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Introduction

= The challenges of ICF
= Creating and confining plasma at extreme temperatures and densities
= |gnition requires alpha-heating > radiative and conductive losses
= For clean burn, this implies pR > 0.3 g/cm?and T > 4 keV
= Magnetized Liner Inertial Fusion (MagLIF) at Sandia
= Cylindrical implosions of magnetized, pre-heated fuel
= Modest CR ™~ 15 mitigates instabilities and high-Z mix

= Magnetic field mitigates conduction losses and enhances alpha heating
* Reduced ignition requirement pR ~ 0.03 g/cm?

= Atomic-scale physics plays a critical role in design and diagnostics
= Spectroscopy is a powerful diagnostic
= Radiative loss rates, stopping powers, and conduction control ignition

= High-Z mix can reduce k¥ and increase dE/dx: can a high-opacity liner reduce
the attendant radiative losses?
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The Magnetized Liner Inertial Fusion (MagLIF)* concept

Liner (Al or Be)
azimuthal
drive field

axial

compressed
axial field

An initial 30 T axial magnetic field inhibits thermal
conduction losses, enhances alpha particle energy
deposition, and may help stabilize implosion at
late times.

During implosion, the fuel is heated using the
Z-Beamlet laser (about 6 kJ). This reduces the
convergence ratio needed to obtain ignition
temperatures to about 25 on Z and reduces the
implosion velocity needed to ~100 km/s, allowing
us to use thick liners that are more robust against
instabilities.

~50-250 kJ energy in fuel; 0.2-1.4% of capacitor
bank

Stagnation pressure required is ~5 Gbar

Gain = 1 may be possible on Z using DT
(fusion yield = energy into fusion fuel)




We have made significant progress toward our initial
capability goals for testing MagLIF in FY13

= Load hardware compatible with magnetic field coils and laser
preheating has been developed and fielded

= Capacitor banks capable of driving up to 30 T fields have been
installed on Z and have been testedupto 10T

= New final optics assembly for Z-Beamlet preheating has been
installed

= The first integrated experiments were planned for late
August, combining a liner implosion (20 MA), an axial
magnetic field (10 T), and laser preheat (2-2.5 kJ). However,
aiming and firing problems prevented the desired test.
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Axial distance (mm)

Controlled experiments provided a critical test of our
understanding of the Magneto-Rayleigh Taylor instability

Radiographs captured growth of
intentionally-seeded 200, 400-um
wavelength perturbations
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Beryllium experiments show surprisingly correlated instability growth at
late times that may imply a highly-correlated initial perturbation
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The electro-thermal instability (ETI) is one possible mechanism for
seeding MRT growth —and it can be mitigated by an outer coating
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= ETI: regions with higher T have higher resitivity and are heated
further; pressure variations eventually redistribute mass

= A plastic coating carries very little current and is theoretically
ETI stable, with resistivity that decreases with temperature

= A thin coating significantly reduces the mass redistribution and
provides a more stable implosion

K.J. Peterson, Phys. Plasmas 20, 056305 (2013) and manuscript in preparation ==



Our first axially-magnetized liner implosion
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We started testing our preheating model predictions
of energy deposition in laser-only experiments

Motivation/aims

We want to ensure that laser
preheat energy can be
absorbed by MaglLIF fuel

Metal
Liner

Initial axial
magnetic field

Laser
preheated
fuel

Current

Azimuthal
field lines *

Laser blast wave targets aim
to:

1. Reproduce first
integrated MagLIF setup
as closely as possible

2. Measure laser energy
deposition in the fuel by
measuring time/velocity
of blast wave

Experimental design

ZBL (~2 kJ, 2 ns) enters into thin-
walled tube target containing dense
D2 gas

One of three
VISAR blocks

VISAR fibers

Aluminum tube

Blast wave in fuel driven by laser

energy absorption

Time/velocity of tube wall motion
monitored by 21 VISAR probes (3
azimuthal, 7 axial positions)

Results/conclusions

VISAR data shows velocity and time
of tube wall motion consistent with
laser energy deposition
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Data analysis is underway. There is

concern that poor beam focal spot

quality is affecting transport

through the foil

Comparisons to detailed HYDRA and
LASNEX simulations are underway
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Zeeman splitting in optical absorption spectra provides =
a measure of load currents and possibly flux compression
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K-shell Kr x-rays are a good proxy for neutrons and offer
valuable diagnostic information on T, p, R, Dt, and beams

Photon and Neutron Production Scaling .
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Stagnation plasmas that produce similar neutron yields can
have dramatically different x-ray emission spectra
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Profound differences in the widths of emission & absorption features,
emission line ratios, and the depth and position of absorption lines depend on the
detailed conditions of the stagnation and pusher plasmas.




Atomic-scale transport plays a key role in target
performance and is sensitive to T, p, B, and composition
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Note the significant disagreement in the wr
dependence of conductivity from different models

This is the promise of MagLIF:

in a strongly magnetized plasma with
fuel pR =0.03 g/cm?, T = 4keV, and
few-kT fields (wt ~ 3), thermal
conductivity is reduced ~10x and

o deposition is enhanced ~5x.
Together, these effects reduce the
PR ignition requirement tenfold.

Similar effects can be achieved with
the addition of ~10% mix of a mid-Z
dopant (Z* = 30): extra electrons
increase dE/dx and high-Z scattering
reduces K.

However, even small dopant
fractions contribute catastrophic
radiative losses, scaling with ~ Z3
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Measured yield degradation from exploding pushers on
Omega confirms the deleterious effects of high-Z radiation

= Various dopants (Ar, Kr, Xe) were
introduced into D, gas fills on Omega

= Measured neutron yields decreased
dramatically with dopant fraction f and
nuclear charge Z

=  Miles et al. show that the conditions at %
stagnation were not substantially g;n
changed by .dopants, but b.urntlme was % ] dashed lines: fit to data from
reduced by increased cooling — {Wilson et al., IFSA 2007*
fitting the data required reasonably | heavy solid lines:

good NLTE radiation models |optically thick radiation

1thin solid lines:
= Asimple model setting burn duration optically thin radiation

to (1_f)2Tburn/[Wr(faZ) + WK(f;Z)] roughly 0.01 — ] - NN
captures the observed degradation, 0.0001 0.001 0.01 0.1

with some indication that radiation _ _
. itioates the radiative losses Mix of CH into fuel appears to affect NIF target
trapping mitigates the performance: T. Ma, PRL 111, 085004 (2013)

dopant atomic fraction
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A cold, high-Z layer could further mitigate radiation losses
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Although there will be no a-heating with D, fuel,
DT/DD vyield ratios will reflect changes in dE/dx
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Summary

* The MagLIF concept significantly reduces pressure and pR
requirements for ignition, and we are making progress towards
integrated experiments

= X-ray and visible spectroscopy will be valuable diagnostics,
helping us understand preheat and stagnation plasma
conditions and drive currents

= Target performance has a strong dependence on the atomic-
scale transport physics, including k(®t,T,p,f), dE/dx(®T,T,p,/),
and non-LTE radiation losses and transport, and these generally
lack benchmark data in the WDM and HEDP regimes.

= Although we are designing stable implosions to minimize high-Z
mix, we are exploring ways to exploit its advantageous effects
on K and dE/dx while minimizing radiative losses.
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The electro-thermal instability is an important )
mechanism that could seed MRT growth*
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