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Abstract—This paper describes the design and implementation 

of an optimized state-of-health (SOH) database.  We include 

performance data for querying measurands with various 

sample rates and with various change rates across multiple 

time intervals. 
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1. INTRODUCTION 

Spacecraft SOH data is typically downlinked to a ground 

system and stored in flat files for the duration of the 

mission.  Depending on the active measurand count and 

their sampling rates, these files can be overwhelmingly large 

in both size and number.  In addition, analyzing individual 

SOH points and values and performing long-term trend 

analysis usually requires custom software that is expensive 

and difficult to write and maintain. 

An alternative approach is to ingest these files into a 

database management system (DBMS) so the resulting 

measurands can be analyzed and trended with standard tools 

such as Structured Query Language (SQL).  Unfortunately, 

DBMS implementations for time series data frequently 

require vast amounts of disk space and computational 

resources, and even then result in query performance that is 

intolerably slow. 

In this paper, we present our design of a SOH database that 

is optimized for both storage volume and query performance 

by leveraging compression and partitioning.  We then 

present our implementation results for a Department of 

Energy (DOE) remote sensing spacecraft, which transmits 

over 29,000 measurand values sampled at various rates.  We 

explain how we store the data in both online and offline 

capacities, how we maintain total-life long-term trending, 

and how we optimize query performance to retrieve high-

resolution data in a minimal amount of time for a given 

measurand.  Our implementation facilitates both short- and 

long-term health maintenance as well as real-time anomaly 

resolution within a design based on commercial off-the-

shelf (COTS) software. 

 

2. REQUIREMENTS  

Like many software endeavors we began with a set of 

requirements, and we present these in Table 1. 

Table 1.  High-level Requirements 

No. Description 

1 Ensure queries are as responsive as possible 

2 Query data in different resolutions to 

accommodate different user needs 

a. High-resolution data for in-depth analysis 

and statistical processing 

b. Change-only data for rapid visualization 

c. Summarized data for trend analysis 

3 Keep data online and easily accessible 

a. Recent detailed data for as long as possible 

b. Summarized data for entire mission 

duration 

 

Of particular note is requirement 2, which calls for query 

resolutions unique to the client making the request.  For 

example, an analyst troubleshooting an ongoing anomaly 

needs a relatively short interval of what we call high-

resolution data: every value of a given measurand as 

sampled on the spacecraft.  Conversely, a project manager 

needs summarized data to facilitate trend analysis of 

consumable or limited-life resources; he or she likely wants 

to see the minimum or maximum values of specific 

measurands since launch.  Either of these users may wish to 

view a strip chart consisting only of data changes to identify 

the magnitude and timing of variations.  Additionally, a data 

mining application may require high-resolution data for a 

longer period of time – months rather than days. 
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3. DESIGN 

To satisfy requirements 2 and 3, we needed to incorporate a 

compression scheme.  We chose to leverage the fact that 

groups of measurands typically share the same timestamp. 

  

 

Figure 1. Database Schema 

For example, one packet application process identifier (API) 

in Consultative Committee for Space Data Systems 

(CCSDS) packetized telemetry, or one minor frame in time 

division multiplexed (TDM) telemetry, share a common 

timestamp for their corresponding measurands.  We store 

each item in this grouping as a single record in every case.  

For individual measurands, we store its first occurrence and 

then only those values that have changed in relation to the 

previously stored value.  For simplicity, and due to its 

prevalence in modern systems, we assume the use of 

CCSDS packetized telemetry for the remainder of this 

paper. 

Schema 

We chose two tables to represent the above distinction:  

packet and soh_changeonly.  By separating the data in 

this manner, our system can retrieve data in ways that make 

the most sense to the client.  To aid in trend analysis, we 

created a third table called soh_summary that stores 

statistical aggregations to include minimum, maximum, 

average, and standard deviation values for a given period.  

We can then populate this table at the end of the chosen 

period – say, each day – and therefore avoid having to 

calculate these values on the fly.  More importantly, we can 

keep this summary data online for the life of the system due 

to its coarser granularity.  The packet and 

soh_changeonly data, however, is typically much more 

expansive and potentially requires a finite rolling online 

window for a multi-year space mission. 

Figure 1 shows the complete database schema.  The 

mnemonic table contains all relevant information about a 

measurand and its origin.  The limits table contains 

nominal and critical limits and is stored separately since it 

applies only to a subset of measurands.  The enum table 

contains enumerated state information for discrete-type 

measurands.  The ingests table provides a way to track 

ingest activity.   Note that we avoid defining an explicit 

primary key for the SOH tables, as it would only increase 

execution time and space requirements for the associated 

index while providing little additional value.  We do, 

however, provide an implicit primary key for these tables in 

order to efficiently refer to a given row when needed. 

Population 

Figure 2 illustrates the use of our schema for a simple case 

of one API with two corresponding measurands: voltage 

readings for Battery 1 (BAT1V) and Battery 2 (BAT2V).  

As packets arrive every second, the ingest process stores 

each one in the packet table which also adds an internal 

numeric ID.  The soh_changeonly table stores the first 

occurrence of each measurand followed by its changes.  

Upon ingest completion, the soh_summary table is 

populated with the corresponding aggregate values.

Packet

Packet_ID number;

API number;

Packet_utm number;

SOH_Summary

Mnem_ID number;

BeginTime timestamp;

EndTime timestamp;

MinValue string;

MaxValue string;

MeanValue string;

StdDevValue number;

NumSamples number;

SOH_ChangeOnly

SOHData_ID number;

Mnem_ID number;

API number;

Mnem_utm number;

EU_Num number;

EU_Str string;

Mnemonic

Mnem_ID number;

Changed date;

MnemName string;

Subsystem string;

TableName string;

API number;

MnemType string;

Units string;

Scale string;

Active number;

Enum

Mnem_ID number;

Changed date;

StateStr string;

StateNum number;

Notice string;

Limits

Mnem_ID number;

Changed date;

Alarmhigh string;

Alerthigh string;

Alertlow string;

Alarmlow string;

InitialValue string;

MinValue string;

MaxValue string;

Ingests

Ingest_ID number;

Start_utm number;

Stop_utm number;

Start_SOHData_ID number;

Stop_SOHData_ID number;

Start_Packet_ID number;

Stop_Packet_ID number;
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Figure 2. Example Population

4. QUERYING 

While querying summary and change data is 

straightforward, querying the high-resolution data is more 

nuanced.  Unfortunately this query cannot be implemented 

as a simple outer join of packet and soh_changeonly for 

two reasons.  First, the requested start time may not align 

with a value in soh_changeonly, so the result set needs 

the ability to look further back in time than originally 

requested by the client.  Second, the packet table has no 

concept of a measurand value or name, so it must be 

manually inserted in the results exclusive to the packet 

table – that is, those results that do not reflect a change in 

value. 

These issues are illustrated in Figure 3, which presents an 

outer join for BAT1V between 8:01 and 8:04 from our 

example.  Because BAT1V logged its most recent change of 

1.5 prior to the requested start time, its value is missing 

from the start of the dataset.  This misalignment also results 

in the omission of its name and any other pertinent 

information until the first change is encountered at time 

8:03. 

 

Figure 3. Outer Join - Incorrect 

As an alternative to the outer join, we implemented a 

pipelined function called get_highres that takes three 

parameters – mnemonic ID, start time, and end time – and 

returns a result set.  The function executes a union query on 

soh_changeonly and packet for the applicable time 

range, ordered by time ascending.  If the first row does not 

correspond to a soh_changeonly record, it runs a separate 

query to seed the resultset with the most recent measurand 

value prior to the start time.  It then iterates through the 

union, discarding redundant packet rows while matching 

nonredundant packet rows with the previous measurand 

value from soh_changeonly.  For added efficiency, it 

executes the union query as a bulk collect. 

API 10 08:00

BAT1V = 1.5

BAT2V = 2.7

API 10 08:01

BAT1V = 1.5

BAT2V = 2.8

API 10 08:02

BAT1V = 1.5

BAT2V = 2.9

API 10 08:03

BAT1V = 1.6

BAT2V = 2.9

API 10 08:04

BAT1V = 1.6

BAT2V = 2.8

PACKET

ID API Time

100 10 08:00

101 10 08:01

102 10 08:02

103 10 08:03

104 10 08:04

SOH_CHANGEONLY

Mnemonic API Value Time

BAT1V 10 1.5 08:00

BAT2V 10 2.7 08:00

BAT2V 10 2.8 08:01

BAT2V 10 2.9 08:02

BAT1V 10 1.6 08:03

BAT2V 10 2.8 08:04

SOH_SUMMARY

Mnemonic TimeRange Min Max Avg Stddev Count

BAT1V 08:00-08:04 1.5 1.6 1.54 0.055    5

BAT2V 08:00-08:04 2.7 2.9 2.82 0.084    5

Ingest

PACKET outer join 

SOH_CHANGEONLY

Mnemonic API Value Time

10 08:01

10 08:02

BAT1V 10 1.6 08:03

10 08:04
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This union query and transformation is shown in Figure 4, 

producing the fully complete result set shown on the right-

hand side of the figure.  Note that we leverage our 

get_highres function for populating soh_summary and 

for more sophisticated analysis activity, since it represents 

the true uncompressed values as sampled on the spacecraft. 

 

Figure 4. Union Query - Correct

5. PERFORMANCE CONSIDERATIONS 

To make our schema manageable and efficient, we 

incorporated table partitioning.  We chose to partition the 

soh_changeonly and packet tables by date-range not 

only because users most frequently query current data, but 

also because it provides a natural way to archive old data to 

make space for new data.  When available data file space 

cannot accommodate a partition expansion, our system 

exports the oldest partitions to a separate disk area and 

deletes the obsolete data files.  These partition exports 

remain available if an analyst needs to query outdated high-

resolution data, at which point they can be imported on a 

case-by-case basis. 

We designed our system so the partition interval of the high-

resolution tables can be changed over time.  For example, if 

a partition interval of seven days is too large and results in 

bloated data files and long-running partition scans for 

queries, this interval can be reset to a fewer number of days.  

For the soh_summary table, however, we kept the partition 

interval fixed at one year.  Our rationale is that space 

missions are typically measured in years, and even though 

most summary queries range from beginning of life to 

current time, it still provides a way to divide the potentially 

millions of rows into a manageable set of underlying data 

files. 

Ingest performance depends greatly on the location of the 

logic for determining whether a new value for a given 

measurand represents a change from its previous value.  The 

two choices are internal to the database, or external in a 

separate module.  For the internal method, the ingest module 

sends every new value to the database, which then examines 

it for change prior to insertion.  In the external method, the 

ingest module filters redundant values and sends only 

changes to the database.  We chose the external method to 

minimize both database table lookups and network traffic. 

 

6. IMPLEMENTATION  

We deployed our system on a Dell PowerEdge R710 with 

48G RAM and two 6-core hyper-threaded Intel Xeon CPUs 

clocked at 3.33 GHz, running 64-bit Red Hat Enterprise 

Linux Server 5.5 as the operating system.  We attached two 

Dell PowerVault MD1220 storage arrays for 12 TB of total 

disk space, with 16 disks comprising the data file storage 

area using a 1MB stripe size.  We configured the data file 

storage area to use the ext3 file system to leverage both 

direct and asynchronous I/O.  We chose Oracle 11g as our 

DBMS due to its strong reputation for handling large 

amounts of data and its highly configurable parallel query 

execution environment.  We implemented our ingest module 

in C++ to maximize run-time performance, and our 

administration utilities in Perl to leverage the rich set of 

available database interface modules [1].  

Our implementation supports a DOE remote sensing 

spacecraft providing more than 29000 measurands divided 

SOH_CHANGEONLY union 

PACKET

Mnemonic API Value Time

10 08:01

10 08:02

BAT1V 10 1.6 08:03

10 08:03

10 08:04 Get_Highres

Mnemonic API Value Time

BAT1V 10 1.5 08:01

BAT1V 10 1.5 08:02

BAT1V 10 1.6 08:03

BAT1V 10 1.6 08:04
SOH_CHANGEONLY

(prior value)

Mnemonic API Value Time

BAT1V 10 1.5 08:00
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into 728 unique packet APIs.  The data rates for each API 

range from 1 sample per day to 64 Hz, with an average data 

rate of 0.3 Hz.  Our initial tests with lab data showed we 

could expect several million rows of packet data daily, 

with soh_changeonly requiring a row count 5x-10x that 

of packet.  As a result, we chose a partition interval of 1 

day. 

We made several internal database configuration changes to 

maximize performance [2].  First and foremost, we 

configured the database to run in noarchivelog mode to 

eliminate the overhead of logging table insertions.  While 

this decision makes disaster recovery less elegant, our safety 

net lies in the fact that we can always revisit the SOH flat 

files to repopulate lost data. 

Next, we configured Oracle’s parallel execution 

environment.  After experimenting with different settings 

for the parallel_degree_policy initialization parameter, we 

found that a setting of manual (versus automatic) best 

leveraged our partition-based architecture.  Surprisingly, the 

automatic setting resulted in no query parallelization, even 

when we lowered parallel_min_time_threshold to a value of 

one.  Finally, we configured the filesystemio_options 

parameter to SetAll to ensure the database supported both 

direct and asynchronous I/O, consistent with the ext3 file 

system configuration [3]. 

With separate data and index tablespaces, this 

implementation produces 732 data files annually.  We 

created three locally partitioned indexes: one for the 

packet table and two for soh_changeonly.  Taking into 

account on-orbit data for the six months of operations 

corresponding to February through July of 2011, our row 

counts and corresponding file sizes are shown in Table 2. 

Table 2. Row Counts 

  Row counts File sizes 

Object 

type 

 

Min 

 

Max 

 

Avg 

 

Sum 

 

Min 

 

Max 

 

Avg 

 

Sum 

Data 1.7M 31.3M 14.9M 5.4 B 48.4 MB 1.68 GB 769.5 MB 278.6 GB 

Index 1.7M 31.2M 18.8M 10.2 B 86.8 MB 1.68 GB 1.01 GB 547.8 GB 

7. RESULTS 

We first analyzed the space savings of our compression 

schema.  A typical day on orbit creates 3M rows in packet 

and 27M rows in soh_changeonly, and an aggregate total 

of 150M distinct values from get_highres for all active 

measurands.  In other words, if instead we had chosen to 

insert into a single table every value sampled for every 

measurand, we would have inserted 150M rows daily.  

From a row count perspective, which is closely tied to query 

performance, this translates into a savings of 80%. To 

quantify space savings on the file system, we note that the 

packet and soh_changeonly tables require three and six 

fields respectively, while the single table would require five 

fields.  By measuring the daily counts of populated fields, 

our compression scheme requires 162M fields versus 750M 

fields for the every-value approach.  Our space savings is 

therefore 78%. 

We then timed our database with respect to insertions and 

retrievals.  Oracle’s statistic monitoring utilities show that 

each row insert operation, implemented via a stored 

procedure call from the ingest client, takes an average of 0.5 

milliseconds (0.0005 sec) to complete.  Empirically, after 

accounting for ingest parallelization and process overhead, 

we require 2 hours of wall clock time to ingest 24 hours of 

SOH data, or a data-generation to data-consumption ratio of 

12 to 1. 

However, retrieval time is arguably the most important 

metric, as it dictates how quickly an analyst can 

troubleshoot a time-critical anomaly.  Because retrieval via 

get_highres is a union query of both packet and 

soh_changeonly, we expected the required time to depend 

on the number of rows in these tables for a given 

measurand.  We also expected the retrieval time to be 

dependent on the number of partitions accessed. 

With these factors in mind, we designed benchmarking 

scenarios that covered three periods: one day (one partition), 

one week (7 partitions), and one month (28-31 partitions).  

We also chose three different packet rates for each scenario: 

4 packets/sec, 1 packet/sec, and 0.2 packets/sec (or one 

packet every five seconds).  Finally, we chose measurands 

with change counts that varied between 2 per day and 86000 

per day (or one change per second).  To avoid biasing our 

results due to query caching, we queried a given time period 

no more than once for any given packet API, and ultimately 

we queried data dispersed throughout each of the six months 

between February and July 2011.  We used the timing 

command in Oracle’s sqlplus utility to invoke the 

get_highres procedure and return only the first row of 

data.  In this manner, we avoided including network or 

output latency in the results. 
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Figure 5. Retrieval Times - One Day 

 

 

Figure 6. Retrieval Times - One Week 
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Figure 7. Retrieval Times - One Month

Figure 5 through Figure 7 show our results for these three 

data periods and the various change counts of the associated 

measurands.  For a single day, a client can expect to wait 

between 1 and 5 seconds for packet rates up to 1 packet/sec, 

and between 5 and 16 seconds for the higher rate of 4 

packets/sec.  For a one-week period, these waits translate to 

between 1 and 33 seconds for rates up to 1 packet/sec, and 

between 44 and 73 seconds for the higher rates.  To retrieve 

an entire month of high-resolution data, the query times for 

the lower packet rates range between 4 and 110 seconds, 

while for the higher rate data this range varies from 4 to 6 

minutes. 

 

8. CONCLUSIONS  

We were pleased to find that all our queries for 24 

consecutive hours of data returned in only a few seconds for 

our low and medium packet rates, and at most 16 seconds 

for our highest rates.  We were also pleased to see that a 

query for an entire week of data was still under a minute for 

low- and medium-rate data, and right around a minute for 

high-rate data.  In our experience, these are the queries that 

an analyst will most often require during critical anomaly 

troubleshooting, where the future viability of a multi-million 

dollar orbiting asset hangs in the balance. 

The longer period of one month understandably requires a 

longer query time: approximately one minute for our low- 

and medium-rate data, and approximately five minutes for 

our high-rate data.  We feel these times are acceptable, 

especially since the operational need for such a query is 

relatively low.  After all, if an analyst needs to characterize 

a measurand trend for a given month, he or she will most 

likely query the soh_summary table, which will return its 

results in just a few seconds even after years on orbit. 

9. SUMMARY  

Our SOH database satisfied all of its initial requirements 

and continues to provide valuable results to the DOE 

mission it serves.  The next step is to fully leverage its 

capabilities by discovering hidden trends and relationships 

between measurands and hopefully warn of on-board issues 

and anomalies before they occur.  Toward this end, data 

mining and other predictive analytic techniques appear to be 

excellent candidates, and we look forward to exploring these 

possibilities as our data set grows. 

 

REFERENCES  

[1] Perl documentation web site: perldoc.perl.org. 

[2] Oracle® Database Administrator’s Guide 11g Release 2 

(11.2), Oracle Corporation, April 2011 

[3] Oracle® Database Performance Tuning Guide 11g 

Release 2 (11.2), Oracle Corporation, July 2011. 

0 

50 

100 

150 

200 

250 

300 

350 

400 

R
e

tr
ie

v
a

l 
S

e
co

n
d

s 

Change Count 

Data Period:  One Month 

0.2 pkt/sec 1 pkt/sec 4 pkt/sec 



 

 8 

BIOGRAPHIES 

Steve Lindsay received a B.S. in 

Computer Science from The University 

of Kansas in 1989, and an M.S. in 

Computer Science from the Air Force 

Institute of Technology in 1994. He 

served in the U.S. Air Force for 9 years 

as a software engineer and systems 

analyst, and he has been with Sandia 

National Laboratories for more than 13 years. During his 

20 years in the space domain, he has worked on 

numerous satellite ground station initiatives for both the 

Department of Defense and the Department of Energy in 

roles varying from software development, system 

engineering, and data management.  

Clark Poore received a B.S. in 

Computer Science from the University 

of New Mexico in 1999, and an M.S. in 

Computer Science from the New 

Mexico Institute of Mining and 

Technology in 2002.  He has been a 

software engineer with Sandia 

National Laboratories for more than 

13 years. He has worked on several satellite ground 

station programs in software design and development 

with an emphasis in management, visualization, and data 

mining of the large volumes of data generated by satellite 

systems. 

 
 

 


