

Semiclassical Poisson and Self-Consistent Poisson-Schrodinger Solvers in QCAD

Xujiao (Suzey) Gao, Erik Nielsen, Ralph Young, Andrew Salinger, Richard Muller

Outline

Poisson Solver Background

$$-\nabla(\varepsilon_{\scriptscriptstyle S}\nabla\phi)=q(p-n+N_{\scriptscriptstyle D}^+-N_{\scriptscriptstyle A}^-)$$

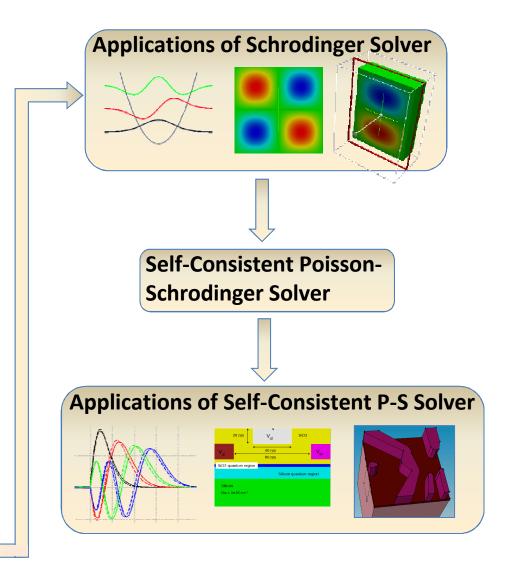
Applications of Poisson Solver

SiO2

Silicon

Schrodinger Solver

$$-\frac{\hbar^2}{2}\nabla\left(\frac{1}{m^*}\nabla\psi\right) + V\psi = E\psi$$



Poisson Solver – Carrier Statistics

Poisson equation in a semiconductor: $-\nabla(\varepsilon_s \nabla \phi) = q(p - n + N_D^+ - N_A^-)$

Maxwell-Boltzmann (MB) statistics

$$n = N_C \exp\left(\frac{E_F - E_C}{k_B T}\right)$$
 $p = N_V \exp\left(\frac{E_V - E_F}{k_B T}\right)$

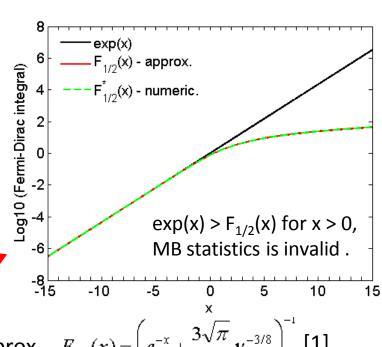
Fermi-Dirac (FD) statistics

$$n = N_C \frac{F_{1/2}}{N_B T} \left(\frac{E_F - E_C}{k_B T} \right) \quad p = N_V \frac{F_{1/2}}{N_B T} \left(\frac{E_V - E_F}{k_B T} \right)$$

Fermi-Dirac integral of 1/2 order

$$F_{1/2}(x) = \frac{2}{\sqrt{\pi}} \int_0^\infty \frac{\sqrt{\varepsilon} d\varepsilon}{1 + \exp(\varepsilon - x)}$$

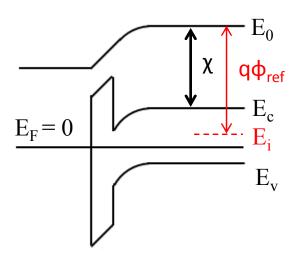
$$f(\phi) = ?$$



Approx.
$$F_{1/2}(x) = \left[e^{-x} + \frac{3\sqrt{\pi}}{4}v^{-3/8}\right]^{-1}$$
 [1]
 $v = x^4 + 50 + 33.6x\{1 - 0.68 \exp[-0.17(x+1)^2]\}$

Poisson Solver – What Solved

Under thermal equilibrium (No current flow), \mathbf{E}_{F} = **const** through out a device, chosen to be 0 in QCAD.



$$E_c = -q(\phi - \phi_{ref}) - \chi$$

$$E_v = -q(\phi - \phi_{ref}) - \chi - E_g$$

$$n(\phi), p(\phi)$$

Heterostructure:

- E_c & E_v are discontinuous
- Vacuum level E₀ is continuous

Requirement of potential (ϕ) :

Continuous everywhere

Choice of potential (φ):

• Let -q (
$$\phi$$
 - ϕ_{ref})= $E_0 = E_c + \chi$
Constant shift

Choice of $q\phi_{ref}$ does not change the E_c and E_v profiles, but could lead to different numerical behavior during simulation.

Poisson Solver – Incomplete Ionization

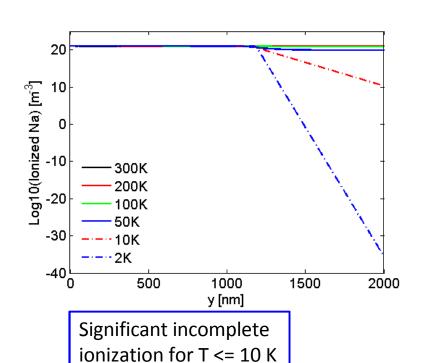
$$-\nabla(\varepsilon_s \nabla \phi) = q(p - n + N_D^+ - N_A^-)$$

$$N_D^{+} = \frac{N_D}{1 + 2 \exp\left(\frac{E_F - E_D}{k_B T}\right)}$$

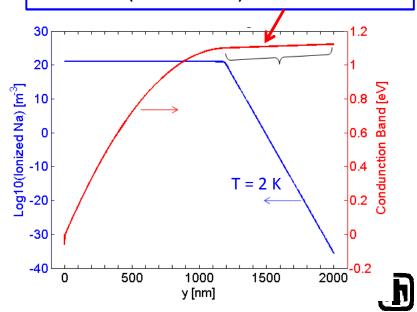
$$N_A^- = \frac{N_A}{1 + 4 \exp\left(\frac{E_A - E_F}{k_B T}\right)}$$

Follow Fermi-Dirac distribution

 $N_{A,D}$ = dopant concentration, $E_{A,D}$ = dopant activation energy level



No charge neutral region, behave like insulator (no carriers)



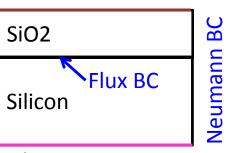
Three types of boundary conditions:

- Flux conservation b.t.w. different materials: $\varepsilon_{s1} \nabla \phi_1 \bullet \mathring{\eta}_1 = \varepsilon_{s2} \nabla \phi_2 \bullet \mathring{\eta}_2$
- Neumann condition: $\varepsilon_s \nabla \phi \bullet \hat{\eta} = 0$
- Dirichlet condition: $\phi = const$

Contact on insulator
Ohmic contact

Automatically satisfied in the finite element framework

Contact on insulator



Ohmic contact

Neumann BC

Contact on insulator:

$$\phi_{ins} = V_g - (\Phi_M - q\phi_{ref})/q$$

Ohmic contact:

charge neutrality and equilibrium conditions hold

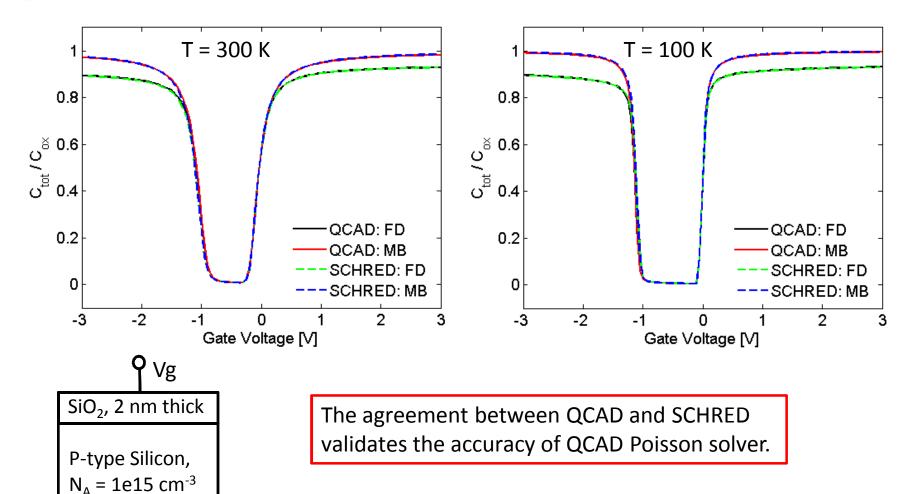
$$n(\phi) + N_A^-(\phi) = p(\phi) + N_D^+(\phi)$$

Example: p-type sc with MB at 300 K,

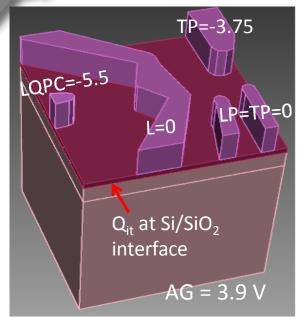
$$\phi_{ohmic} = V_a - \frac{k_B T}{q} \ln \left(\frac{N_A}{n_i} \right)$$

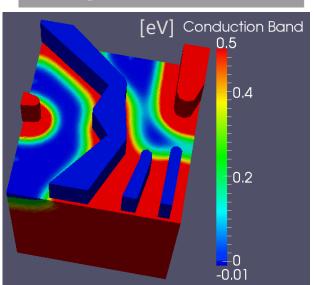
Poisson Solver – Application 2D

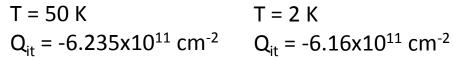
Apply the Poisson solver to simulate a PMOS capacitor

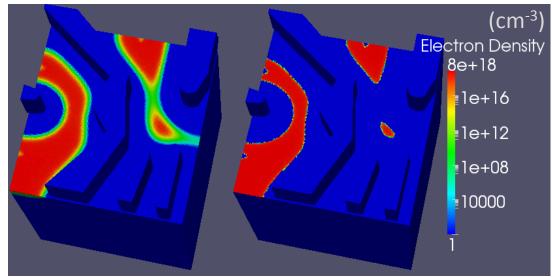


Poisson Solver – Application 3D







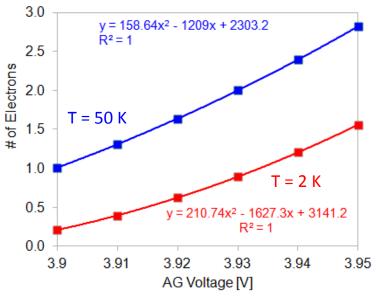


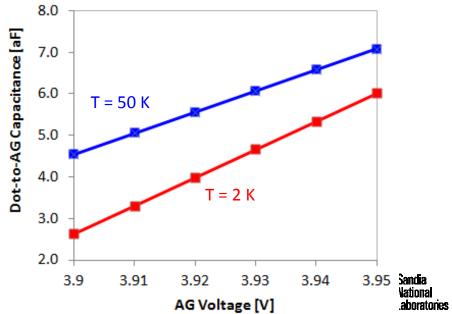
	Ехр.	QCAD T = 50 K	QCAD T = 2 K	QCAD T = 2 K
Q _{it} [cm ⁻²]	?	-6.235x10 ¹¹	-6.16x10 ¹¹	-6.235x10 ¹¹
# of e	1	1.009	0.997	0.21
AG [aF]	2.37	4.765	5.29	2.97
TP [aF]	0.48	0.315	0.35	0.18
CP [aF]	0.54	0.778	0.857	0.63
LP [aF]	0.29	0.582	0.642	0.52
L [aF]	0.56	1.91	2.11	1.30

Poisson Solver – Application 3D

$Q_{it} = -6.235 x$ $10^{11} cm^{-2}$	T = 50 K	T = 2 K
Ramp AG	# of e in dot	# of e in dot
3.9	1.0090	0.2097
3.91	1.3064	0.3954
3.92	1.6383	0.6232
3.93	2.0026	0.8935
3.94	2.3977	1.2081
3.95	2.8222	1.5604

$Q_{it} = -6.235 x$ $10^{11} cm^{-2}$	T = 50 K	T = 2 K
Ramp AG	C _{dot-AG} [aF]	C _{dot-AG} [aF]
3.9	4.5484	2.6388
3.91	5.0567	3.3140
3.92	5.5650	3.9892
3.93	6.0732	4.6644
3.94	6.5815	5.3397
3.95	7.0898	6.0149





Outline

Poisson Solver Background

$$-\nabla(\varepsilon_{\scriptscriptstyle S}\nabla\phi)=q(p-n+N_{\scriptscriptstyle D}^+-N_{\scriptscriptstyle A}^-)$$

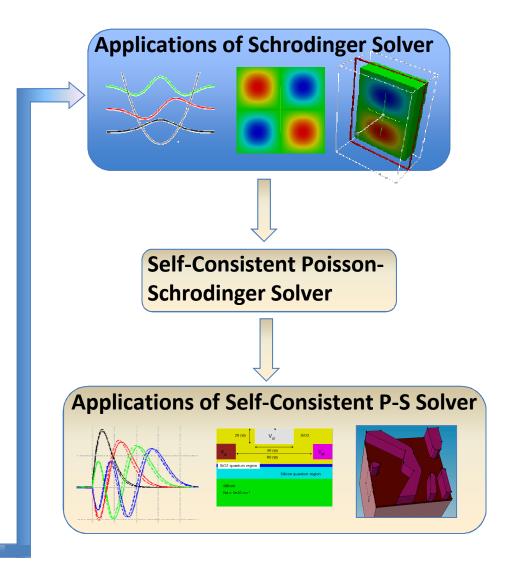
Applications of Poisson Solver

SiO2

Silicon

Schrodinger Solver

$$-\frac{\hbar^2}{2}\nabla\left(\frac{1}{m^*}\nabla\psi\right) + V\psi = E\psi$$



Schrodinger Solver

Time-independent Schrodinger equation:

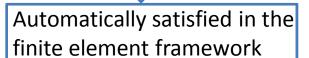
$$\frac{-\hbar^2}{2} \nabla \left(\frac{1}{m^*} \nabla \psi(r) \right) + V(r) \psi(r) = E \psi(r)$$

Apply finite element method \longrightarrow Eigenvalue problem: [H] $[\psi]$ = [E] $[\psi]$

Solved by Sandia high-performance eigensolver (Anasazi)

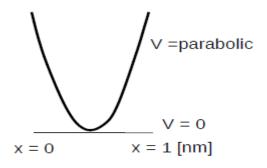
Three types of boundary conditions:

- Flux conservation b.t.w. different materials: $\frac{1}{m_1^*} \nabla \psi_1 \bullet \mathring{\eta}_1 = \frac{1}{m_2^*} \nabla \psi_2 \bullet \mathring{\eta}_2$
- Neumann condition: $\frac{1}{m^*} \nabla \psi \bullet \mathring{\eta} = 0$
- Dirichlet condition: $\psi = 0$

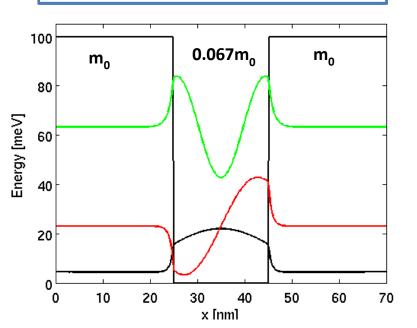


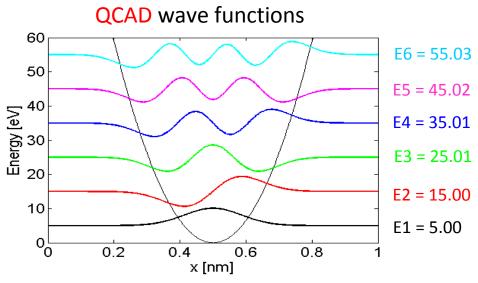
Schrodinger Solver – Application 1D

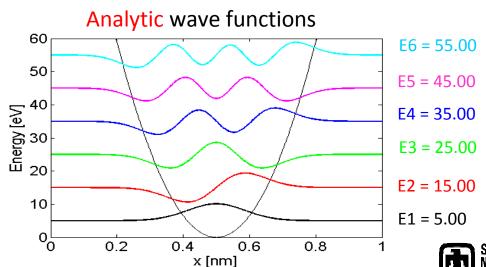
Apply the Schrodinger solver to a 1D parabolic potential well



 $\psi(x)$ and $\frac{1}{m^*} \frac{\partial}{\partial x} \psi(x)$ are continuous b.t.w. different materials

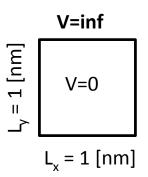




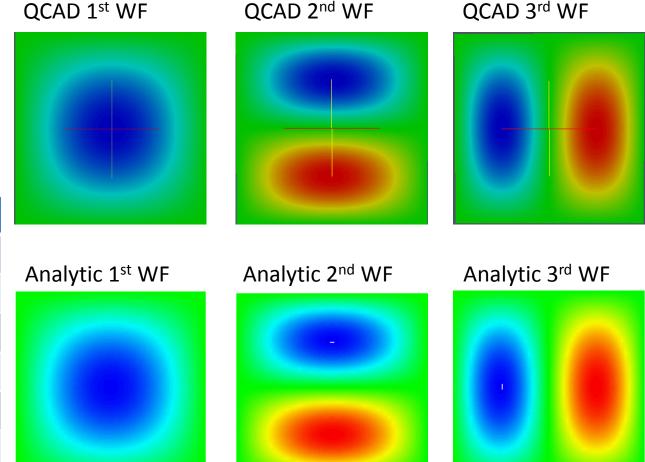


Schrodinger Solver – Application 2D

Apply the Schrodinger solver to a 2D square infinite potential well

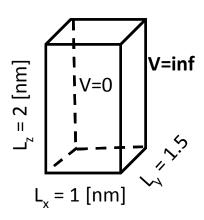


	QCAD	Analytic
E1 [eV]	0.7521	0.7521
E2 [eV]	1.8805	1.8802
E3 [eV]	1.8805	1.8802
E4 [eV]	3.0088	3.0084
E5 [eV]	3.7616	3.7605
E6 [eV]	3.7616	3.7605



Schrodinger Solver – Application 3D

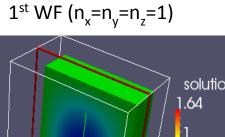
Apply the Schrodinger solver to a 3D cube infinite potential well

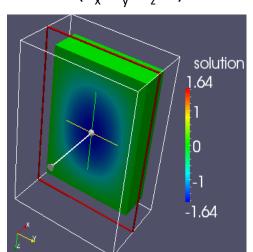


Analytic normalized WFs

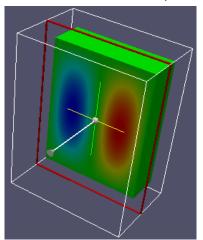
$$\psi(x,y,z) = \sqrt{\frac{8}{L_x L_y L_z}} \sin(\frac{\pi n_x x}{L_x}) \sin(\frac{\pi n_y y}{L_y}) \sin(\frac{\pi n_z z}{L_z})$$

	QCAD	Analytic
E1 [eV]	0.6382	0.6373
E2 [eV]	0.9215	0.9194
E3 [eV]	1.1419	1.1387
E4 [eV]	1.3972	1.3895

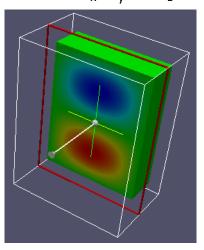




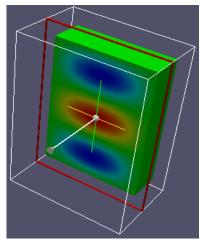
$$3^{rd}$$
 WF $(n_x = n_z = 1, n_y = 2)$



$$2^{nd}$$
 WF $(n_x = n_y = 1, n_z = 2)$



$$4^{th}$$
 WF $(n_x = n_v = 1, n_z = 3)$



Outline

Poisson Solver Background

$$-\nabla(\varepsilon_{\scriptscriptstyle S}\nabla\phi)=q(p-n+N_{\scriptscriptstyle D}^+-N_{\scriptscriptstyle A}^-)$$

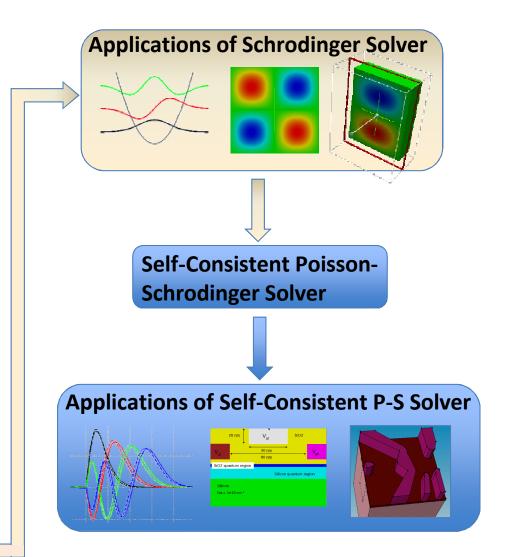
Applications of Poisson Solver

SiO2

Silicon

Schrodinger Solver

$$-\frac{\hbar^2}{2}\nabla\left(\frac{1}{m^*}\nabla\psi\right) + V\psi = E\psi$$



Self-Consistent Poisson-Schrodinger

Coupled Poisson equation:
$$-\nabla(\varepsilon_s\nabla\phi) = q[p(\phi) + N_D^+(\phi) - N_A^-(\phi) - n(\phi, E_i, \psi_i)]$$

$$n(\phi, E_i, \psi_i) = \begin{cases} n(\phi) & \text{Semiclassical outside quantum region} \\ \sum_i N_i |\psi_i|^2 & \text{Quantum region} \end{cases}$$

1D (quantum well)

$$g_{\nu} \frac{m^* k_B T}{\pi \hbar^2} F_0(\eta_F)$$

Where
$$\eta_F = \frac{E_F - E_i}{k_r T}$$

2D (quantum wire)

$$g_{\nu} \left(\frac{2m^* k_B T}{\pi \hbar^2} \right)^{1/2} F_{-1/2}(\eta_F)$$

Where
$$\eta_F = \frac{E_F - E_i}{k_B T}$$
 $F_k(\eta_F) = \frac{1}{\Gamma(k+1)} \int_0^\infty \frac{\varepsilon^k d\varepsilon}{1 + \exp(\varepsilon - \eta_F)}$ Fermi-Dirac integral of kth order

3D (quantum dot)

$$g_{\nu} \frac{2}{1 + \exp(-\eta_F)}$$

Coupled Schrodinger equation:
$$\frac{-\hbar^2}{2}\nabla\left(\frac{1}{m^*}\nabla\psi_i\right) + \underline{V(\phi,n)}\psi_i = E_i\psi_i$$

$$q\phi_{ref} - \chi - q\phi + V_{xc}(n)$$

Parametrized in the Local

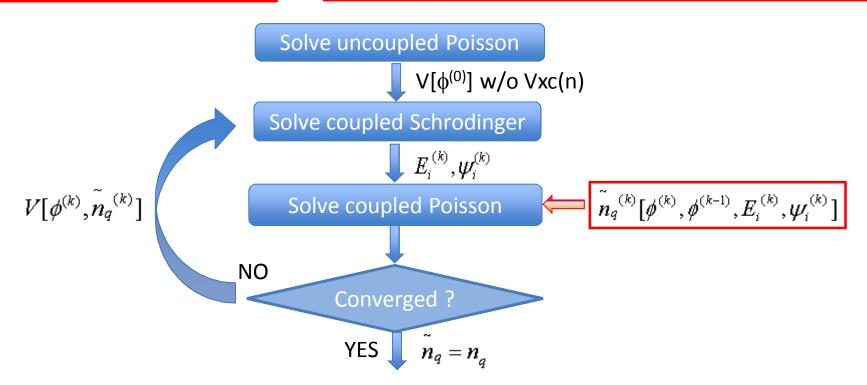
Density Approximation [3]

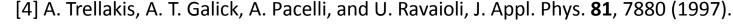
Self-Consistent Poisson-Schrodinger

Simple/Direct iteration of Poisson and Schrodinger leads to divergence due to strong coupling b.t.w. them.

Predictor-corrector iteration scheme [4] modifies quantum electron density calculation:

$$n_q(E_i, \psi_i)$$
 with $\eta_F = \frac{E_F - E_i}{k_B T}$ $n_q^{(k)}[\phi^{(k)}, \phi^{(k-1)}, E_i^{(k)}, \psi_i^{(k)}]$ with $\eta_F = \frac{E_F - E_i + q[\phi^{(k)} - \phi^{(k-1)}]}{k_B T}$

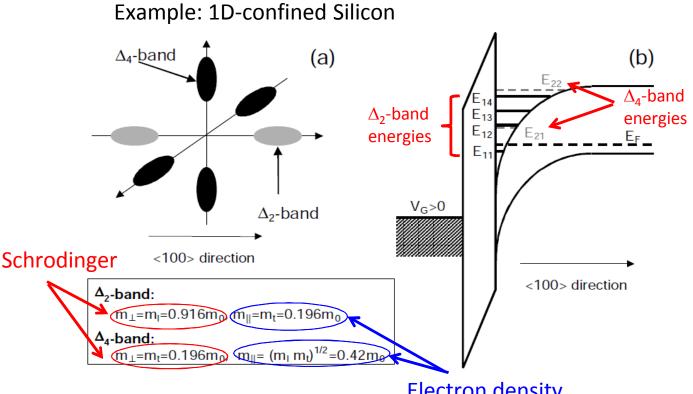




P-S Special Considerations in Silicon

Two special considerations in Silicon:

- Bulk Silicon has six equivalent conduction band minima, which degeneracy is lifted in confined Silicon.
- Effective mass tensor is anisotropic, so the effective mass in the Schrodinger equation is different from that used in calculating electron density.

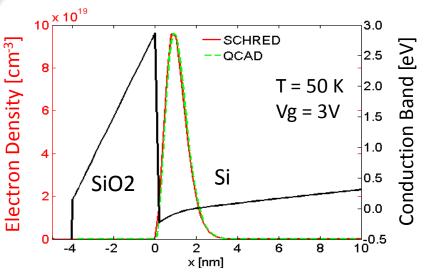


QCAD currently solves only the Δ_2 -band due to its lower energy and the targeted low-T applications, while QCAD can be easily adapted to include other four valleys.

Electron density

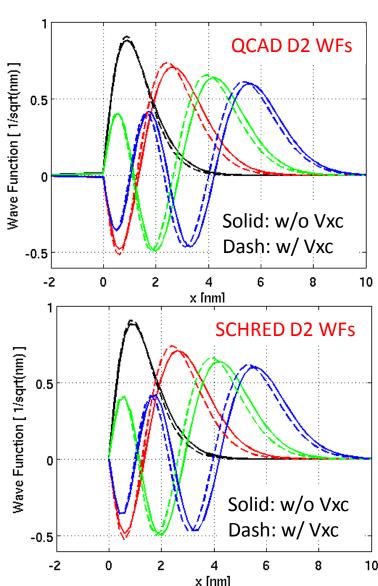
Self-Consistent P-S – Application 1D

Test structure: 1D MOS capacitor with tox = 4 nm, Na = $5e17 \text{ cm}^{-3}$



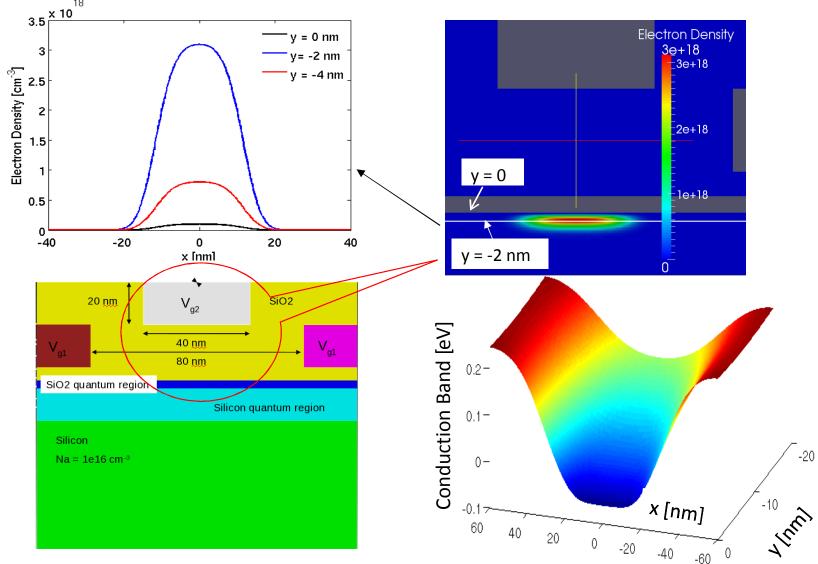
[me V]	SCHRED (w/o Vxc)	QCAD (w/o Vxc)	SCHRED (w/ Vxc)	QCAD (w/ Vxc)
E11	-71.76	-72.54	-73.68	-74.50
E12	26.12	26.71	45.63	45.72
E13	89.22	90.73	118.83	118.94
E14	142.27	144.69	175.60	176.10

With Vxc, energy separation increases and wfs become more spatial confined.



Self-Consistent P-S – Application 2D

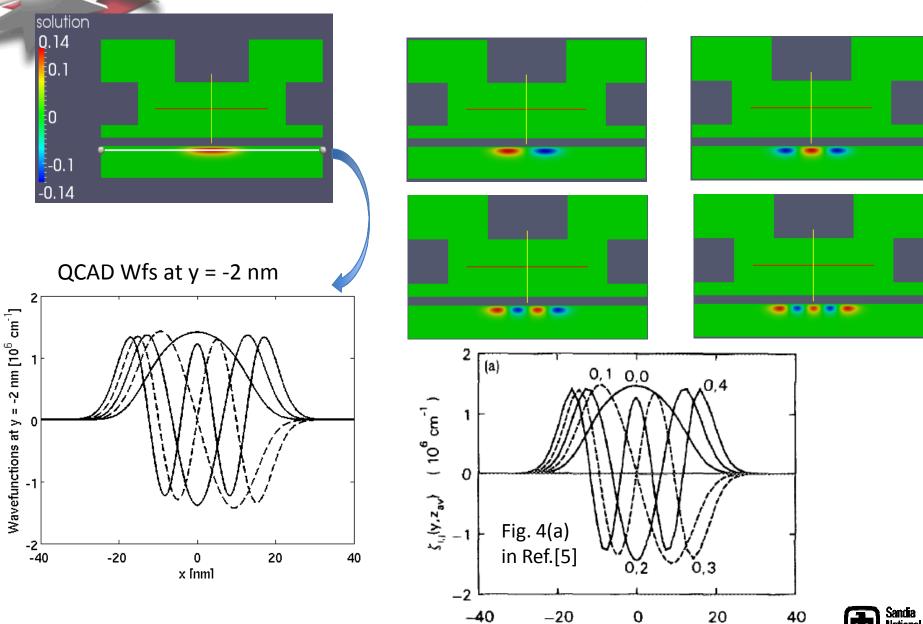
Test structure: gate-induced Silicon quantum wire from Ref. [5]



[5] Steven E. Laux and Frank Stern, Appl. Phys. Lett. 49, 91 (1986).

Self-Consistent P-S – Application 2D

(nm)

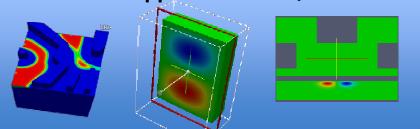


Conclusion

Discuss details of three QCAD solvers

$$\begin{split} -\nabla(\boldsymbol{\varepsilon}_{s}\nabla\phi) &= \boldsymbol{q}(\boldsymbol{p} - \boldsymbol{n} + \boldsymbol{N}_{D}^{+} - \boldsymbol{N}_{A}^{-}) \\ &\frac{-\hbar^{2}}{2}\nabla\left(\frac{1}{\boldsymbol{m}^{*}}\nabla\boldsymbol{\psi}\right) + \boldsymbol{V}\boldsymbol{\psi} = \boldsymbol{E}\boldsymbol{\psi} \\ &\boldsymbol{n}(\phi,\boldsymbol{E}_{i},\boldsymbol{\psi}_{i}) \leftrightarrow \boldsymbol{V}(\phi,\boldsymbol{n}) \end{split}$$

Demonstrate applications of QCAD solvers



Physics-based and robust QCAD tool for quantum devices modeling

Develop new capabilities

Simulate experimental quantum dots to provide feedback and design guidance for experiment

