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Sodium-based Battery Development .

Program Focus: Develop sodium-based battery chemistries for large
scale energy storage

= Sodium-iodine, sodium-bromine, sodium-air, sodium-insertion, sodium-metal, etc.
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Ceramic Solid State Electrolyte ) e,
Separators

The ceramic separator is central to Na-battery performance!
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Ceramic requirements:

« High ionic conductivity
« High electrical resistivity

* Robust stability in extreme
chemical environments

* Facile, low cost synthesis

Current collector




Sandia

NaSICON Ceramic Electrolytes ) 5.

What is NaSICON? (Sodium (Na) Super lonic Conductor)

Nay ., ZrPs,Si0 ——3 NasZr,PSi,0,

Key NaSICON attributes:

« High ionic conductivity (up to 10-2 S/cm at RT)
» High electrical resistivity

* Robust stability in extreme chemical ?
environments

* Facile, low cost synthesis ?

These qualities all depend on the materials
chemistry of the ceramic!




Task Focus: NaSICON Ceramic Solid @@
State Electrolytes

» Understanding the materials chemistry of the solid-state
ion-conductor NaSICON

» Correlating material chemistry to materials properties (e.g.,
chemical stability, ionic conductivity, ceramic integrity)

= Designing improvements to NaSICON through processing
and composition to optimize performance for Na-based
batteries

Our approach takes advantage of materials chemistry and characterization
capabilities at SNL to enable innovative improvements in energy storage systems.
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NaSICON Materials Chemistry ).

NaSICON performance depends on phase chemistry!

Secondary phase formation can have a significant impact on:

* Ionic conductivity « Structural integrity * chemical stability
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Phase Dependence on Processing LUl

Phase composition of NaSICON depends on processing

= Solid state processing of NaSICON ceramics typically involves
an extended high temperature firing stage (>1200°C, >12 hours)

“Decomposition” of NaSICON Loss of volatile species (e.g., Na and P)
ooy e i ponents. These mixtures were heated between 104

9 and 120°C where a glassy transparent matrix
formed due to the presence of the polyfunc-
tional acid. The mistures were then pyrolized to 102
their component osides by heating to 4KFC for % 1 O 5OOC
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[4] for the formation of Nasicon is the =20 composition had slightly more. 92

mechanical mixing, calcination (1150-1160°C), An evaluation of selected sintering conditions

milling and subsequent sintering of ZrSi0yand ~for the two compositions studied is given in 20 . : . : . : . : . : . : .
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High temperature processing leads to deleterious secondary phases!

Will a lower temperature process resolve phase impurity? .




“Low” Temperature Sol-Gel NaSICON @:.
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Sol-gel processing . .
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Sol-Gel NaSICON Phase Evolution )
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X-ray diffraction shows
the presence of
Na,;Zr,PSi,O,, (0) and
* Tetragonal ZrO, (2)
* Monoclinic ZrO, (°)
* Na;PO, (Y)
* Na,Si,05 (X)
secondary phases.

Monoclinic ZrO,
appears to form from
conversion of
metastable tetragonal
Zr0O,.




Sol-Gel NaSICON Phase Evolution )
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Sol-Gel NaSICON Phase Evolution )
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Sol-Gel NaSICON Phase Evolution )
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Sol-Gel NaSICON Phase Evolution
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Lessons from Low Temperature )
Processing

= Phase evolution during heating is complex!

= Lower processing temperatures result in significant secondary
phase formation.

= Secondary phase are not formed just from high temperature
processes, but can be residual from incomplete low
temperature conversions.

= Higher temperatures appear to be needed for complete
phase conversion, but high T°C is expected to lead to
secondary phases.

What Next?
T




Sandia

Excess Sodium Addition ) fies,

NaSICON with excess sodium fired at 1000°C shows dramatically cleaner
phase chemistry!




Sandia

Excess Sodium Addition ) fies,

NaSICON with excess sodium fired at 1000°C shows dramatically cleaner
phase chemistry!
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Excess Sodium Add

NaSICON with excess sodium fired at 1000°C shows dramatically cleaner

phase chemistry!
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Excess Sodium Reduces Effective
Processing Temperature

Thermal Analysis and XRD show NaSICON formation at lower temperatures
with excess Na!
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Excess sodium addition appears to change the energetics of NaSICON conversion,

likely by affecting mass transport in liquid phase elements of sintering.
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Excess Sodium Reduces Effective ) i,
Processing Temperature

Thermal Analysis and XRD show NaSICON formation at lower temperatures
with excess Na!

30

100 1% Na addition Mass —-— DTA
e -4 25
./,f \
95 / .
—~ . 905°C | {20
> ' 1 o
é 90 \ 14 2
(7)) \‘ ~ )
3 \ 1 =
1 85 N 410 é
& \_\ ] E
S st o s 5
N
vl v H0
75 - N
{5
" L
. : ' ; ' : ' : ' ' : : -10 | i
200 400 600 800 1000 1200
Temperature (°C) (

Excess sodium addition appears to change the energetics of NaSICON conversion,

likely by affecting mass transport in liquid phase elements of sintering.
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Excess Sodium Reduces Effective ) i,
Processing Temperature

Thermal Analysis and XRD show NaSICON formation at lower temperatures
with excess Na!
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Excess sodium addition appears to change the energetics of NaSICON conversion,

likely by affecting mass transport in liquid phase elements of sintering.
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Summary/Conclusions ) &,

= NaSICON ceramics are enabling solid state electrolytes for
grid-scale and vehicle Na-based batteries.

= Controlling secondary phase chemistry is critical to optimizing
NaSICON performance.

= Reducing processing temperatures does not improve
NaSICON phase purity.

= Addition of small amounts of excess sodium dramatically

reduces secondary phase formation at lower temperatures!

21




Future Tasks )

Targeting synthesis of improved NaSICON stability to enable integration into next
generation Na-based batteries:

= Explore alternative mechanisms to —
reduce processing temperatures
with high phase purity.

" Porous wick (metal)

Molten sodium (in capillary)

= |nvestigate alternative precursor
pathways to control phase
chemistry.

— Electrolyte solution

Molten sodium (anode)
Porous wick (metal)
—"-Separator (Na-conductor)

= Evaluate effects of phase chemistry
on sodium ion
transport/conductivity.

= Examine chemical stability of
NaSICON as affected by additives
(such as sodium).
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