
U.S. Government work not protected by U.S. copyright

1

An Optimized Database for

Spacecraft State-of-Health Analysis
Steve Lindsay

Sandia National Laboratories
1515 Eubank Blvd SE

Albuquerque, NM 87185
505-284-6603

srlinds@sandia.gov

Clark Poore
Sandia National Laboratories

1515 Eubank Blvd SE
Albuquerque, NM 87185

505-844-3667
capoore@sandia.gov

Abstract—This paper describes the design and implementation

of an optimized state-of-health (SOH) database. We include

performance data for querying measurands with various

sample rates and with various change rates across multiple

time intervals.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. REQUIREMENTS .. 1

3. DESIGN .. 2
4. QUERYING ... 3

5. PERFORMANCE CONSIDERATIONS 4
6. IMPLEMENTATION .. 4
7. RESULTS .. 5

8. CONCLUSIONS ... 7
9. SUMMARY ... 7

REFERENCES ... 7
BIOGRAPHIES .. 8

1. INTRODUCTION

Spacecraft SOH data is typically downlinked to a ground

system and stored in flat files for the duration of the

mission. Depending on the active measurand count and

their sampling rates, these files can be overwhelmingly large

in both size and number. In addition, analyzing individual

SOH points and values and performing long-term trend

analysis usually requires custom software that is expensive

and difficult to write and maintain.

An alternative approach is to ingest these files into a

database management system (DBMS) so the resulting

measurands can be analyzed and trended with standard tools

such as Structured Query Language (SQL). Unfortunately,

DBMS implementations for time series data frequently

require vast amounts of disk space and computational

resources, and even then result in query performance that is

intolerably slow.

In this paper, we present our design of a SOH database that

is optimized for both storage volume and query performance

by leveraging compression and partitioning. We then

present our implementation results for a Department of

Energy (DOE) remote sensing spacecraft, which transmits

over 29,000 measurand values sampled at various rates. We

explain how we store the data in both online and offline

capacities, how we maintain total-life long-term trending,

and how we optimize query performance to retrieve high-

resolution data in a minimal amount of time for a given

measurand. Our implementation facilitates both short- and

long-term health maintenance as well as real-time anomaly

resolution within a design based on commercial off-the-

shelf (COTS) software.

2. REQUIREMENTS

Like many software endeavors we began with a set of

requirements, and we present these in Table 1.

Table 1. High-level Requirements

No. Description

1 Ensure queries are as responsive as possible

2 Query data in different resolutions to

accommodate different user needs

a. High-resolution data for in-depth analysis

and statistical processing

b. Change-only data for rapid visualization

c. Summarized data for trend analysis

3 Keep data online and easily accessible

a. Recent detailed data for as long as possible

b. Summarized data for entire mission

duration

Of particular note is requirement 2, which calls for query

resolutions unique to the client making the request. For

example, an analyst troubleshooting an ongoing anomaly

needs a relatively short interval of what we call high-

resolution data: every value of a given measurand as

sampled on the spacecraft. Conversely, a project manager

needs summarized data to facilitate trend analysis of

consumable or limited-life resources; he or she likely wants

to see the minimum or maximum values of specific

measurands since launch. Either of these users may wish to

view a strip chart consisting only of data changes to identify

the magnitude and timing of variations. Additionally, a data

mining application may require high-resolution data for a

longer period of time – months rather than days.

SAND2011-8035C

 2

3. DESIGN

To satisfy requirements 2 and 3, we needed to incorporate a

compression scheme. We chose to leverage the fact that

groups of measurands typically share the same timestamp.

Figure 1. Database Schema

For example, one packet application process identifier (API)

in Consultative Committee for Space Data Systems

(CCSDS) packetized telemetry, or one minor frame in time

division multiplexed (TDM) telemetry, share a common

timestamp for their corresponding measurands. We store

each item in this grouping as a single record in every case.

For individual measurands, we store its first occurrence and

then only those values that have changed in relation to the

previously stored value. For simplicity, and due to its

prevalence in modern systems, we assume the use of

CCSDS packetized telemetry for the remainder of this

paper.

Schema

We chose two tables to represent the above distinction:

packet and soh_changeonly. By separating the data in

this manner, our system can retrieve data in ways that make

the most sense to the client. To aid in trend analysis, we

created a third table called soh_summary that stores

statistical aggregations to include minimum, maximum,

average, and standard deviation values for a given period.

We can then populate this table at the end of the chosen

period – say, each day – and therefore avoid having to

calculate these values on the fly. More importantly, we can

keep this summary data online for the life of the system due

to its coarser granularity. The packet and

soh_changeonly data, however, is typically much more

expansive and potentially requires a finite rolling online

window for a multi-year space mission.

Figure 1 shows the complete database schema. The

mnemonic table contains all relevant information about a

measurand and its origin. The limits table contains

nominal and critical limits and is stored separately since it

applies only to a subset of measurands. The enum table

contains enumerated state information for discrete-type

measurands. The ingests table provides a way to track

ingest activity. Note that we avoid defining an explicit

primary key for the SOH tables, as it would only increase

execution time and space requirements for the associated

index while providing little additional value. We do,

however, provide an implicit primary key for these tables in

order to efficiently refer to a given row when needed.

Population

Figure 2 illustrates the use of our schema for a simple case

of one API with two corresponding measurands: voltage

readings for Battery 1 (BAT1V) and Battery 2 (BAT2V).

As packets arrive every second, the ingest process stores

each one in the packet table which also adds an internal

numeric ID. The soh_changeonly table stores the first

occurrence of each measurand followed by its changes.

Upon ingest completion, the soh_summary table is

populated with the corresponding aggregate values.

Packet

Packet_ID number;

API number;

Packet_utm number;

SOH_Summary

Mnem_ID number;

BeginTime timestamp;

EndTime timestamp;

MinValue string;

MaxValue string;

MeanValue string;

StdDevValue number;

NumSamples number;

SOH_ChangeOnly

SOHData_ID number;

Mnem_ID number;

API number;

Mnem_utm number;

EU_Num number;

EU_Str string;

Mnemonic

Mnem_ID number;

Changed date;

MnemName string;

Subsystem string;

TableName string;

API number;

MnemType string;

Units string;

Scale string;

Active number;

Enum

Mnem_ID number;

Changed date;

StateStr string;

StateNum number;

Notice string;

Limits

Mnem_ID number;

Changed date;

Alarmhigh string;

Alerthigh string;

Alertlow string;

Alarmlow string;

InitialValue string;

MinValue string;

MaxValue string;

Ingests

Ingest_ID number;

Start_utm number;

Stop_utm number;

Start_SOHData_ID number;

Stop_SOHData_ID number;

Start_Packet_ID number;

Stop_Packet_ID number;

 3

Figure 2. Example Population

4. QUERYING

While querying summary and change data is

straightforward, querying the high-resolution data is more

nuanced. Unfortunately this query cannot be implemented

as a simple outer join of packet and soh_changeonly for

two reasons. First, the requested start time may not align

with a value in soh_changeonly, so the result set needs

the ability to look further back in time than originally

requested by the client. Second, the packet table has no

concept of a measurand value or name, so it must be

manually inserted in the results exclusive to the packet

table – that is, those results that do not reflect a change in

value.

These issues are illustrated in Figure 3, which presents an

outer join for BAT1V between 8:01 and 8:04 from our

example. Because BAT1V logged its most recent change of

1.5 prior to the requested start time, its value is missing

from the start of the dataset. This misalignment also results

in the omission of its name and any other pertinent

information until the first change is encountered at time

8:03.

Figure 3. Outer Join - Incorrect

As an alternative to the outer join, we implemented a

pipelined function called get_highres that takes three

parameters – mnemonic ID, start time, and end time – and

returns a result set. The function executes a union query on

soh_changeonly and packet for the applicable time

range, ordered by time ascending. If the first row does not

correspond to a soh_changeonly record, it runs a separate

query to seed the resultset with the most recent measurand

value prior to the start time. It then iterates through the

union, discarding redundant packet rows while matching

nonredundant packet rows with the previous measurand

value from soh_changeonly. For added efficiency, it

executes the union query as a bulk collect.

API 10 08:00

BAT1V = 1.5

BAT2V = 2.7

API 10 08:01

BAT1V = 1.5

BAT2V = 2.8

API 10 08:02

BAT1V = 1.5

BAT2V = 2.9

API 10 08:03

BAT1V = 1.6

BAT2V = 2.9

API 10 08:04

BAT1V = 1.6

BAT2V = 2.8

PACKET

ID API Time

100 10 08:00

101 10 08:01

102 10 08:02

103 10 08:03

104 10 08:04

SOH_CHANGEONLY

Mnemonic API Value Time

BAT1V 10 1.5 08:00

BAT2V 10 2.7 08:00

BAT2V 10 2.8 08:01

BAT2V 10 2.9 08:02

BAT1V 10 1.6 08:03

BAT2V 10 2.8 08:04

SOH_SUMMARY

Mnemonic TimeRange Min Max Avg Stddev Count

BAT1V 08:00-08:04 1.5 1.6 1.54 0.055 5

BAT2V 08:00-08:04 2.7 2.9 2.82 0.084 5

Ingest

PACKET outer join

SOH_CHANGEONLY

Mnemonic API Value Time

10 08:01

10 08:02

BAT1V 10 1.6 08:03

10 08:04

 4

This union query and transformation is shown in Figure 4,

producing the fully complete result set shown on the right-

hand side of the figure. Note that we leverage our

get_highres function for populating soh_summary and

for more sophisticated analysis activity, since it represents

the true uncompressed values as sampled on the spacecraft.

Figure 4. Union Query - Correct

5. PERFORMANCE CONSIDERATIONS

To make our schema manageable and efficient, we

incorporated table partitioning. We chose to partition the

soh_changeonly and packet tables by date-range not

only because users most frequently query current data, but

also because it provides a natural way to archive old data to

make space for new data. When available data file space

cannot accommodate a partition expansion, our system

exports the oldest partitions to a separate disk area and

deletes the obsolete data files. These partition exports

remain available if an analyst needs to query outdated high-

resolution data, at which point they can be imported on a

case-by-case basis.

We designed our system so the partition interval of the high-

resolution tables can be changed over time. For example, if

a partition interval of seven days is too large and results in

bloated data files and long-running partition scans for

queries, this interval can be reset to a fewer number of days.

For the soh_summary table, however, we kept the partition

interval fixed at one year. Our rationale is that space

missions are typically measured in years, and even though

most summary queries range from beginning of life to

current time, it still provides a way to divide the potentially

millions of rows into a manageable set of underlying data

files.

Ingest performance depends greatly on the location of the

logic for determining whether a new value for a given

measurand represents a change from its previous value. The

two choices are internal to the database, or external in a

separate module. For the internal method, the ingest module

sends every new value to the database, which then examines

it for change prior to insertion. In the external method, the

ingest module filters redundant values and sends only

changes to the database. We chose the external method to

minimize both database table lookups and network traffic.

6. IMPLEMENTATION

We deployed our system on a Dell PowerEdge R710 with

48G RAM and two 6-core hyper-threaded Intel Xeon CPUs

clocked at 3.33 GHz, running 64-bit Red Hat Enterprise

Linux Server 5.5 as the operating system. We attached two

Dell PowerVault MD1220 storage arrays for 12 TB of total

disk space, with 16 disks comprising the data file storage

area using a 1MB stripe size. We configured the data file

storage area to use the ext3 file system to leverage both

direct and asynchronous I/O. We chose Oracle 11g as our

DBMS due to its strong reputation for handling large

amounts of data and its highly configurable parallel query

execution environment. We implemented our ingest module

in C++ to maximize run-time performance, and our

administration utilities in Perl to leverage the rich set of

available database interface modules [1].

Our implementation supports a DOE remote sensing

spacecraft providing more than 29000 measurands divided

SOH_CHANGEONLY union

PACKET

Mnemonic API Value Time

10 08:01

10 08:02

BAT1V 10 1.6 08:03

10 08:03

10 08:04 Get_Highres

Mnemonic API Value Time

BAT1V 10 1.5 08:01

BAT1V 10 1.5 08:02

BAT1V 10 1.6 08:03

BAT1V 10 1.6 08:04
SOH_CHANGEONLY

(prior value)

Mnemonic API Value Time

BAT1V 10 1.5 08:00

 5

into 728 unique packet APIs. The data rates for each API

range from 1 sample per day to 64 Hz, with an average data

rate of 0.3 Hz. Our initial tests with lab data showed we

could expect several million rows of packet data daily,

with soh_changeonly requiring a row count 5x-10x that

of packet. As a result, we chose a partition interval of 1

day.

We made several internal database configuration changes to

maximize performance [2]. First and foremost, we

configured the database to run in noarchivelog mode to

eliminate the overhead of logging table insertions. While

this decision makes disaster recovery less elegant, our safety

net lies in the fact that we can always revisit the SOH flat

files to repopulate lost data.

Next, we configured Oracle’s parallel execution

environment. After experimenting with different settings

for the parallel_degree_policy initialization parameter, we

found that a setting of manual (versus automatic) best

leveraged our partition-based architecture. Surprisingly, the

automatic setting resulted in no query parallelization, even

when we lowered parallel_min_time_threshold to a value of

one. Finally, we configured the filesystemio_options

parameter to SetAll to ensure the database supported both

direct and asynchronous I/O, consistent with the ext3 file

system configuration [3].

With separate data and index tablespaces, this

implementation produces 732 data files annually. We

created three locally partitioned indexes: one for the

packet table and two for soh_changeonly. Taking into

account on-orbit data for the six months of operations

corresponding to February through July of 2011, our row

counts and corresponding file sizes are shown in Table 2.

Table 2. Row Counts

 Row counts File sizes

Object

type

Min

Max

Avg

Sum

Min

Max

Avg

Sum

Data 1.7M 31.3M 14.9M 5.4 B 48.4 MB 1.68 GB 769.5 MB 278.6 GB

Index 1.7M 31.2M 18.8M 10.2 B 86.8 MB 1.68 GB 1.01 GB 547.8 GB

7. RESULTS

We first analyzed the space savings of our compression

schema. A typical day on orbit creates 3M rows in packet

and 27M rows in soh_changeonly, and an aggregate total

of 150M distinct values from get_highres for all active

measurands. In other words, if instead we had chosen to

insert into a single table every value sampled for every

measurand, we would have inserted 150M rows daily.

From a row count perspective, which is closely tied to query

performance, this translates into a savings of 80%. To

quantify space savings on the file system, we note that the

packet and soh_changeonly tables require three and six

fields respectively, while the single table would require five

fields. By measuring the daily counts of populated fields,

our compression scheme requires 162M fields versus 750M

fields for the every-value approach. Our space savings is

therefore 78%.

We then timed our database with respect to insertions and

retrievals. Oracle’s statistic monitoring utilities show that

each row insert operation, implemented via a stored

procedure call from the ingest client, takes an average of 0.5

milliseconds (0.0005 sec) to complete. Empirically, after

accounting for ingest parallelization and process overhead,

we require 2 hours of wall clock time to ingest 24 hours of

SOH data, or a data-generation to data-consumption ratio of

12 to 1.

However, retrieval time is arguably the most important

metric, as it dictates how quickly an analyst can

troubleshoot a time-critical anomaly. Because retrieval via

get_highres is a union query of both packet and

soh_changeonly, we expected the required time to depend

on the number of rows in these tables for a given

measurand. We also expected the retrieval time to be

dependent on the number of partitions accessed.

With these factors in mind, we designed benchmarking

scenarios that covered three periods: one day (one partition),

one week (7 partitions), and one month (28-31 partitions).

We also chose three different packet rates for each scenario:

4 packets/sec, 1 packet/sec, and 0.2 packets/sec (or one

packet every five seconds). Finally, we chose measurands

with change counts that varied between 2 per day and 86000

per day (or one change per second). To avoid biasing our

results due to query caching, we queried a given time period

no more than once for any given packet API, and ultimately

we queried data dispersed throughout each of the six months

between February and July 2011. We used the timing

command in Oracle’s sqlplus utility to invoke the

get_highres procedure and return only the first row of

data. In this manner, we avoided including network or

output latency in the results.

 6

Figure 5. Retrieval Times - One Day

Figure 6. Retrieval Times - One Week

0

5

10

15

20

R
e

tr
ie

v
a

l
 S

e
co

n
d

s

Change Count

Data Period: One Day

0.2 pkt/sec 1 pkt/sec 4 pkt/sec

0
10
20
30
40
50
60
70
80

R
e

tr
e

iv
a

l
S

e
co

n
d

s

Change Count

Data Period: One Week

0.2 pkt/sec 1 pkt/sec 4 pkt/sec

 7

Figure 7. Retrieval Times - One Month

Figure 5 through Figure 7 show our results for these three

data periods and the various change counts of the associated

measurands. For a single day, a client can expect to wait

between 1 and 5 seconds for packet rates up to 1 packet/sec,

and between 5 and 16 seconds for the higher rate of 4

packets/sec. For a one-week period, these waits translate to

between 1 and 33 seconds for rates up to 1 packet/sec, and

between 44 and 73 seconds for the higher rates. To retrieve

an entire month of high-resolution data, the query times for

the lower packet rates range between 4 and 110 seconds,

while for the higher rate data this range varies from 4 to 6

minutes.

8. CONCLUSIONS

We were pleased to find that all our queries for 24

consecutive hours of data returned in only a few seconds for

our low and medium packet rates, and at most 16 seconds

for our highest rates. We were also pleased to see that a

query for an entire week of data was still under a minute for

low- and medium-rate data, and right around a minute for

high-rate data. In our experience, these are the queries that

an analyst will most often require during critical anomaly

troubleshooting, where the future viability of a multi-million

dollar orbiting asset hangs in the balance.

The longer period of one month understandably requires a

longer query time: approximately one minute for our low-

and medium-rate data, and approximately five minutes for

our high-rate data. We feel these times are acceptable,

especially since the operational need for such a query is

relatively low. After all, if an analyst needs to characterize

a measurand trend for a given month, he or she will most

likely query the soh_summary table, which will return its

results in just a few seconds even after years on orbit.

9. SUMMARY

Our SOH database satisfied all of its initial requirements

and continues to provide valuable results to the DOE

mission it serves. The next step is to fully leverage its

capabilities by discovering hidden trends and relationships

between measurands and hopefully warn of on-board issues

and anomalies before they occur. Toward this end, data

mining and other predictive analytic techniques appear to be

excellent candidates, and we look forward to exploring these

possibilities as our data set grows.

REFERENCES

[1] Perl documentation web site: perldoc.perl.org.

[2] Oracle® Database Administrator’s Guide 11g Release 2

(11.2), Oracle Corporation, April 2011

[3] Oracle® Database Performance Tuning Guide 11g

Release 2 (11.2), Oracle Corporation, July 2011.

0

50

100

150

200

250

300

350

400

R
e

tr
ie

v
a

l
S

e
co

n
d

s

Change Count

Data Period: One Month

0.2 pkt/sec 1 pkt/sec 4 pkt/sec

 8

BIOGRAPHIES

Steve Lindsay received a B.S. in

Computer Science from The University

of Kansas in 1989, and an M.S. in

Computer Science from the Air Force

Institute of Technology in 1994. He

served in the U.S. Air Force for 9 years

as a software engineer and systems

analyst, and he has been with Sandia

National Laboratories for more than 13 years. During his

20 years in the space domain, he has worked on

numerous satellite ground station initiatives for both the

Department of Defense and the Department of Energy in

roles varying from software development, system

engineering, and data management.

Clark Poore received a B.S. in

Computer Science from the University

of New Mexico in 1999, and an M.S. in

Computer Science from the New

Mexico Institute of Mining and

Technology in 2002. He has been a

software engineer with Sandia

National Laboratories for more than

13 years. He has worked on several satellite ground

station programs in software design and development

with an emphasis in management, visualization, and data

mining of the large volumes of data generated by satellite

systems.

