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Porous materials are everywhere

• Many types of porous materials
– Rocks/Soil
– Cork
– Foams
– Ceramics

• Uses
– Petroleum Engineering
– Civil Engineering
– Electronics
– Filters
– Padding/Cushions

• Even a Journal “Advanced Porous 
Materials”

• Using Shocks on these porous materials 
allow us to explore a larger domain of 
phase space.

Porous Tantala

R. Ramprasad, J App Phys, Vol. 94, No. 9. (Nov 2003)
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Using DFT/QMD to model porous tantala

• Computational setup
–VASP
–Basis cell
–Simulation methods

• Gruneisen Gamma simulations
–Gruneisen EOS

• Hugoniot Calculations

• Correcting for surface energy

• Comparison with Data

• Conclusions
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Assemble a reference system and use 
molecular dynamics to equilibrate.

• First-principles simulations DFT
– VASP – plane-wave code w PAW core-functions
– Use of DFT codes simulating warm dense matter

• M. P. Desjarlais Phys. Rev. B 68, 064204(2003)
– Great care in convergence

• A. E. Mattsson et. al. Modelling and Simulation in 
Material Science and Engineering 13, R1 (2005)

• Assemble reference system
– 32 tantalum atoms and 80 oxygen atoms.
– Baldereschi mean value k-point (¼, ¼, ¼)
– LDA potential with 11 electron tantalum pseudo 

potential and 6 electron oxygen potential
– Allowed to equilibrate to a constant mean pressure 

and energy
– Equilibrated for multiple ps
– Cutoff energy at 600 eV
– Standard deviation of energy and pressure <1%
– Block averaging to reduce correlation

Quantum molecular 
dynamics (QMD) simulations 
give thermo-physical 
properties
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Calculate a broad range of pressures and 
energies for Gruneisen 

• A broad range of pressure and energy isotherms

• Calculate from

•  is not constant until slightly compressed

• Mie-Gruneisen EoS

• Us and Up from experimental data

• On Hugoniot, the additional energy term should 
be zero

• Tantala experimental data by Vogler et. al. has 
initial densities at ~1.13, ~3.0, and ~7.4 g/cc
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Shock compression is a way to investigate thermo-
physical properties of matter at extreme pressures

• Conservation of mass, energy, and momentum lead to 
the Rankine-Hugoniot condition for the initial (1) and 
final state (2)

• E - internal energy

• P - pressure

• v – specific volume

• Calculate the isentrope using the same jump 
relation but as a series of small shocks
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First-principles thermodynamics: use interpolation 
between points to obtain the Hugoniot

• A series of equilibration simulations 
at constant temperature and 
different densities constitutes a 
DFT/QMD database

• For each temperature, we extract a 
pressure and energy profile

• The Rankine-Hugoniot relation is 
solved for each 
density/pressure/energy point
– Interpolate in Rankine-Hugoniot space for 

density where relation is zero
– Use this density to interpolate in pressure 

and energy space.
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Comparison of VASP simulated and 
experimental Hugoniot points for tantala
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The real systems are inhomogeneous: voids and flakes, it 
is necessary to take the surface energy into account.

• All of the initial densities start 
below solid (flakes and voids).

• Surfaces take more energy to 
maintain than internal bulk 
structure.

• Taking it into account in simulations
– Create a basis cell that is large enough to 

contain internal and surface atoms but 
small enough to run

– The energy reported is larger than the 
solid energy found in the earlier reference 
simulations

– This difference is the “surface” energy.
– Can also do single surface with multiple 

layers under with slightly different 
answers than a small block in void

Simulation of a periodic system mimicking 
small flakes of tantala surrounded by void
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Creating a Hugoniot plot based on many initial 
densities and including surface energy.

• The strategy for modeling shock 
compression of porous is 
accounting for a more complete 
energy balance of the Rankine-
Hugoniot relation by including the 
surface energy

• =the difference between reference 
energy and surface energy
– The same  is used for all densities

• Esolid is the energy at the reference 
density (8.36 g/cc 300 Kelvin) from 
VASP

• Psolid is the pressure and usually 
NOT Zero (although experimentally 
it should be)

• V0 is the starting experimental 
volume 0  E  E0 

V00

V0

1




















P P0

2









 V00 V 



11

Analyzing the tantala experimental results in terms 
of an effective EOS - Mie Gruneisen 

with surface energy corrections.

• Added the surface energy term to the EOS 
corrects Mie-Gruneisen to more closely 
match experimental data

• Where E is the off principal Hugoniot energy 
term and is of the form

• As can be seen, more work needs to be done 
on applying the surface energy for better EOS
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Conclusions

• We have developed an approach for simulating the Hugoniot for 
porous materials using first-principles methods (DFT/QMD)

• Accounting for the surface energy is required to get the porous 
Hugoniot correct
– We formulated a ”Surface energy correction” inspired model to capture the effect
– The method has inherent limitations, for example, polyethylene and TPX are 

materials with very small or no surface energy

• DFT/QMD was employed to calculate the Gruneisen  for tantala
under extreme conditions
–  is dependent on density and cannot be taken as constant
– These calculations can be continued  to obtain improved statistics


