separations,
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1. Introduction

Eigenmodes in planar metal insulator melal cavitics at short scparations have been cxtensively
studied owing 1o the existence of surface plasmon excitations [}, 2, 3]. Surface plasmons are
resonant optical excitations at metal dielectric interfaces and mainly arise dug to the material
dispersion of the metallic permittivity. These surface bound optical cigenmodes confine light to
extreme sub-wavelength dimensions and many applications require extending surface plasmon
confinement and dispersion to the infrared and THz parts of the cleciromagnetic spectrum (4],
Recently, Pendry and co-workers[5, 6] have proposed and demonstrated engineercd dispersion
by periodically nanostructuring surfaces by perforating perfect clectrical conductors. It has been
shown that these perforated nanostructured surfaces support surface modes that have dispersion
similiar to real surface plasmons in metals, but with the effective plasma frequency determined
by geometric parameters of the perforation. Thesc engineered dispersive surface mades confine
light 1o subwavelength regions and are called spoof surface plasmons, In a cavity configuration
consisting of a two dimensional periodic frequency selective surface above a metallic ground
plane, these geometrically induced surface mades give risc to perfect infrared absorbers which
are actively under development for infrared filtering and detection applications|7. 8]. Further-
more, periodically nanostrutured cavitics with strong confinement have been cxamined for THz
quantum cascade lascr applications[4] .

Recently, modal cxpansion technigues within the scattering approach have been used to
examine fluctuation induced electromagnetic forces and encrgy transfer in nanostructured
cavities[9, 10, 11, 12]. These cavilies are separated by vacuum gaps or dielectric material
and formed between a planar metallic mirror and a nanostructured grating. Finite tempera-
ture cquilibrium clectromagnetic forees in thesc planar cavilies arise due 1o thermal or vacuum
induced fluctuating currenis on the cavity mirrors and their associated fluctuating electromag-
netic fieldsf13]. By controlling the cavity modal dispersion and density of modes through pe-
riodic nanoscale structuring[14], onc can modify the equilibrium cavity forces. Well known




geometric force approximations based on the decomposition of a complex structured surface
into plane-plane segments with well defined integrated forces, known as the proximity foree ap-
proximation (PFA), have been shown 1o break down at short cavity mirror separations resulting
in cnhanced attraction over these geometrically predicted forces| £5].

In planar cavities driven out of thermal equilibrium, such as cavity mirrors with finite
lemperaturc differences mainjained between the mirrors, nanostructured control of the cavily
modes allows for tailored energy transfer from the hot surface to the cold surface. The modal
structure of noncquilibrium cavities at scparations shorter than the thermal wavclength leads
to near-ficld heat transfer where evanescent surface modes on the planar surfaces at different
temperalurcs can dominate the heat transfer [16, 17, 18, 19]. Nanostructuring of these surfaces
can be used te tailor and enhance the heat transfer through design of the cavity modes which
cvanescently couple one surface to the other[12] for vacuum 2aps much smaller than the ther-
mal wavelength, This enhanced heat transfer has been experimentally measured in a planar
cavily configuration and the enhanced near-field transfer at separations shorter than the thermal
wavelength demonstrated|20).

The paper is organized as follows: In section N, we examine geometrically induced surface
plasmon mode dispersion on a perfectly conducting metallic grating. In section II1, the cavily
mades in a planar nanestructured cavity arc examined by modal expansion in the vacuum region
between the two planar mirrors, The scattered fields from the metallic planar grating are treated
using the Fourier modal scattering matrix method (RCWA) described in references [10]. The
metallic cavity is assumed to be Au for both planar and nanostructured mirrors and the Drude
model is used for the metallic dielectric permittivity in the cavity modal caleulations. The modal
expansion of the transverse fields in the planar cavity is performed and the cavity boundary
value problem is treated in the vacuum region between the nanostructured surface and the planar
mirror. A sccular determinant for the cavity modal resonances is obtained from the boundary
conditions. The relationship between the cavity modal density and energy density in terms of
the sccular determinant is derived, In section 1V, the cavity modal dispersion is examined for
varying mirror grating separation and new cavity polaritons related 1o the spoof plasmons on the
nanostructured grating at short separations are observed. These new cavity polaritons increase
the density of modes at the effective plasmon wavelength and give rise 1o an enhanced attractive
forces at short scparations. The modal dispersion is compared for nanostructured grating and
planar unstructured mirrer cavities.

2. Spoof surface modes

The simplest struclure in which to examine these designer spoof surface plasmon modes is a
perfectly conducting grating structure. Figure 1 shows schematically the basic 1D grating. We
begin by considering the TM surface modes in the perfectly conducting grating structure with
period Ly, with a groove of width w, and depth h. The cleciromagnetic boundary value problem
is split into two regions, In region I, the vacuum or dielectric region above the eiched grating,
220, the H field is given by Bloch mode expansion,

HI =Y Hyexp(ik{x - ig®™2), ()

"

where £ = &, + 270 /Ly, and g = V&2 ~ k"™, The H fieid is over the entire period of the
grating and satisfics Bloch periodic boundary conditions. The £ field is obtained directly from
Maxwells equations. The transverse clectric field in region [ is
qgrr)
E = _)n: £, exp(ikx — g, )
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Fig. 1. Grating mirror based cavity examined The lower mirror 1 a periodically structured
metatlic grating. ‘The upper mirror is a metallic plane.

Region 11 is defined for z = 0, the groove is etehed in a perfect conductor, thus the clectric ficld
is confined in the groove, (x| < w/2), and must vanish at the bottom of the groove. The clectric

ficld is given by
El - Bsin(k(z— I)) 3)

and E! - 0. The transverse magnetic ficld in the groove is
HY = —iBcos(k(z— I)). «

The boundary conditions at the grating top surface, 2 = 0, require the continuity of the tan-
gential H ficlds. By integrating over the groove width we oblain

Y Husa = —iBcos(kh). (5)
where
sin (k_g"'lw /2)
Sy = ——_(T"—- (6)
kiw/2

The continuity of the tangential elcctric field at 2 = 0 and using the arthogonality of the Fourier
mode expansion, we oblain

k ; 2
Hy = B - sin(kh)s,. Q)
q_. X
Combining Eq. (5) and Eq.(7), wc obtain the resonance condition for the spool surface plas-
mons, ,
k
W Sn . cokh), )
Lx n A2 2
by "~k

for the multimodal single grating [21]. For a single mode # = 0, the spoof surface mode is

f12 12
f’ Htan(kh) = VX P L ©)
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Fig. 2. Geometry induced surface plasmon mode dispersion as a function of the grating duty
cycle. The prating period is Ly, the gap width w, and the prating depth. &. (a) Graung of
£ = 250nm with w = 160nm and depth.is fixed at # = 216nm. (b) Duty cycle 2. L, = 500
nm and w = 320nm. (c) Duty cycle 3, L, = 750 nm and w = 480nm.

which reduces 1o the standard result [5, 6],

Eq. (8) is a transcendental equation for the general dispersion of a resenant excitation of the
perfect metallic grating. The solution of the transcendental equation for the resonance can be
obtained graphically. The dispersion relationship is plotied graphically by considering

kw & 52
flhk)=log| 7= ¥ ——2 cot{kh)|, (10)
Ly nEm=5 i ny2 i
X

where the summation over # is cutoff, Fig. 2 shows the computed spoof plasmon dispersion
relationship from a perfect conducting grating with the geometric dimensions outlined in the
caption. In Figure 2, the grating duty cycle and depth are held fixed while the grating period is
allowed to vary by the indicated multiplicative factors. The dispersion branches (bright lines)
correspond o approximate solutions of the spoof plasmon resonance condition. The spoof sur-
face mode dispersion lics below the lightline in Figure 2 and the flat dispersion 10 the left of
the light line is duc to band folding into the reduced Brillioun zone. The effective spoof surface
plasmaon wavelength for these geometric parameters can be obtained from the asymptotic &
behavior. From Fig. 2, it is clear that the spoof mode dispersion is only weakly dependent on
the period with fixed duty cycle and the effective plasmon wavelength is Apt == 1140 nm for the
grating paramelers in the caption. This should be contrasted with plasma wavelengths for real
melals that accur in the uliraviolet portion of the spectrum. For instance, the Au plasma wave-
iength used in our Drude model is A,y = 146 nm in the UV part of the spectrum. The nature of
the dispersive mode branch below the light line strongly confines the mode to the surface due to
the exponential decay of the Blach mede. The effect of nanostructure on the perfect conductor
has created new dispersive surface modes which mimick surface plasmons with much lower
plasma frequencies.
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Fig. 3. Geometry induced surface plasmon mode dispersion versus the groove depthi, The
grating period is 250 nm and the width 160 nm. (a) i = 200 nm. (b} it = 300 nm. (c) / - 400
nm, {d) ir = 500 nm.

Figure 3 shows the influence of the grating depth on the geometrically induced surface mode
for fixed period and duty cycle. Here the depth of grating is varied from 200 nm to 500 nm.
The induced surface mode dispersion is seen to be very sensitive to grating depth, and becomes
multimode at grating depths larger that 400 nm for the chosen period and duty cycle. Figure
4 shows the computed zeroth order reflection for p-polarized incident light using the Fourier
modal scatiering method (RCWA) from a Au grating using Drude modcl parameters for the
permittivity. The Drude model permittivity is given by

-5

E()=1- T (1n
w{o+iy)’

where @y = 1.27524 % 108 scc ™!, and y = 6.59631 x 10" sec !, There is excellent correlation
of the numerically computed modal dispersion for the finite conductive case with the analytic
dispersion for the perfect conducting grating shawn in figurc 3 {c) for the same groove depth
of 400 nm. The finite conductivity and the dispersion of the gratings permiltivity only effects
the values of the effective spoof plasmon dispersive resonances. This strong dependence of the
spoof plasmon dispersion on the grating depth lcads to an increased number of resonant surface
modes of the grating and can be tailored by variation the geometric parameters of the grating.
These spoof surface modes will be examined in the cavity configuration shown in figure 1 for
finite conductive Au mirror and grating using the Drude permittivity. We will sce that these
spoof surface modes in periodically nanostructured cavities can have a large impact on cavity
mode densities and subsequently a large impact on fluctuation induced forces at small mirror
grating separations.
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Fig. 4. Zeroth order TM polarized reflection Ry from grating with finite conductivity
given by the Drude model parameters for Au, The depth of the grating is ## = 400 nm and
the prating period 1s 250 nm

3. Cavity Modes

In this section, we examine clectromagnetic resonances in a planar periedically nanostructured
cavily formed using real metallic mirrors and gratings. The cavily consists of a periodically
structured grating below a planar mirror with a vacuum gap separating the two planar surfaces.
Throughout, the mirrors are assumed to be Au and the metallic permittivity is treated by the
Drude mode! [10]. Figure (1) illustrates the planar nanostructured cavity geometry under con-
sideration. The modal properties in a planar periodic nanostructured cavity arc obtained by
Bloch modal expansion of the cavity fields in the three regions outlined in Fig. 1. The planar
nature of the cavity mirrors and the underlying periodicity of the grating mirror implies that
the modes are naturally expanded in a Bloch plancwave mode basis. The cavity resonances are
determined from the boundary conditions at the planar interfaces, and the cigenmode disper-
sion is obtained from the solution of the resulting secular equation. These resonant excitalions
are found to be cavity polaritons that result from the spoof surface modes induced within the
cavity.

In general, the eigenmodes in the vacuum gap for the planar pericdically nanostructured
cavily arc given by

¥ (r,z) -ZA.,.XW')(r)cxp(r'kﬁf, !.:)-i-BVX,'V’(r)cxp(- kB, 2, 12y

where the coelfficients A, and By are determined by the scattering matrix method [10]. The
modal solution is determined by splitting the cavity into three regions and requiring the con-
tinuity of the transverse fields across cach of the planar interfaces. The cavity geometry in
queslion consists of a planar mirror (surface 1) located at z = —a, and the periodically modu-
lated grating substrate (surface 2) lics at z = 0. Explicitly, we define region 0 as a semi-infinile
mirror region corresponding to surface 1, —ee < z < —q; region | is the cavity vacuum gap
between the the planar mirror znd the planar top surface of the grating with —a < z < 0, and
finally region 2, the ctched prating region, z = 0. The transverse fields in cach region can be



expanded in the eigenmodes, we have

) gt
¥o = LeuXgle (13)
u
A -y _igth,
W o= EA,;X‘gﬁ)e"": ‘+BpX,_(,_,,c M (14)
1]
FRARFR
¥y = Y oux{Gen, (15)
7
where q( \/I\is, T 4% is the propagation cigenvalue for the uniform media in the ith

region, and 4 = (n_m 0‘) where ¢ = s or p polarization. The boundary conditions on the
continuity of the transverse ficlds at the two interfaces are Wy(z = —a) = ¥ (z = —a), and
W) (z = 0) = Wo(z = 0). The simplest cavity that is amenable to an exacl treaiment is the cavity
formed by two planar mirrors which forms a reference cavity with well defined cavity modes.
The Bloch medes in this casc reduce to plancwave solutions for the uniform media and are
derived in Eq. (49-52) for the cigenmodes.

In previous work, the Fourier modal solution to scattering from the pt.nodlcally modulated
surface using both S-matrix and T-matrix lechniques has been described[10, 22, 23, 24, 25,
26]. Here, we will usc the S-matrix formalism for scatiering from the perioidically modulated
surface 1o obtain a secular equation for the cigenmodes in the planar cavity. The boundary
condition at the grating top surface (z = () is solved by the exact reflection matrix, R, which
has been determined for arbitrary input amplitude Ay Eq. (14) can be rewritten as

PR - LN
v, =Y A, (@.,Jf,ﬁ’e“ﬁ Y Ry e ) (16)
[ v

where B = RA in matrix notation (sec Eq.(83) for the definition in terms of the S-matrix). The
usage of the S-matrix implies that we have satisfied the continuity of the transverse ficld and
scattering boundary conditions at z = 0. The boundary conditions at the planar mitror atz = —a
are the same as for the planar cavity case derived in the Appendix, and we oblain

Cue ' = iy e+ B Bye e (7
where
: (QE” QE‘,)) for s pol
240
% = [ g () _ [g 0
2;7qgmq¢_u( e,‘L \/E_Uifk ) for p pol,
and

RO
T (,J(q. +4: )

= w) oV (\/—q + \/%T'qgm) for p pol.

The z propagation terms. ¢, dcpcnd on the discrete spatial frequency index, pt = (nm. o) and
the polarization index ¢ =s ot p. Furthermore, Eq. (59 -60) express the projection of the cavity
mode onto the planar mirror mode and we obtain,

for s pol

Cu =—a_IP.Aﬂe"'(fl;+4(:,)ﬂ. (18)



The sceular equation is
. 1 ] ]
z (_,6#"‘ (a— + a“) ¢ A _ f_",q‘!ﬂﬂuk‘u_p) Av - 0. (Ig)
v H
This can be simplified to give

. (1)
z (5.‘”’ _ ‘,luj':.uﬂp“R”‘v) Ay =10, {20)

v
. . .. N "I{,!(.”n
where the cavity scattcring matrix is defined as Dy = 8y — e Hrpy Ry v, where

_JiRd"(1,0)  for s pol
#7 Lirm(1,0) for p pol,
is the diagonal reflection matrix, and r, and 1y are the Fresnel reflection coefficients from the

planar interface, The generalized secular equation for the periodically modulated mirror cavity
is now a malrix cquation, and we require

21

det{l — . p . (49 RY = 0, 22)

for non-trivial coefficients. Here ¢ arc the diagonal propagation matrices. The solution to the
general secular cquation (Eq.(22) ) for (@, £, k,) represent the dispersion relationships for the
cavity resonances which depend parametrically on the mirror separation distance, a. In general,
it may not be possible to find exact zeros for the secular equation for general complex scattering,
and therefore we look to minimize the modulus of the secular determinant.

4. Results

The cavity dispersion can be examined graphically by plotting the sccular determinant
[log(de{ Dk, ky, @, a))], (23)

and is shown in figurc (5) for various planar mirror spacings, a. This quantity is related to
the modal density of states and the modal encrgy per unit area in the cavity as outlined in the
previous section. The modes are shown as bright lines in Figure (5) with the grating cavily in
the left panel and the planar metal cavity shown in the right panel for comparison. The series
(a)-(f) shows the cavily dispersion comparison as a function of the mirror separation for the
nanostructured grating cavily and the planar mirror cavity.

At small separations for the grating cavity, a cavity surface polariton mode is seen below the
light line. (see fig. (5 (a)-(d)) The effective plasmon wavelength is taken as the asymptotic fre-
quency for the cavity polariton mode below the light Jine with an effective plasma wavelength
of ~ 1.5 microns. No corresponding low frequency dispersive mode exists for the planar cavity
structure. This cavity polariton mode occurs in the Au grating for the p polarized mode and
can be compared to the computed geomeirically induccd (spoof) surface plasmon mode in the
perfect conductor, which occurs at an effective plasmon wavelength of 2 898 nm.

The grating cavity modes at smali values of &, = 0 in the dispersion diagrams show splitting
due to polarization. The s and p polarized reflections from the grating are very different for
the two polarizations and result in the dark splitting between the higher order modes. In the
planar cavity, there is neglible dispersion splitting at small &, since the reflection from a planar
mirror is degencrate for s and p polarization. Al larger ky near the light line, the planar cavity
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Fig. 5. Dispersion plots of nanostructure grating cavity (lefi pancl) compared to plots of
planar metallic mirror cavity. The plots are of kg - /¢ versus k, for different separations.
(a)a = 100 nm (b)a = 200 nm(c) a = 300 nm {d) a = 400 nm (¢) & = 500 nm (f) @ = 750
nm. The units of the &y and &, are both in pm '

modes arc split due 1o smali differences in large angle s and p polarized reflections from planar
surfaces,

In the planar cavity al short mirror separations. we scc & metal-vacupm-metal surface plas-
mon dispersion mode below the light line but asymptotically approaching the plasma frequency
for Au, ky = 27 /Ap with A = 146 nm. Thesc well known surface plasmon modes occur in
planar metallic cavities and waveguides at optical frequencics. In the grating cavity, the spoof
surface mode changes the modal density of states at small mirror separation. As the separation
is increased, we find that the modal density of states approaches the geometric or fill factor
planar metal density of states,

At large mirror scparations, we find that the cavity surface polariton made disappears and
that the dispersion consists of a scrics of mini-bands above the light line as in the metal-vacuum
metal planar case. These mini-bands are split dve to the polarized reflection of the grating but
the overall modal number density is preserved. The large separation limit of the planar mirror
cavity indicates that the p-polarized MIM gap mode dispersion can no longer be supported and
merges with the light line mode from below.
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Fig. 6. Dispersion plots of nanostructure grating cavity (left pane!) compared 10 plots of
planar metallic mirror cavity. The plots are of kg = @ /¢ versus &y for different separations.
(a) @ = 50 nm (b} a = 100 nm, The period is £; = 250 nm, and the trench width, w = 160
nm same as Fig. (5). but the depth & = 400 nm, The units of the &y and &, are both in gm I

The impact of the grating depth is expected 10 have a large impact on the cavity polariton
dispersion. Figure (6) shows the cavity dispersion for the same grating as in Fig. (5) but more
deeply eiched. Multimodal cavity surface polaritons are scen below the light line at very shorn
mirror grating separation, ¢ — 50 - 100 nm, This resuli is consistent with the prediction of
multimodal spoof plasmon grating results shown in fig. (3) (d). The differences in the predicied
effective plasma frequencies for each mode is attributed to the finite conductivily of the Au
grating.

It is the geometrically induced cavity surface polariton mode from the nanostructured grating
that alters the modal energy densily in the nanostructured cavity at shori separations. This can
be seen since the modal density of states is proportional to the inverse of the dw,/dk., which
diverges at the Brillioun zone boundary for short separtions. This enhanced density of states
leads to increased Casimir attraction at short separations, and the induced surface polariton
mode creates a new effective length scale that is the induced or spoof surface mode plasmon
wavelength. For the Au grating with the grating paramelers used is approximately 1.5um. Fur-
thermore, the short distance enhancement and the asympiotic approach to the geometric PFA
for the nanostructured grating cavity can be directly related to the presence and disappearance
of the geometrically induced cavity surface polariton modes.

5. Conclusions

We have demonstrated that geometrically induced surface modes, or spoof plasmons, can have
a dramatic impact on new hybridized cavity polariton modes in nanostructured cavities. These
nanostructured cavities consist of a periodic grating and a planar mirror, which at short sepa-



rations cxhibit dispersive cavily polaritonic resonances, These cavity polariton modes strongly
contine light to the grating surface and can be designed to have dispersion in the infrared and
THz regions of the spectrum. While these spoof surface modes are predicted for perfect con-
ductive gratings., we have shown that these surface modes are also present on gratings with
finite conductivity. Furthermore, the surface mode dispersion greatly effects the modal density
ol states in the cavily and enhances electiromagnetic fluctuation driven forces and near ficld
enetgy transler at short mirror grating separations.

Although we have presented the cavity polaritons in a reflection based cavity, an analysis of
a transmissive periodic nanostructured surface above a planar mirror or ground plane leads 1o
similar resonant cavity modes. These modes can be coupled to by free space planewaves and
lead to perfect absorbing structures. These perfect absorbers can have resonant modes in the
infrared and have been observed in infrared frequency selective surfaces on a dielectric spacer
above a ground planc]7]. 1L is expected that enginecring the spoof surface plasmon dispersion
can lead 10 a new class of energy harvesling devices based on these new infrared absorbing
structures.,
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A. Mouodal Solution to Maxwells Equations

Fourier modal methods or planewave expansions arce the method of choice in computing scat-
tering from periodic media. These methods can be generalized to 3D periodic structures by
considering decomposition of the complex dielectric permittivity into planar layers that arc
periodic in the transverse direction. Explicilty, this implics that
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where g,{z) are the Fourier coefficients on a given laycer, Likewise, it is clear that the transverse
electric and magnetic fields must satisfy Floguet boundary conditions in each planar strate and
are expanded into Bloch modes,
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which satisfy the Bloch boundary conditions that arise due to the periodic nature of the permit-
tivity and permeability. Here Eyy, and H,,, arc the Fouricr cocfficients of the transverse electric
and magnetic ficlds, respectively. Similarly we expand the dielectric permittivity, magnetic per-
meability and their inverses in Fourier series. Substituting the Fourier expansions of the fields
and the peemittivity into the waveguide equations results in a complex first order matrix expres-
sion
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for the Fourier components of the complex clectric and magnetic fields, The vector of the
Fourier cocfficients is
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The complex matrix is given by
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and where 8 = 8, 8, is the product of kronecker delta functions, € = & _p y—p» » and
X = (V& _aw—m = Xow —nnw —m» These are the shifted Fourier expansions of the complex per-
mittivity and its inverse. The Teoplitz structure of the permittivity has a consequences on the
numerical solution . The eigenmodes in the 2D strata are obtained by considering H indepen-
dent of the longitudinal coordinate £ and by assuming a solution of the form

Wy = itnmexp(ikBz), (30}
and substituting imo Eqg. (27), we obtain the eigenmode equation,
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where B is the complex propagation constant. The propagation constants () are in general
complex and the cigenvalues of the matrix H.

The left handed eigenvectors are the necessary compliment for guaranteeing the biorthogo-
nality of the eigenmodes. The right and left eigenmodes are obtained from

Hu = Kpu (32)
Vi .H = KBy, (33)
where v7 is the transposc of v. The mode orthogonality is
EV:m"ﬁur = ;I.VSVs 34)
where the normaliization is
Sp =Y v ub,. (35)
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The orthogonality of the left handed and right handed eigenvectors can be direcily related to
the Poynting Reciprocity theorem as we demonstrated in the previous section. However, for
non-uniform complex permittivity and permeability, Eq.(34) gives the general eigenvector bi-
orthogonality relationship. In the following, we will consider the modes to be normalized re-
sufting in orthonormality relationship

E "r‘:m“ﬁm = 6\’-#' (36)
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The transverse modal fields are given by
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and we have a complementary expression for the left handed modal ficlds, XH (7).
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The transverse modal fields obey the orthogonality relationship,
1 i
i X (e =5, (39)

where we have used explicitly the bi-orthogonality of u and w',

The modal ficlds and their orthogonal compliment (right and left handed cigenmodes) from
a complete basis on the 2D unit cell of the layer strata and can be used to expand an arbitrary
ficld as a superposition of cigenmodes. The general transverse ficld expansion is

Yir,z) = ZC"XV(I.) cxp(ikBvz), (40)

where Cy are the expansion cocfficienis, and Sy are the complex propagation constants for
the modes. The modal cxpansion of the transverse fields is a natural basis for scattering from
structured lamellar strata since the boundary conditions on the continuity of the tangentiai fields
are readily oblained. In the next scetion. the modal cxpansion will be used to develop an S-
matrix scattering theory from our 2D penodic lamellar structure,

B. Uniform media: planewave modes

In a uniform medium, the pcrmiltivity and permeability arc diagonal in fourier spatial [requen-
cies, and Eq.(29) is a 4 x 4 matrix. The cigenvalue problem reduces to solutions of the secular
cquation

det(H — £*B1) =0, (41
where the H matrix is diagonal, Hye - = 8yt Gpmr Hiny and is given by
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The propagation cigenvalues in a uniform medium are

Bum =+ kzﬁu - Qﬁ - q,z,,/k, 43)

which is the normalized planewave wavevector for propagation in the z direction, and g, -
o 2“" and g = ke -+ 52 2"”’ . The cigenmodes are the transverse components of a planewave
and gwcn by
kuE=
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where + refers to forward and backward propagating planewaves and E. and EZ are deter-

mined by the normalization and orthogonality. Furthermore, we require that the cigenmodes
are orthogonal for distinct eigenvalues.
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We define the two orthogonal polarization (TE and TM) unit vectors as
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The cocfficients depend explicitly on the propagaling wavevector g {d.11g;) and the angular
frequency @, but we will only include them explicitly for clarity. Furthermore, we will consider
# = 1 and € real throuphout. The transverse components of the polarization unit vectors are
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where [g] is the norm of transverse wavevector. We note that ép-éy =0, The resulting right
handed cigenmode functions arc
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and ihe lcfi handed conjugate cigenmodes are
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These cigenmodes are by construction orthogonal and can be normalized to form an orthonor-
mal planewave basis. The casc of normal incidence requires special care since the plane of
incidence is not defined. The orthonormal basis can be constructed by taking the limit of van-
ishing transverse spatial frequencics in a fixed order, say gy — O before ¢, = 0.

C. Planar Mirror Cavity

By utilizing the mode orthonormality for the eigenmodes in media 2, and media 0, we obtain
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for s and p polarizations at - = 0, and
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al z — —a by projection. Alternatively, we can dircctly compute the transmission by projection
at z=0,
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for s and p polarizations,

Our goal is 1o obtain a sccular type cquation describing modes in the cavity. This can be
accomplished by substitution of the transmission expressions into Eq.(53-54) or equivalently
Eq.(55-56) and equating A and B cocfficients. We start at z = 0, and obtain reflection coefficients
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W have utilized the z = 0 solution, Eq. (53-54), to relate the cigenmode cxpansion cocfficients

in the cavity between the two planar mirrors, The cavity modal solution or sccular equation
further requires that the solution to Eq.(55-56) at z = —a. The secular equation is obtained by

substitution and we obtain
I 2 1 0)
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It is convenient o introduce the generalized reflection coefficients
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The cavity eigenmaodes are non-trivial solutions of the above cquations for the propagation
constants or eigenfrequencies. The sccular equation for the modes in the cavity becomes,
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The secular equation defines two transcendental cquations, one for cach polarization whose
solution gives the modal dispersion in the planar cavity. The interpretation of the secular equa-
lions is quite simple. It represents the in-phase round lrip scattering in the cavity, where the
reflection cocfficients are from the two planar mirrors, and the complex phase is the Rayleigh
propagation factor for the round trip,

The solution of the secular equation for cach polarization corresponds 1o the dispersion,
(w,4), for a resonance or propagating mode in the cavity. Indeed, this form of the secular
equations are a ray-optics resonance condition for waveguiding in a dielectric slab waveguide
[Chuang]. Furthermore, the p polarized secular equation can he further reduced to give

(et + a1 er" 610 = (erl ~ e1gPewa) ~ 1) (69)
which is the resonance condition for surface plasmon modes in metal-insulator-metal or
insulator-metal-insulator waveguiding structures. [Raether]

D. Scattering

We now consider the cigenmode expansion and its use in EM scaltering problems in planar
stacks. Fig. (1) b} shows schematically the layered strata of 2D periodic scatterers, The incident
media (0th layer} and the cxit media (N+1th) are assumed to be uniform layers with planewave
lype eigenmedes. In cach layer, the 1angential fields are represcriled as an eigenmode expansion
and can be split into forward and backward propagating modes given by,

W 2) = YA (P exp(ikB2) + BLXS, (P exp(—ikB.)2). (70)
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which completely determine the clectromagnetic field in the i layer. Here, X*(r) and 8+ are
the forward and backward transverse mode functions and progation constants respectively. For
a scatiering calculation, we have
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where the incident mode coefficients, A'\h are input lo the calculation. The determination of the
mode coelficients in the incident and exit media constitutes a solution to the scattering problem.




DAL1. Transfer Matrix

From the boundary conditions on the continuity of the langential fields st the ith interface, we
define the imerface transfer matrix,
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which relates the cocfficicnts in the ith to i+1th media and Y% = +kB &)y candd, =2, — 2

is the thickness of the ith layer. Here cach layer transfer matrix can be expressed in terms ol the
layer overlaps of the mode eigenvectors and is given by
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where we sum over the Fourier cocfficients for the eigenvectors.
The transfer matrix can be iterated through the planar structure (o obtain the global transfer

maltrix
Tow= Lo L Tiniinen - T (74)
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which connects the incident and reflected mode cocfficients Lo the transmitted mode cocffi-
cients. The global transfer matrix is the product of the individual tayer transfer matrices and is

given by
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We can solve for the reflection and transmission mode coefficients where
By = _T2—2I -y -An
Avel = (Th—Tiz-Ty' T2)-As (76)
Here Ay is the transmission and By is the reflection coefficient vectors . We can define the
reflection matrix, R = —’."‘22l .T») and the transmission matrix T =Ty + Tz ‘R,
D02 S matrix

The transfer matrix product is known to suffer from instabilitics when the layers are thick, A
remedy 1o the numerical instabilities is the S-matrix approach. The S-matrix approach is derived
from the ordered T-matrix. where the ordering is in terms of forward and back propagating
modes. The S-matrix can be defined by reordering the coefficients and can be expressed in
terms of the interface transfer matrices,
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where the interface s-malrix is
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The S-matrix stability is guaranteed in Eq. (78) duc to the exponential decay of the backward
propagating made . The layer S-matrix incorporates the propagation phase factor and the inter-
face S-matrices and is given by
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We therefore have an iterative procedure 1o constroel the global S matrix which
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which vonncets the incident media ( incident and reflected modes) 1o the exit media (Iransmitted
modes). The recursion relations for the S-matrix are

. q \ -1 .
sy (1 ‘Sﬁlz_”-"il) S(I'I K

o SRS | T
Sha s (l “Sflz I)“JZI) 32‘2 sty

(i)
) |'|

]

It

s
, - o : oy =l -
Sgl) = S'{_“I ”"‘ng ”("-"lzls?z ”) -"lzish g
) : A=
MU (1 —shisiT) sy @1
where the initial S-matrix iterates are the layer s-matrices in the incident media. The transmitied
maode cocfficients arc given by
Any1 = 8y1Ag (82)
and the reflected mode coeffients are
By = Sy A, (83)

The transmitied and reflected diffraction orders are obtained from the mode coefficients and
the Fourier cigenmodes in the incident and transmitied media. The resulting reflection and
transmission matrices arc

R = §y (84)
T = Su (85)

which are directly related to the S-matrix elements. The S-matrix completely determines the
scattering amplitudes and plays a critical role in planar cavity multiple scattering,







