

SCCM, Seattle WA, July 10, 2013

Hugoniot Simulations of Porous Tantala (Ta₂O₅)

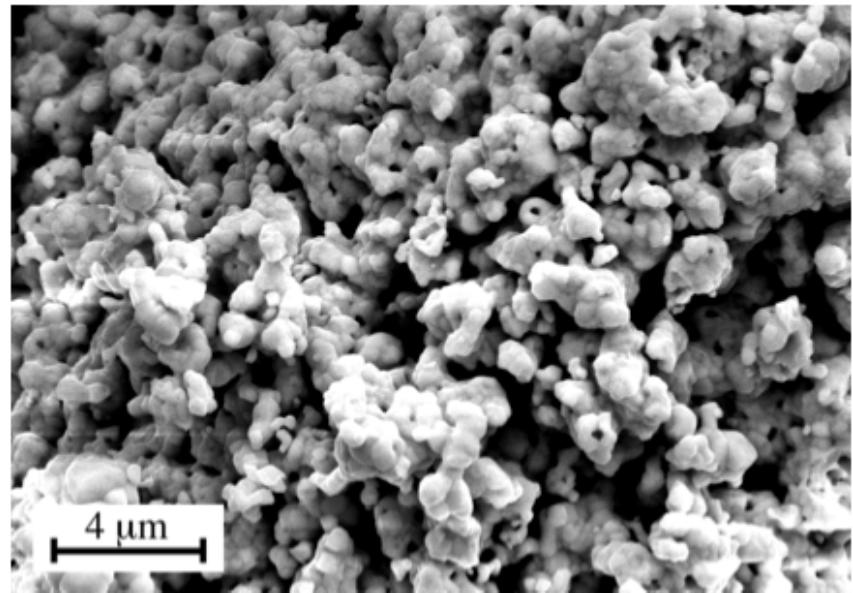
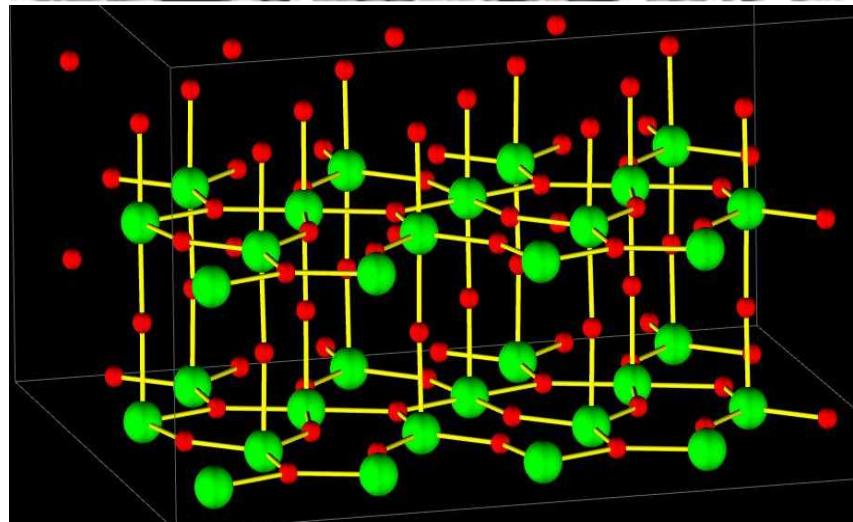
Kyle Cochrane, Tracy Vogler,
Michael Desjarlais, Thomas Mattsson

Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Porous materials are **everywhere**

Porous Tantala

- Many types of porous materials
 - Rocks/Soil
 - Cork
 - Foams
 - Ceramics
- Uses
 - Petroleum Engineering
 - Civil Engineering
 - Electronics
 - Filters
 - Padding/Cushions
- Even a Journal “Advanced Porous Materials”
- Using Shocks on these porous materials allow us to explore a larger domain of phase space.



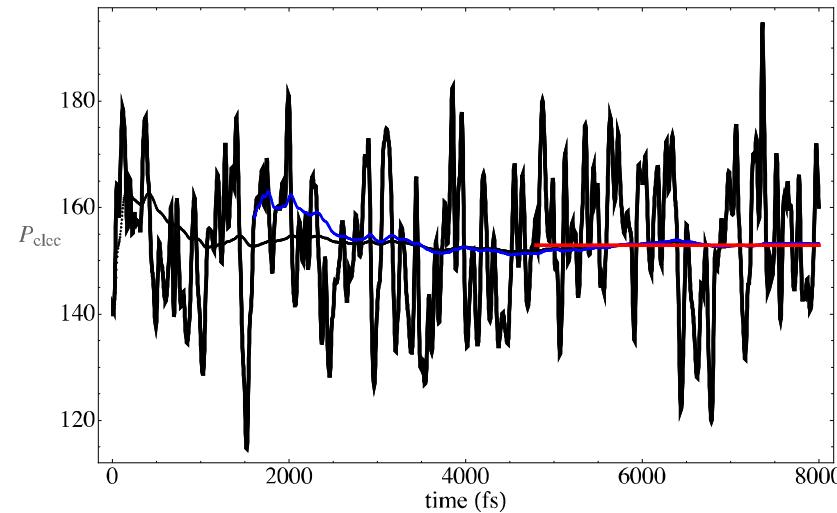
R. Ramprasad, J App Phys, Vol. 94, No. 9. (Nov 2003)

Using DFT/QMD to model porous tantalum

- Computational setup
 - VASP
 - Basis cell
 - Simulation methods
- Gruneisen Gamma simulations
 - Gruneisen EOS
- Hugoniot Calculations
- Correcting for surface energy
- Comparison with Data
- Conclusions

Assemble a reference system and use molecular dynamics to equilibrate.

- First-principles simulations DFT
 - VASP – plane-wave code w PAW core-functions
 - Use of DFT codes simulating warm dense matter
 - *M. P. Desjarlais Phys. Rev. B 68, 064204(2003)*
 - Great care in convergence
 - *A. E. Mattsson et. al. Modelling and Simulation in Material Science and Engineering 13, R1 (2005)*
- Assemble reference system
 - 32 tantalum atoms and 80 oxygen atoms.
 - Baldereschi mean value k-point ($\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$)
 - LDA potential with 11 electron tantalum pseudo potential and 6 electron oxygen potential
 - Allowed to equilibrate to a constant mean pressure and energy
 - Equilibrated for multiple ps
 - Cutoff energy at 600 eV
 - Standard deviation of energy and pressure <1%
 - Block averaging to reduce correlation



Quantum molecular dynamics (QMD) simulations give thermo-physical properties

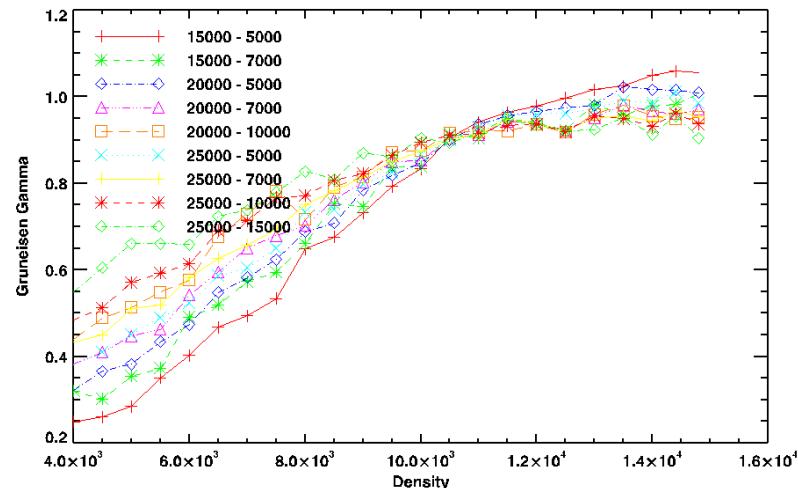
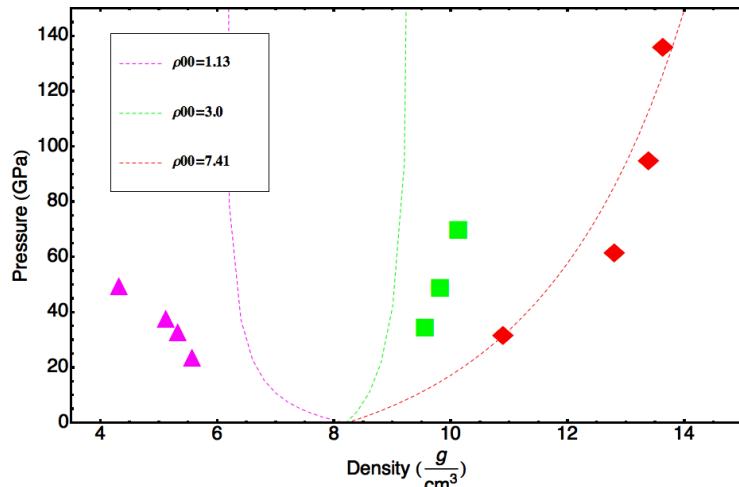
Calculate a broad range of pressures and energies for Gruneisen Γ

- A broad range of pressure and energy isotherms
- Calculate Γ from $\Gamma = V \frac{dP/dT}{dE/dT}$
- Γ is not constant until slightly compressed
- Mie-Gruneisen EoS

$$P_H = \frac{\rho_o C_o^2 \chi \left[1 - \frac{\Gamma}{2} \chi \right]}{(1 - \eta \chi)^2} + \Gamma \rho E \quad \chi = 1 - \frac{\rho_o}{\rho} \quad \eta = dU_s/dU_p$$

$$P_{H,P} = \frac{P_H \left(1 + \frac{\Gamma}{2} \left(1 - \frac{\rho}{\rho_0} \right) \right)}{1 + \frac{\Gamma}{2} \left(1 - \frac{\rho}{\rho_0} \right)}$$

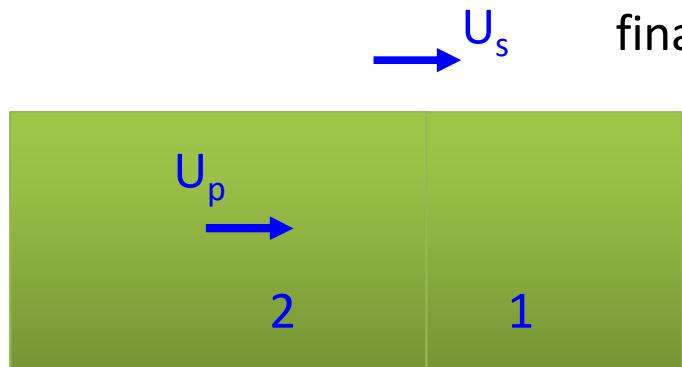
- U_s and U_p from experimental data
- On Hugoniot, the additional energy term should be zero
- Tantala experimental data by Vogler et. al. has initial densities at ~ 1.13 , ~ 3.0 , and ~ 7.4 g/cc



$P_{H,P}$ from Molodets, Combustion, Explosion, and Shockwaves, 42. 3. 2006

Shock compression is a way to investigate thermo-physical properties of matter at extreme pressures

- *Conservation of mass, energy, and momentum* lead to the **Rankine-Hugoniot condition** for the initial (1) and final state (2)



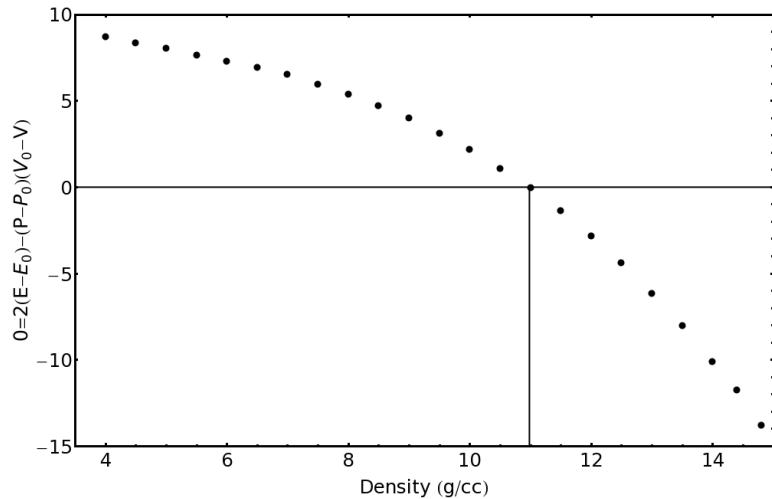
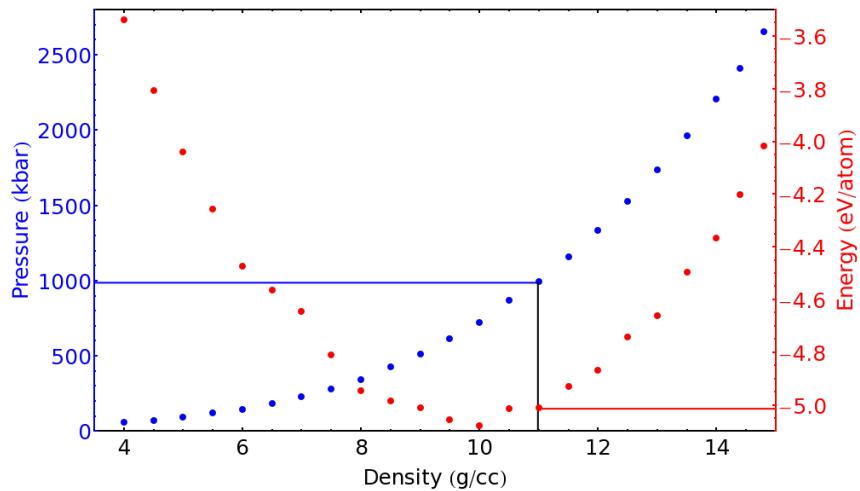
- E - internal energy
- P - pressure
- v – specific volume

$$2(E_2 - E_1) = (P_2 + P_1)(v_1 - v_2)$$

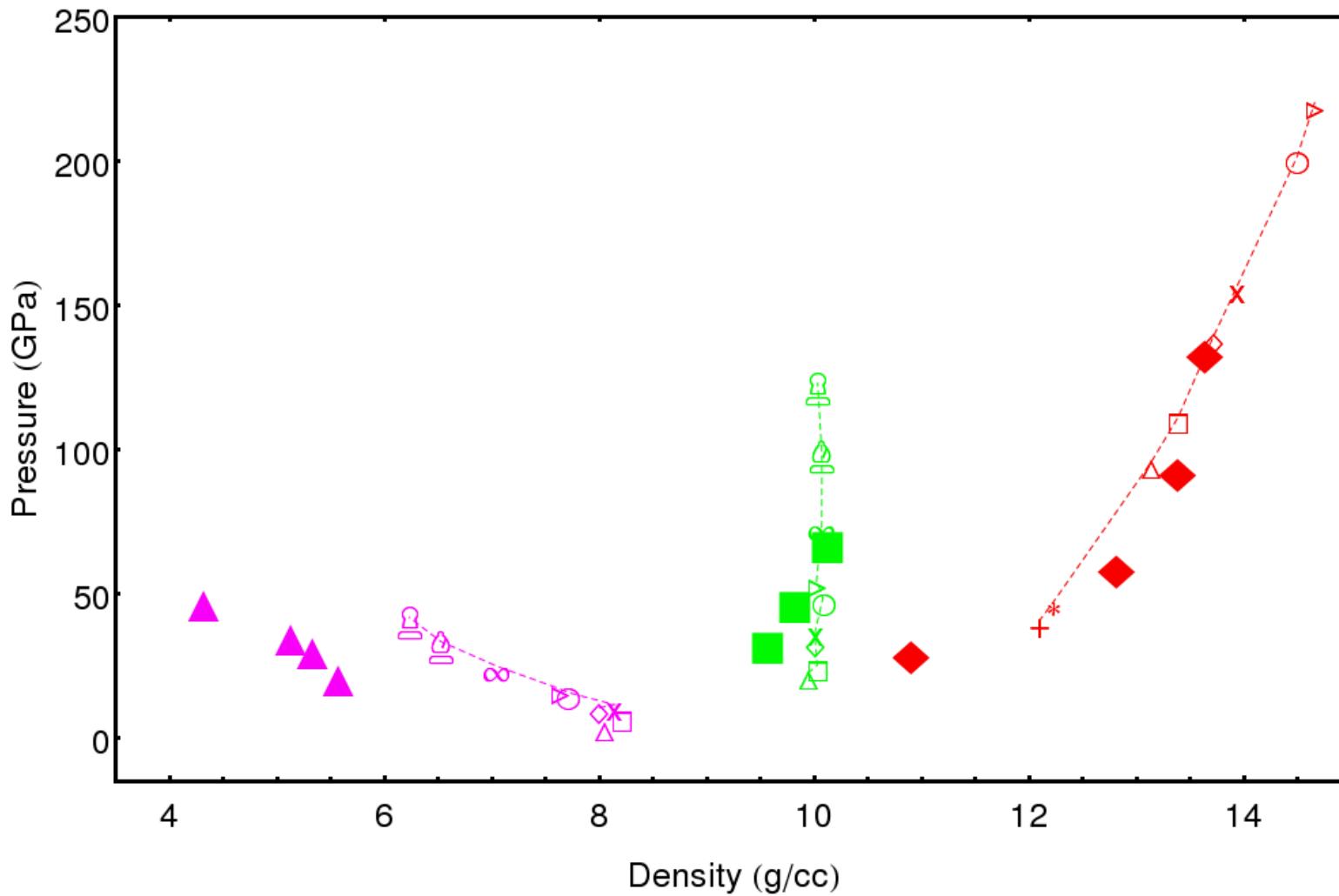
- *Calculate the isentrope using the same jump relation but as a series of small shocks*

First-principles thermodynamics: use interpolation between points to obtain the Hugoniot

- A series of equilibration simulations at constant temperature and different densities constitutes a DFT/QMD database
- For each temperature, we extract a pressure and energy profile
- The Rankine-Hugoniot relation is solved for each density/pressure/energy point
 - Interpolate in Rankine-Hugoniot space for density where relation is zero
 - Use this density to interpolate in pressure and energy space.

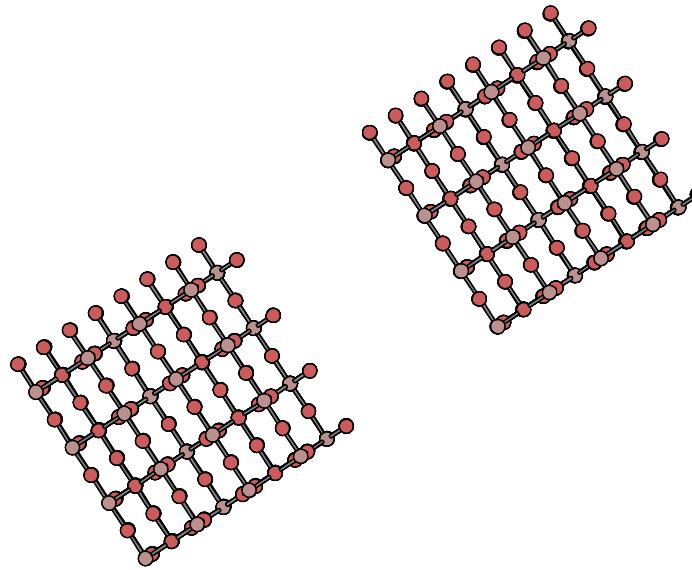


Comparison of VASP simulated and experimental Hugoniot points for tantalum



The real systems are inhomogeneous: voids and flakes, it is necessary to take the surface energy into account.

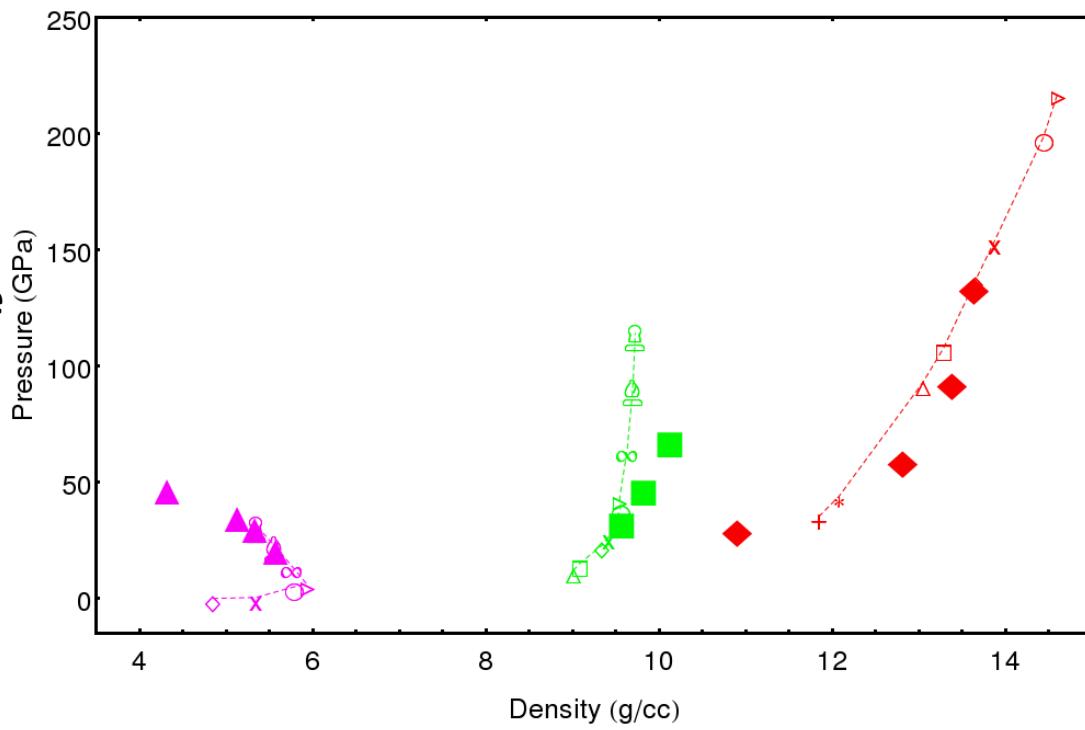
- All of the initial densities start below solid (flakes and voids).
- Surfaces take more energy to maintain than internal bulk structure.
- Taking it into account in simulations
 - Create a basis cell that is large enough to contain internal and surface atoms but small enough to run
 - The energy reported is larger than the solid energy found in the earlier reference simulations
 - This difference is the “surface” energy.
 - Can also do single surface with multiple layers under with slightly different answers than a small block in void



Simulation of a periodic system mimicking small flakes of tantalum surrounded by void

Creating a Hugoniot plot based on many initial densities and including surface energy.

- The strategy for modeling shock compression of porous is accounting for a more complete energy balance of the Rankine-Hugoniot relation by including the surface energy
- δ =the difference between reference energy and surface energy
 - The same δ is used for all densities
- E_{solid} is the energy at the reference density (8.36 g/cc 300 Kelvin) from VASP
- P_{solid} is the pressure and usually NOT Zero (although experimentally it should be)
- V_0 is the starting experimental volume



$$0 = \left(E - E_0 - \delta \left[\frac{V_{00}}{V_0} - 1 \right] \right) - \left(\frac{P + P_0}{2} \right) (V_{00} - V)$$

Analyzing the tantalum experimental results in terms of an effective EOS - Mie Gruneisen Γ with surface energy corrections.

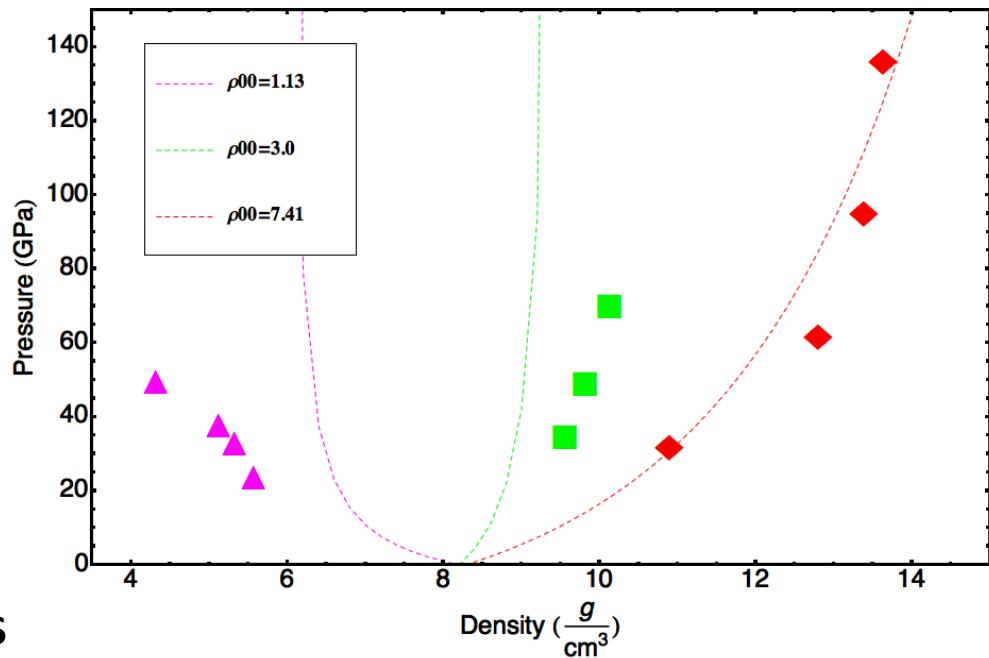
- Added the surface energy term to the EOS corrects Mie-Gruneisen to more closely match experimental data

$$P_H = \frac{\rho_o C_o^2 \chi \left[1 - \frac{\Gamma}{2} \chi \right]}{(1 - \eta \chi)^2} + \Gamma \rho E$$

- Where E is the off principal Hugoniot energy term and is of the form

$$E = \delta \left[\frac{V_{00}}{V_0} - 1 \right]$$

- As can be seen, more work needs to be done on applying the surface energy for better EOS



Conclusions

- We have developed an approach for simulating the Hugoniot for porous materials using first-principles methods (DFT/QMD)
- Accounting for the surface energy is required to get the porous Hugoniot correct
 - We formulated a "Surface energy correction" inspired model to capture the effect
 - The method has inherent limitations, for example, polyethylene and TPX are materials with very small or no surface energy
- DFT/QMD was employed to calculate the Gruneisen Γ for tantalum under extreme conditions
 - Γ is dependent on density and cannot be taken as constant
 - These calculations can be continued to obtain improved statistics