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Motivation

Sandia is carrying out research on encapsulants
for the prevention of high voltage breakdown

The ideal material would…

1) remain pourable during encapsulation

2) survive thermal cycling

3) operate over a wide temperature range

4) sustain shock loading conditions 

5) withhold high voltage



Approach:
Alumina Filled Polymer Composites



Curing Temperature

DSC Curve for Neat Polymer (1:1 Epoxy/Hardener)
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Rheology Measurement

(Measured at a frequency of 1 Hz)
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Rheology vs time for the control sample (t = 80 ℃)



Particle Surface Treatment
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DSC (10% Vol.% Functionalized Alumina)

10°C/min

3-glycidoxypropyl trimethoxysilane
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Rheology Measurements

Dark Shaded line: Control (no alumina)
Medium Shade: 10 Vol.% alumina loading non-functionalized
Light Shade: 10 Vol.% alumina loading functionalized

Grafted amt. silane = 1.2 µmol/g



SEM Image of the As-Received Powder 

27-43 nm alumina powder

50 µm



SEM Images of Functionalized Composites

10% (v/v) Nanocomposite made with alumina capped with 3-
glycidoxypropyl trimethoxysilane

260 µm
10 µm



20 µm

0.5 µm

Average particle size: 14.80 µm

Average particle size: 0.23 µm

As-received powder

After attrition mill†

HORIBA Laser Scattering Particle Size Distribution Analyzer

†Attrition mill: 1 mm Y-ZrO2, 150 min.

Breaking Alumina Agglomerates 
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Microstructure of Nano-structured
Composites (10 Vol.% alumina) 

Functionalized aluminaNot functionalized alumina

5 µm5 µm



Density of the Composites

The bulk density increases linearly with the amount of solid loading. 
(Determined by the Archimedes method)

y = 0.0288x + 1.1272
R² = 0.9999
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•The dynamic modulus of nanocomposites increases as the amount of 
solid loading increases.

•The glass transition temperature of our nanocomposites is between  
95°C and 114°C (depending on driving frequency).

Dynamic Modulus and Tg Measurements
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(Sound speed was determined pulse/echo technique at 2.25 MHz)  

Acoustic Measurements

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30

S
o

u
n

d
 S

p
e

e
d

 (
m

/s
)

Solid Loading (Vol%)

Longitudinal Speed

Transverse Speed

2: 1
1:1
NF
F



(Moduli were determined by pulse/echo technique at 2.25 MHz)  

Elastic Modulus Measurements
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Summary – Density, Elastic, and 
Acoustic Measurements

• The amount of solid loading appears to have the most impacts on the elastic 
properties of these nanocomposites, despite of

– The size of the alumina filler (150 nm and/or 35 nm)

– The amount of cross-linking (1:1 or 2:1)

– Surface modification by silane coupling agent (functionalized and not-
functionalized)

Solid 
loading 
(vol.%)

Density 
(g/cc)

Speed 
(m/sec) 
Longit.

Speed 
(m/sec) 
Shear

Youngs 
Modulus 

(GPa)

Shear 
Modulus 

(GPa)

Bulk 
Modulus 

(GPa)

Poission's 
Ratio

10 1.416 2742.44 1368.04 7.07 2.65 7.12 0.334
20 1.702 2957.07 1596.39 11.23 4.34 9.10 0.294

20 1.700 3007.61 1641.60 11.80 4.58 9.27 0.288

10° 1.440 2711.70 1358.65 7.08 2.66 7.04 0.332
10# 1.410 2686.56 1342.39 6.78 2.54 6.79 0.334
10† 1.404 2688.84 1339.60 6.73 2.52 6.79 0.335

* 150 nm alumina, 20 nm + 150 nm alumina,  °2:1 cross-linked, # Attrition milled, but 
not functionalized alumina, † attrition milled, functionalized



Dielectric Constant Measurements
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• In general, the CTE value decreases as the amount of filler increases.  
• The difference in CTE values between two sections below the glass transition 
(Tg ~ 80-90°C) temperature decreases as the amount of solid increases.

Coefficient of Thermal Expansion 
Measurements
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X-ray Radiography Analysis

Sedimentation Measurements
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•The mixture of alumina and epoxy resin can be easily poured into a mold.
•No evidence of sedimentation was observed, i.e., alumina is homogenously 
distributed in the nanocomposites. 



WO3 Powder Processing

Average particle size: 8.080 µm 20 µm

Average particle size: 0.083 µm

After attrition mill†

†Attrition mill: 1 mm Y-ZrO2, 150 min.
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Alumina/WO3 Dynamic Modulus and Tg

•The glass transition temperature of our nanocomposites is between  
100°C and 120°C.

•The dynamic modulus appears to be independent of the type of filler 
used.



Alumina/WO3 Coefficient of Thermal 
Expansion

• In general, the CTE value decreases as the amount of filler increases.  
• The difference in CTE values between two sections below the glass transition 
(Tg ~ 80-90°C) temperature decreases as the amount of solid increases.
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Alumina/WO3 Acoustic Measurements

(Sound speed was determined pulse/echo technique at 2.25 MHz)  

WO3 leads to enhanced sound speed whereas alumina lowers it.



Conclusions

• Alumina and WO3 filler enhances the thermal, acoustic, and 
dielectric properties of an epoxy based polymer matrix.

• The high specific surface area of nanofiller (>30 m2/g) leads 
to aggregation outside of the nano-range.  

• Attrition milled alumina and WO3 powder creates more 
homogenous nanocomposites.

• The silane coupling agent improves the dispersion of 
alumina into the polymer matrix. 

• Alumina increases the viscosity of the polymer matrix prior 
to curing but remains pourable at high loading (25%).

• The physical properties of these composites strongly 
depend on the solid loading.  

• The elastic responses of these composites are still 
dominated by the compliant matrix material.


