SAND2011-8035C

An Optimized Database for
Spacecraft State-of-Health Analysis

Steve Lindsay
Sandia National Laboratories
1515 Eubank Blvd SE
Albuquerque, NM 87185
505-284-6603
srlinds@sandia.gov

Abstract—This paper describes the design and implementation
of an optimized state-of-health (SOH) database. We include
performance data for querying measurands with various
sample rates and with various change rates across multiple
time intervals.

TABLE OF CONTENTS

1. INTRODUCTION ...cocvitiiiiiee e siirireee e seinavanens 1
2. REQUIREMENTS ...ccttiieeiitreee et e et e e 1
R B =£] [N PR 2
4. QUERYING....coiuieriieiiiesieeeiie e esiee e sae e 3
5. PERFORMANCE CONSIDERATIONS ...ccvvveeiiiinns 4
6. IMPLEMENTATIONtviieiiee e e e ssierreeee e e e e s eanns 4
T RESULTS oottt sanns 5
8. CONCLUSIONSccotiettrteiie e seirrrree e e 7
9. SUMMARY ..utttiiiiiieii it ssinirses e nanns 7
REFERENCES......uuuuutiiiiiiiiiiiiierrrrrrrrersssrsssrere.. 7
BIOGRAPHIES.......ccctttiiiiiec ittt 8

1. INTRODUCTION

Spacecraft SOH data is typically downlinked to a ground
system and stored in flat files for the duration of the
mission. Depending on the active measurand count and
their sampling rates, these files can be overwhelmingly large
in both size and number. In addition, analyzing individual
SOH points and values and performing long-term trend
analysis usually requires custom software that is expensive
and difficult to write and maintain.

An alternative approach is to ingest these files into a
database management system (DBMS) so the resulting
measurands can be analyzed and trended with standard tools
such as Structured Query Language (SQL). Unfortunately,
DBMS implementations for time series data frequently
require vast amounts of disk space and computational
resources, and even then result in query performance that is
intolerably slow.

In this paper, we present our design of a SOH database that
is optimized for both storage volume and query performance
by leveraging compression and partitioning. We then
present our implementation results for a Department of
Energy (DOE) remote sensing spacecraft, which transmits
over 29,000 measurand values sampled at various rates. We

U.S. Government work not protected by U.S. copyright

Clark Poore
Sandia National Laboratories
1515 Eubank Blvd SE
Albuguerque, NM 87185
505-844-3667
capoore@sandia.gov

explain how we store the data in both online and offline
capacities, how we maintain total-life long-term trending,
and how we optimize query performance to retrieve high-
resolution data in a minimal amount of time for a given
measurand. Our implementation facilitates both short- and
long-term health maintenance as well as real-time anomaly
resolution within a design based on commercial off-the-
shelf (COTS) software.

2. REQUIREMENTS

Like many software endeavors we began with a set of
requirements, and we present these in Table 1.

Table 1. High-level Requirements

No. | Description
1 | Ensure queries are as responsive as possible
2 | Query data in different resolutions to
accommodate different user needs
a. High-resolution data for in-depth analysis
and statistical processing
b. Change-only data for rapid visualization
c. Summarized data for trend analysis
3 | Keep data online and easily accessible
a. Recent detailed data for as long as possible
b. Summarized data for entire mission
duration

Of particular note is requirement 2, which calls for query
resolutions unique to the client making the request. For
example, an analyst troubleshooting an ongoing anomaly
needs a relatively short interval of what we call high-
resolution data: every value of a given measurand as
sampled on the spacecraft. Conversely, a project manager
needs summarized data to facilitate trend analysis of
consumable or limited-life resources; he or she likely wants
to see the minimum or maximum values of specific
measurands since launch. Either of these users may wish to
view a strip chart consisting only of data changes to identify
the magnitude and timing of variations. Additionally, a data
mining application may require high-resolution data for a
longer period of time — months rather than days.

3. DESIGN

To satisfy requirements 2 and 3, we needed to incorporate a
compression scheme. We chose to leverage the fact that
groups of measurands typically share the same timestamp.

Limits
Mnem_ID number; -
Changed date; Mnemonic
Alarmhigh string; Mnem ID number: SOH_Summary
Alerthigh string; Changed date; Mnem_ID number;
Alertlow string; MnemName string; BeginTime timestamp;
Alarmlow string; Enum Subs . ' : !
i ! ystem string; EndTime timestamp;
InitialValue string; Mnem_ID number; TableName string; MinValue string;
Minvalue string; Changed date; API number; MaxValue string;
MaxValue string; StateStr string; MnemType string; MeanValue string;
StateNum number; Units string; StdDevValue number;
Notice string; Scale string; NumSamples number;
Active number;
Ingests
Ingest_ID number;
Stgrt_tﬁm number; 0 iz orly
Stop_utm number; SOHData ID number; Packet
Start_SOHData_ID number; Mnem ID_ number:
Stop_SOHData_ID number; APl number: Packet_ID number;
Start_Packet_ID number; Mnem utm number: API number;
Stop_Packet_ID number; EU Num number: Packet_utm number;
EU_Str string;

Figure 1. Database Schema

For example, one packet application process identifier (API)
in Consultative Committee for Space Data Systems
(CCSDS) packetized telemetry, or one minor frame in time
division multiplexed (TDM) telemetry, share a common
timestamp for their corresponding measurands. We store
each item in this grouping as a single record in every case.
For individual measurands, we store its first occurrence and
then only those values that have changed in relation to the
previously stored value. For simplicity, and due to its
prevalence in modern systems, we assume the use of
CCSDS packetized telemetry for the remainder of this

paper.
Schema

We chose two tables to represent the above distinction:
packet and soh changeonly. By separating the data in
this manner, our system can retrieve data in ways that make
the most sense to the client. To aid in trend analysis, we
created a third table called soh summary that stores
statistical aggregations to include minimum, maximum,
average, and standard deviation values for a given period.
We can then populate this table at the end of the chosen
period — say, each day — and therefore avoid having to
calculate these values on the fly. More importantly, we can
keep this summary data online for the life of the system due
to its coarser granularity. The packet and
soh changeonly data, however, is typically much more

expansive and potentially requires a finite rolling online
window for a multi-year space mission.

Figure 1 shows the complete database schema. The
mnemonic table contains all relevant information about a
measurand and its origin. The 1limits table contains
nominal and critical limits and is stored separately since it
applies only to a subset of measurands. The enum table
contains enumerated state information for discrete-type
measurands. The ingests table provides a way to track
ingest activity. Note that we avoid defining an explicit
primary key for the SOH tables, as it would only increase
execution time and space requirements for the associated
index while providing little additional value. We do,
however, provide an implicit primary key for these tables in
order to efficiently refer to a given row when needed.

Population

Figure 2 illustrates the use of our schema for a simple case
of one API with two corresponding measurands: voltage
readings for Battery 1 (BAT1V) and Battery 2 (BAT2V).
As packets arrive every second, the ingest process stores
each one in the packet table which also adds an internal
numeric ID. The soh changeonly table stores the first
occurrence of each measurand followed by its changes.
Upon ingest completion, the soh summary table is
populated with the corresponding aggregate values.

API 10 08:00
BAT1V =15
BAT2V = 2.7
e — PACKET SOH CHANGEONLY
BAT1V = 1.5 - Al T Mnemonic APl Value Time
BAT2V =28 = == = BAT1V 10 1.5 08:00
100 10 08:00 ;
: BAT2V 10 2.7 08:00
101 10 08:01 :
: BAT2V 10 2.8 08:01
102 10 08:02 :
: BAT2V 10 2.9 08:02
103 10 08:03 .
API| 10 08:02 104 10 08:04 BAT1V 10 1.6 08:03
BAT1V =1.5 ’ BAT2V 10 2.8 08:04
BAT2V =2.9
Ingest
SOH_SUMMARY
API'10 . 08:03 Mnemonic TimeRange Min Max Avg Stddev Count
BAT;V = ;-6 BAT1V 08:00-08:04 15 16 154 0055 5
BAT2V=2.9 BAT2V 08:00-08:04 2.7 29 28 0084 5
API 10 08:04
BAT1V = 1.6
BAT2V =2.8
Figure 2. Example Population
4. QUERYING o
. . . PACKET outer join
While querying summary and change data is

straightforward, querying the high-resolution data is more
nuanced. Unfortunately this query cannot be implemented
as a simple outer join of packet and soh changeonly for
two reasons. First, the requested start time may not align
with a value in soh changeonly, SO the result set needs
the ability to look further back in time than originally
requested by the client. Second, the packet table has no
concept of a measurand value or name, so it must be
manually inserted in the results exclusive to the packet
table — that is, those results that do not reflect a change in
value.

These issues are illustrated in Figure 3, which presents an
outer join for BAT1V between 8:01 and 8:04 from our
example. Because BAT1V logged its most recent change of
1.5 prior to the requested start time, its value is missing
from the start of the dataset. This misalignment also results
in the omission of its name and any other pertinent
information until the first change is encountered at time
8:03.

SOH_CHANGEONLY

Mnemonic API Value Time
10 08:01
10 08:02
BAT1V 10 1.6 08:03
10 08:04

Figure 3. Outer Join - Incorrect

As an alternative to the outer join, we implemented a
pipelined function called get highres that takes three
parameters — mnemonic ID, start time, and end time — and
returns a result set. The function executes a union query on
soh changeonly and packet for the applicable time
range, ordered by time ascending. If the first row does not
correspond t0 a soh_changeonly record, it runs a separate
query to seed the resultset with the most recent measurand
value prior to the start time. It then iterates through the
union, discarding redundant packet rows while matching
nonredundant packet rows with the previous measurand
value from soh changeonly. For added efficiency, it
executes the union query as a bulk collect.

This union query and transformation is shown in Figure 4,
producing the fully complete result set shown on the right-
hand side of the figure. Note that we leverage our

SOH_CHANGEONLY union

PACKET
Mnemonic API Value Time
10 08:01
10 08:02
BAT1V 10 1.6 08:03
10 08:03
10 08:04

]
]

SOH_CHANGEONLY
(prior value)

Mnemonic API Value Time
BAT1V 10 1.5 08:00

get_highres function for populating soh summary and
for more sophisticated analysis activity, since it represents
the true uncompressed values as sampled on the spacecraft.

Get_Highres
Mnemonic API Value Time
BAT1V 10 1.5 08:01
BAT1V 10 1.5 08:02
BAT1V 10 1.6 08:03
BAT1V 10 1.6 08:04

Figure 4. Union Query - Correct

5. PERFORMANCE CONSIDERATIONS

To make our schema manageable and efficient, we
incorporated table partitioning. We chose to partition the
soh changeonly and packet tables by date-range not
only because users most frequently query current data, but
also because it provides a natural way to archive old data to
make space for new data. When available data file space
cannot accommodate a partition expansion, our system
exports the oldest partitions to a separate disk area and
deletes the obsolete data files. These partition exports
remain available if an analyst needs to query outdated high-
resolution data, at which point they can be imported on a
case-by-case basis.

We designed our system so the partition interval of the high-
resolution tables can be changed over time. For example, if
a partition interval of seven days is too large and results in
bloated data files and long-running partition scans for
queries, this interval can be reset to a fewer number of days.
For the soh summary table, however, we kept the partition
interval fixed at one year. Our rationale is that space
missions are typically measured in years, and even though
most summary queries range from beginning of life to
current time, it still provides a way to divide the potentially
millions of rows into a manageable set of underlying data
files.

Ingest performance depends greatly on the location of the
logic for determining whether a new value for a given

measurand represents a change from its previous value. The
two choices are internal to the database, or external in a
separate module. For the internal method, the ingest module
sends every new value to the database, which then examines
it for change prior to insertion. In the external method, the
ingest module filters redundant values and sends only
changes to the database. We chose the external method to
minimize both database table lookups and network traffic.

6. IMPLEMENTATION

We deployed our system on a Dell PowerEdge R710 with
48G RAM and two 6-core hyper-threaded Intel Xeon CPUs
clocked at 3.33 GHz, running 64-bit Red Hat Enterprise
Linux Server 5.5 as the operating system. We attached two
Dell PowerVault MD1220 storage arrays for 12 TB of total
disk space, with 16 disks comprising the data file storage
area using a 1MB stripe size. We configured the data file
storage area to use the ext3 file system to leverage both
direct and asynchronous 1/0O. We chose Oracle 11g as our
DBMS due to its strong reputation for handling large
amounts of data and its highly configurable parallel query
execution environment. We implemented our ingest module
in C++ to maximize run-time performance, and our
administration utilities in Perl to leverage the rich set of
available database interface modules [1].

Our implementation supports a DOE remote sensing
spacecraft providing more than 29000 measurands divided

into 728 unique packet APIs. The data rates for each API
range from 1 sample per day to 64 Hz, with an average data
rate of 0.3 Hz. Our initial tests with lab data showed we
could expect several million rows of packet data daily,
with soh changeonly requiring a row count 5x-10x that
of packet. As a result, we chose a partition interval of 1
day.

We made several internal database configuration changes to
maximize performance [2]. First and foremost, we
configured the database to run in noarchivelog mode to
eliminate the overhead of logging table insertions. While
this decision makes disaster recovery less elegant, our safety
net lies in the fact that we can always revisit the SOH flat
files to repopulate lost data.

Next, we configured Oracle’s parallel execution
environment. After experimenting with different settings
for the parallel_degree_policy initialization parameter, we

found that a setting of manual (versus automatic) best
leveraged our partition-based architecture. Surprisingly, the
automatic setting resulted in no query parallelization, even
when we lowered parallel_min_time_threshold to a value of
one. Finally, we configured the filesystemio_options
parameter to setal1l to ensure the database supported both
direct and asynchronous 1/0, consistent with the ext3 file
system configuration [3].

With separate data and index tablespaces, this
implementation produces 732 data files annually. We
created three locally partitioned indexes: one for the
packet table and two for soh changeonly. Taking into
account on-orbit data for the six months of operations
corresponding to February through July of 2011, our row
counts and corresponding file sizes are shown in Table 2.

Table 2. Row Counts

Row counts File sizes
Object
type Min Max Avg Sum Min Max Avg Sum
Data 1.7M 31.3M 14.9M 5.4B 48.4 MB 1.68 GB 769.5 MB 278.6 GB
Index 1.7M 31.2M 18.8M | 10.2B 86.8 MB 1.68 GB 1.01 GB 547.8 GB
7. RESULTS However, retrieval time is arguably the most important

We first analyzed the space savings of our compression
schema. A typical day on orbit creates 3M rows in packet
and 27M rows in soh_changeonly, and an aggregate total
of 150M distinct values from get highres for all active
measurands. In other words, if instead we had chosen to
insert into a single table every value sampled for every
measurand, we would have inserted 150M rows daily.
From a row count perspective, which is closely tied to query
performance, this translates into a savings of 80%. To
quantify space savings on the file system, we note that the
packet and soh changeonly tables require three and six
fields respectively, while the single table would require five
fields. By measuring the daily counts of populated fields,
our compression scheme requires 162M fields versus 750M
fields for the every-value approach. Our space savings is
therefore 78%.

We then timed our database with respect to insertions and
retrievals. Oracle’s statistic monitoring utilities show that
each row insert operation, implemented via a stored
procedure call from the ingest client, takes an average of 0.5
milliseconds (0.0005 sec) to complete. Empirically, after
accounting for ingest parallelization and process overhead,
we require 2 hours of wall clock time to ingest 24 hours of
SOH data, or a data-generation to data-consumption ratio of
12to 1.

metric, as it dictates how quickly an analyst can
troubleshoot a time-critical anomaly. Because retrieval via
get _highres is a union query of both packet and
soh_changeonly, We expected the required time to depend
on the number of rows in these tables for a given
measurand. We also expected the retrieval time to be
dependent on the number of partitions accessed.

With these factors in mind, we designed benchmarking
scenarios that covered three periods: one day (one partition),
one week (7 partitions), and one month (28-31 partitions).
We also chose three different packet rates for each scenario:
4 packets/sec, 1 packet/sec, and 0.2 packets/sec (or one
packet every five seconds). Finally, we chose measurands
with change counts that varied between 2 per day and 86000
per day (or one change per second). To avoid biasing our
results due to query caching, we queried a given time period
no more than once for any given packet API, and ultimately
we queried data dispersed throughout each of the six months
between February and July 2011. We used the timing
command in Oracle’s sqlplus utility to invoke the
get_highres procedure and return only the first row of
data. In this manner, we avoided including network or
output latency in the results.

Data Period: One Day

0

20
(2]
z
g 15 b
3}
w /
>
5
T 5
)
e m&;&—‘ﬁ
0
YO O O O O O O O O QL
N RO
N 9 QRN NS
MRS PN
Change Count
=4=—0.2 pkt/sec ==1 pkt/sec =4 pkt/sec
Figure 5. Retrieval Times - One Day
Data Period: One Week
- 80
e 60
© e A
= 40
2 30
£ 20
R e =—ame— =

VY Q0 QS N & O
NS S S
NS N %Q

S
S O

Q O O
Q¥ QO O

Vv»>oH
N QP

N

Change Count

=0—0.2 pkt/sec ==1pkt/sec =4 pkt/sec

Figure 6. Retrieval Times - One Week

Data Period: One Month

400
%350 —
g 300 —
st
o 250
%]
EZOO
9 150
I === = e =
0
N Q Q Q Q Q Q Q Q Q Q
N TSNS TS
NV D Q Q Q Q Q Q
VS WS O
Change Count
=¢—0.2 pkt/sec =—l=1 pkt/sec 4 pkt/sec
Figure 7. Retrieval Times - One Month
Figure 5 through Figure 7 show our results for these three 9. SUMMARY

data periods and the various change counts of the associated
measurands. For a single day, a client can expect to wait
between 1 and 5 seconds for packet rates up to 1 packet/sec,
and between 5 and 16 seconds for the higher rate of 4
packets/sec. For a one-week period, these waits translate to
between 1 and 33 seconds for rates up to 1 packet/sec, and
between 44 and 73 seconds for the higher rates. To retrieve
an entire month of high-resolution data, the query times for
the lower packet rates range between 4 and 110 seconds,
while for the higher rate data this range varies from 4 to 6
minutes.

8. CONCLUSIONS

We were pleased to find that all our queries for 24
consecutive hours of data returned in only a few seconds for
our low and medium packet rates, and at most 16 seconds
for our highest rates. We were also pleased to see that a
query for an entire week of data was still under a minute for
low- and medium-rate data, and right around a minute for
high-rate data. In our experience, these are the queries that
an analyst will most often require during critical anomaly
troubleshooting, where the future viability of a multi-million
dollar orbiting asset hangs in the balance.

The longer period of one month understandably requires a
longer query time: approximately one minute for our low-
and medium-rate data, and approximately five minutes for
our high-rate data. We feel these times are acceptable,
especially since the operational need for such a query is
relatively low. After all, if an analyst needs to characterize
a measurand trend for a given month, he or she will most
likely query the soh summary table, which will return its
results in just a few seconds even after years on orbit.

Our SOH database satisfied all of its initial requirements
and continues to provide valuable results to the DOE
mission it serves. The next step is to fully leverage its
capabilities by discovering hidden trends and relationships
between measurands and hopefully warn of on-board issues
and anomalies before they occur. Toward this end, data
mining and other predictive analytic techniques appear to be
excellent candidates, and we look forward to exploring these
possibilities as our data set grows.

REFERENCES

[1] Perl documentation web site: perldoc.perl.org.

[2] Oracle® Database Administrator’s Guide 11g Release 2
(11.2), Oracle Corporation, April 2011

[3] Oracle® Database Performance Tuning Guide 11g
Release 2 (11.2), Oracle Corporation, July 2011.

BIOGRAPHIES

Steve Lindsay received a B.S. in
Computer Science from The University
of Kansas in 1989, and an M.S. in
Computer Science from the Air Force
Institute of Technology in 1994. He
served in the U.S. Air Force for 9 years
as a software engineer and systems
analyst, and he has been with Sandia
National Laboratories for more than 13 years. During his
20 years in the space domain, he has worked on
numerous satellite ground station initiatives for both the
Department of Defense and the Department of Energy in
roles varying from software development, system
engineering, and data management.

Clark Poore received a B.S. in
Computer Science from the University
of New Mexico in 1999, and an M.S. in
Computer Science from the New
Mexico Institute of Mining and
Technology in 2002. He has been a
software engineer with Sandia
National Laboratories for more than
13 years. He has worked on several satellite ground
station programs in software design and development
with an emphasis in management, visualization, and data
mining of the large volumes of data generated by satellite
systems.

