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ABSTRACT

Several studies have shown that global 3D models of the compression
wave speed in the Earth’s mantle can provide superior first P travel time
predictions at both regional and teleseismic distances. However, given the
variable data quality and uneven data sampling associated with this type of
model, it is essential that there be a means to calculate high-quality
estimates of the path-dependent variance and covariance associated with
the predicted travel times of ray paths through the model. In this paper, we
show a methodology for accomplishing this by exploiting the full model
covariance matrix.

Typical global 3D models have on the order of 1/2 million nodes, so the
challenge in calculating the covariance matrix is formidable: 0.9 TB storage
for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked
matrix solution technique. With our approach the tomography matrix (G
which includes Tikhonov regularization terms) is multiplied by its transpose
(G'G) and written in a blocked sub-matrix fashion. We employ a distributed
parallel solution paradigm that solves for (G'G)! by assigning blocks to
individual processing nodes for matrix decomposition update and scaling
operations. We first find the Cholesky decomposition of G'G which is
subsequently inverted. Next, we employ OOC matrix multiplication
methods to calculate the model covariance matrix from (G’G)?! and an
assumed data covariance matrix. Given the model covariance matrix we
solve for the travel-time covariance associated with arbitrary ray-paths by
integrating the model covariance along both ray paths. Setting the paths
equal yields the variance for that path.
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SALSA3D

Depth =100 km

SALSA3D (top) has strong heterogeneity relative
to the AK135 starting model, and hence results
in significant travel time differences relative to
AK135 predictions (right). Clearly, the
uncertainty associated with these predictions is
more complex than a simple distance-
dependence (below); it must reflect the source
region sampling .
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PROBLEM DEFINITION

Standard solution given an m X n set of travel time path length weights,
A, associated residuals, Ad, and a set of constraints at each node, alL
yields
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2D Example Solution

true model, with 300 rays (fine)

coarse starting model, rms 1.296
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If we assume

epxs = 0, the
calculated model
variance is the
opposite of what
we would expect
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OUT-OF-CORE Matrix Calculations

We solve for resolution and covariance using direct methods (Cholesky

decomposition, forward and backward substitution) to obtain the inverse
( TG)_lwith OOC methods. For example, consider matrix multiplication in
an OOC fashion. Assume a 4x4 matrix blocked into 2x2 elements for each

k=n—1
C. = aikb,g.

y
k=0

block. Each element of ¢ is given by the expression
to the left. All elements in a block can be solved for
by simply multiplying appropriate blocks as
illustrated below.
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All OOC block processes are divided amongst many cores in a distributed
parallel manner. A GUI was developed to enable progress tracking of the
entire OOC solution.
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RESOLUTION and COVARIANCE
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Plotting the diagonal of
the model resolution
matrix R gives us a much
more direct assessment
of how well and where
our model is resolved
compared to the
traditional checkerboard
approach.

We can also plot the
diagonal of the model
covariance matrix, i.e.
the model variance. By
assuming &, # 0, we
get a result that s
consistent  with  the
model resolution result.
The value chosen for €,
determines the scaling
of the variances.

Analyzing the off-
diagonal terms for the
model covariance
matirx, i.e. the
covariances, is more
difficult. To plot the

information on a map,
we have to chose one
particular model node
for which all the other
nodes show covariances.
Here we choose two
nodes: one in the
mantle beneath Sarajevo
(left) and one in the
mantle beneath Hawaii
(right).
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TRAVEL TIME UNCERTAINTY

With the model covariance matrix available, we can calculate uncertainty (variance) for any path
through the model. The calculation is simple in principle but difficult in practice due to the size
of the covariance matrix, hence it must be done OOC. The image below shows the results of a
28+ peta flop calculation of travel time uncertainties for ray paths through SALSA3D from a
fictitious station at Sarajevo to a surface grid of source positions out to distance of 100 degrees.
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Our surface has some distracting features related to
paths that pass entirely though uncalibrated parts of our

models (the red patches) and to the model gridding P /\ SRR AR Ranny
(ring-like features and spoke-like features centered on I /‘ P A
the station point from which all rays emanate). Ignoring ) S A

these, we can see two important trends:

1. Travel time variance increases with path length (see
figure to the right), though the relationship is not
linear. This is because the longer paths sample
deeper in the Earth, and our a priori slowness
variance constraint decreases with depth. This
relationship is very much like the standard distance-
dependent relationship that is used for event
location.

2. Travel time variance decreases substantially in
calibrated areas (i.e. areas with sources used in the
tomography). This is the effect we were expecting to
see. Predictions through a tomographic model
should be much more certain along paths that were
represented in the tomography.
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Conclusions

By using OOC methods to leverage our 400+ node distributed computing resource, we have
succeeded in using the full model covariance matrix to calculate the actual path-dependent travel time
variances for the SALSA3D model. Our results clearly show the expected relationship to represented
source regions. Future work will focus on minimizing nuisance artifacts related to gridding.
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