
Percival: Blinded Searching of a Secret Share Archive

Joel C. Frank1, Shayna M. Frank1, Ian F. Adams1, Thomas M. Kroeger2, Ethan L. Miller1

1Storage Systems Research Center, University of California, Santa Cruz, CA 95064, USA
2Sandia National Laboratories, Livermore, CA 94550, USA∗

Abstract
The eventuality of keys being lost, stolen, or otherwise

revealed to unauthorized parties makes fixed key encryp-
tion ill suited for archival storage. Previous research in-
vestigated archives based on secret sharing, which re-
moves the issues present in fixed key encryption, but
such archives are difficult to search without compromis-
ing security.

To address this need, we present Percival, a search-
able archive based on secret sharing that leverages pre-
indexing, keyed hashing and Bloom filters to enable
blinded searching as well as to limit the release of in-
formation in the event a key is revealed to an attacker.
The addition of chaff during ingestion and searching
operations further obfuscates the terms stored in each
Bloom filter and prevents correlation across compro-
mised repositories. During search operations, the archive
responds with a representational result set that allows the
client to quickly determine the actual search results yet
the bulk of the computational burden remains with the
repository.

1 Introduction

Fixed key encryption is ill suited for archival storage due
to the limitations surrounding key management often re-
sulting in lost, stolen, or discovered keys. Secret share
archives show promise since the data is split out across
multiple repositories, as well as removing the necessity
for a key. However searching such an archive is difficult
to accomplish without compromising security.

We present Percival, a searchable archive based on
Shamir’s secret sharing [15]. Percival pre-indexes the

∗Sandia National Laboratories is a multi-program laboratory man-
aged and operated by Sandia Corporation, a wholly owned subsidiary
of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-
94AL85000.

data and combines it with a Bloom filter containing key-
words ingested via keyed hashing. This design enables
blinded searching, which means the data custodians are
blinded to the contents of the search as well as remaining
blind to the data in the archive. Percival has the addi-
tional benefit of key release not resulting in a catastrophic
release of data, which is common for standard key-based
encryption.

The keywords stored in each Bloom filter are further
obfuscated by adding chaff during both data ingestion
into the archive and during search operations. This keeps
an attacker from learning the relative number of key-
words stored in each filter, which could possible reveal
something about the underlying data, as well as colluding
in order to make correlations across compromised repos-
itories.

Typically in a secret share archive, client side data
reconstruction entails retrieving the shards from each
repository, requiring high bandwidth and computational
load on the client. Percival circumvents that require-
ment by having the repositories respond to search re-
quests with the header of the shard, instead of the shard
itself. This header represents the shard insofar as if the
header is able to be reconstructed, then the shard will
be as well, which minimizes bandwidth usage, greatly
lessens the client’s computational load, and improves se-
curity by allowing the Bloom filters and headers to be
stored physically separate from the shards themselves.

The rest of the paper is organized as follows: We
present relevant background material in section 2. Sec-
tion 3 details the attack scenarios pertaining to this study.
Section 4 introduces the basic overall design, its perfor-
mance evaluation, and threat assessments for each design
consideration. Section 5 discusses the ramifications of
adding chaff into the system, the benefits of using head-
ers during reconstruction are presented in section 6, fu-
ture work in Section 7, and we conclude in Section 8.

1

SAND2013-8322C

2 Background

In this section, we provide the background and re-
lated work relevant to this study and the new searching
schemas, starting with the need for information sharing,
secret sharing and related terminology, continuing with
the benefits and limitations of Bloom Filters, and finish-
ing with related work in the area.

2.1 Information Sharing

There will always be a vital need to protect informa-
tion, but facilitating the correlation of overlapping data
by enabling information sharing can be far more power-
ful in ways that can enable trusted communication be-
tween distrusting parties.

Percival focuses on the ability to make a secret share
archive searchable in such a way that the custodian of the
data is blinded to the data involved in the search as well
as remaining blinded to the data in the archive. While
Percival can play a key role in the fundamental utility of
a secret share archive, this new unique ability for blinded
search can also be a valuable tool in trusted information
sharing.

It is not uncommon to have multiple entities with lim-
ited mutual trust wanting to share information when there
is an overlap. For example, the Federal Bureau of Inves-
tigation (FBI) and the Central Intelligence Agency (CIA)
have very different jurisdictions; one looks inward while
the other looks outward. As a result, on one hand the
two organizations have strong legal restrictions on their
ability to share information, but on the other hand have
a strong need to share information in order to carry out
mission critical tasks. Both organizations may have in-
formation on a subject that if correlated would enable
both to carry out their missions and prevent an incident,
but separately both remain impaired. Percival would al-
low both organizations to share information while main-
taining data privacy.

2.2 Secret Sharing

Secret sharing [15] is an approach to information security
based on polynomial interpolation whereby a given piece
of data is encoded and split into N pieces by creating
N polynomial equations, each with order T − 1, where
T ≤ N. The data can then be reconstructed if at least T
of these equations is known.

The strength of this approach is twofold. First, any
attacker who gains fewer than T pieces has gained no in-
formation, as they effectively have an under-constrained
set of equations, making all values of the original data
equally likely. For example, Figure 1 shows when two

points are known, all possible values for the y-intercept,
or secret, are still valid.

Figure 1: An infinite number of polynomials are equally
likely to cross two given points [22].

Second, it has no reliance on keyed encryption, which
is ideal for long-term security, as given enough time and
computing power, any encryption can be broken. Secret
sharing on the other hand is impossible to break without
acquiring the requisite number of data pieces [15].

Secret sharing is straightforward to implement and rel-
atively fast to encode, with a worst case running time of
O(n log2n), but it does incur high storage overhead for
the security it offers. Secret sharing a piece of data into
N pieces necessitates a storage blow-up of N times since
each piece is the same size as the original data. Relatedly,
there are also trade-offs between ease of access, over-
head, and security. A high value for both N and T can
make a piece of data very secure, but awkward to access
with very high overhead. Conversely, a low value for N
or T can reduce the overhead and security.

Of note is the fact that additional pieces may be gen-
erated from the same originating data without having
to access the ones previously generated or re-encoding
the data from scratch, since it only involves adding ad-
ditional equations to the desired sharing scheme. This
scenario is useful when pieces have been lost or compro-
mised, or when a key rotation policy is in place.

2.3 Terminology

Throughout this paper we will use the following terms in
regards to Percival and secret sharing:

Shard: The name given to each piece of data gener-
ated as a result of splitting a piece of data using the secret
sharing algorithm, e. g. A 10:6 splitting scheme generates
10 equally sized shards with only 6 of them required for
reconstruction.

Sibling Shard: A shard is a sibling of another shard if
they are both generated from the same piece of data.

Client: An entity connected to the remove archive that
has access to each of the repository keys, keyr, and initi-
ates blinded searches.

2

Repository: A remote server housing a collection of
shards, none of which are sibling shards. No communi-
cation occurs between repositories.

Custodian: The entity who manages a repository. Un-
der normal circumstances, a custodian manages no more
than a single repository.

Archive: The collection of all repositories in the sys-
tem.

Stem: Stemming is the process of stripping off all con-
textual based information from a word, resulting in a
stem that is not necessarily an English word, but is iden-
tical regardless of contextual use of of the original word.
The stem of a word is not the same as its root, e. g. The
stem of experiment, experiments, and experimentation is
experi.

Term: A single stemmed word. Generated during file
ingestion as well as during the search process.

Chaff: A set of additional random bits added to a sin-
gle Bloom filter. Chaff added to one filter will always
differ from that added to a different filter.

Bit Group: A group of bits set in a Bloom filter that
together represent a single entry or term.

Bit Group Coincidence: The relative number of bits
that two bit groups have in common, e. g. if two bit
groups share three out of four bits, they have a bit group
coincidence of 75%.

Bit Group Uniqueness: The inverse of bit group coin-
cidence. The uniqueness of a bit group is the probability
that, given a subset of bits from the bit group, the bits can
be used to uniquely identify the term represented by the
bit group.

2.4 Bloom Filter
A Bloom filter is a probabilistic data structure used for
set membership. The key characteristic of Bloom filters
is that while false positives are possible, false negatives
are not. Furthermore, it is possible to add members to
the filter, but once added, they cannot be removed.

Bloom filters are used when pre-indexing each piece
of data to be ingested into the archive by attaching a
unique Bloom filter to each shard, as well as during the
blinded searching process. Both of these uses are dis-
cussed in detail in Section 4.

In practice, Bloom filters are implemented as an array
of bits. In order to insert a value into the filter, the value
is passed through k hash functions, the output of each is
an index to be set to 1 in the filter. There are several core
factors that directly affect the false positive rate of the
filter, which include the following:

• m : the size of the filter

• n : the typical number of values to be stored in the
filter

• k : the number of hash functions used to ingest each
value

If the size of the filter, m, is too small in comparison
to the expected number of values to be stored, n, then the
filter will become saturated, i. e. most or all of the po-
sitions in the filter will be set to 1. When that happens,
the false positive rate approaches 100% and the filter be-
comes useless.

To prevent this, equation 1 is used to find the optimal
number of hash functions, k, for a given ratio of filter
size, m, to the number of entries in the filter, n, while
minimizing the probability false positives, p.

k =
m
n
(ln 2) (1)

ln p =−m
n
(ln 2)2 (2)

However, since at design time that ratio is typically not
known, equations 1 and 2 need to be used in conjunction
to determine both the filter size, m, and the optimal num-
ber of hash functions, k, given only the typical number of
entries to be stored in the filter, n. Note that equation 1
assumes optimal p.

The blinded search algorithm depends on both union
and intersection operations to be performed on the filters,
both of which can be performed using a bitwise OR and
AND respectively. Additionally, the union of filters is
lossless, i. e. the resultant of the union operation is the
same as the Bloom filter created by inputing all of the
values present in each candidate Bloom filter.

2.5 Related Work
Storer et al. developed a system, POTSHARDS [18],
which is the current approach for long term storage when
information-theoretic security is required. It is based
upon Shamir’s work with secret sharing [15], and strives
to reduce unauthorized exposure of information while
maximizing authorized availability in a compromised en-
vironment.

The Percival percival project builds on POTSHARDS.
The case for our approach focuses on data archives that
can operate through system compromises and provide a
resilience to insider threat [12]. Some of the first work to
support this approach and show the key need for secure
operations in spite of adversarial compromise was done
by Wylie et al. [23].

An alternative to secret share archives was developed
by Zage et al. [24], in which an algebraic-based encod-
ing solution, Matrix Block Chaining (MBC), is used to
“maintain data security and protocol performance when
encoding large files. The design of MBC allows for en-
coding multiple partitions of the original data in parallel

3

as subsequent encoding operations are not dependent on
the output of previous encoding steps. [24]” Their tech-
nique was developed specifically for cloud storage, how-
ever, and as such does not maintain data availability in a
compromised environment.

Due to the rise of privacy issues surrounding data ag-
gregation and commercial storage, there has been a sig-
nificant amount of work done in recent years regarding
encrypted searching [1–7, 9, 11, 16, 21]; all of which rely
on the inherent security of the encryption method itself,
and since given enough time and computing power most
fixed key encryption methods will be broken, they are es-
sentially delayed release. As a result, they are not well
suited for applications when data lifetime is measured in
decades.

By way of comparison, Octopus, which was developed
by Wang et al. [20], does not rely on encryption. It is
an anonymous way for P2P nodes to communicate via a
distributed hash table that provides a mechanism for in-
dividual queries to be sent along “multiple anonymous
paths, [while introducing] dummy queries to make it dif-
ficult for an adversary to learn the eventual target of a
lookup. [20]” Our Bloom filter based design precludes
the need to use dummy queries as a means of obfusca-
tion since there is no inherent correlation of Bloom filter
indexes to search terms.

Chang et al. [4] developed an approach using bit
masked dictionaries to enable searching of encrypted re-
mote data without revealing information to the data’s
custodian. The outcome is similar to using a Bloom fil-
ter based system where a single bit is used to represent
a term stored in the filter. The main difference is that it
does not address conjunctive or disjunctive searches, nor
does it address mapping multiple terms to the same bit in
the dictionary.

3 Threat Model

3.1 Attack Scenarios
Information exposure to unauthorized authorities is the
primary threat on which this study focuses. It is assumed
that an attacker has unlimited computing power and stor-
age, as well as unlimited time to carry out an attack, since
Percival’s intended use is for long term storage. Fur-
thermore, in applicable attack scenarios, an attacker has
the ability to save an unlimited number of past search
queries.

The primary attack scenario we will address at length
in each of the design sections, since it is the most plau-
sible, is when an attacker controls a single repository.
This scenario can also take several forms, including the
site system administrator who has an operational need
to have access to the repository, the janitorial staff that

needs physical access to the repository, or even a dis-
gruntled insider, as seen in recent news events.

The other attack scenario considered in this study is
when an attacker has compromised T − 1 repositories.
Even though a base assumption of this work is that an at-
tacker has full access to at most T −1 repositories, com-
promising a repository is not a binary action. As a result,
if T − 1 sibling shards could be correlated, an attacker
need not compromise an entire additional repository to
obtain the original data, but rather simply steal a single
shard that correlates to the other siblings in the secret
share group. For this reason, when applicable, we will
address the potential for an attacker to correlate shards
across T − 1 repositories, even though that action alone
reveals nothing about the underlying data.

3.2 Authentication
Authentication is the linchpin of any security system.
While Percival is focused on data archival, the compro-
mise of the authentication can result in data loss in any
system. If a user has been authenticated, we assume that
the user has full permission to perform searches on all of
the data in the archive. Section 7 discusses an approach
to implement access levels in Percival.

Using a Percival like architecture for the data store
provides numerous advantages:

1. Several authentication systems must be compro-
mised without detection before data can be dis-
closed.

2. Physical access can’t be used to overcome any au-
thentication and gain access to the data.

3. When it is necessary to make adjustments in secu-
rity policies, the authentication systems can be up-
dated without the necessity to re-encrypt the entire
archive.

4. Most authentications systems already have a stan-
dard provision for key rotation.

Fundamentally, this approach moves key management
for things like rotation and revocation out of the data
store and to the authentication system where they belong.
Another key issue that this approach deals with is when
the primary user associated with the data is no longer
available, for example retired and moved to a tropical is-
land. Suppose a new user has a legitimate need to access
data stored by such a retired user years earlier. In an en-
cryption based archive, custody of the encryption key for
the data would have to be passed on to an appropriate
custodian who would later be able to pass these keys on
to the new user needing the data. This model has several

4

single points of failure and leaves the keys exposed to
people after they no long have need for the data.

In the Percival architecture, this new user could set up
authentication credentials and the appropriate relation-
ship with each repository to enable access to the data.
When they no longer need access the authentication do-
mains would remove the relationship and they would no
longer have access to the data in the archive. This ap-
proach provides a unique property that the system can
keep data encoded in a secure way with no one having
access to the data until a business need necessitates it.

Moreover the requirements of authentication can be
tailored to the specifics of the data archive’s security
needs. While it might seem overly burdensome for a user
to have to authenticate separately to multiple servers, in
some cases the nature of the data and in-frequent use of
the archive might warrant such a system configuration.
Authentication configurations that require a two man or
even greater rule could also be implemented.

On the other end of the spectrum one could have a
policy where the host on which a user processes data
is deemed as an acceptable place to have that data re-
assembled. In such an environment, the policy could
also allow that host to also hold a key-chain that the user
could unlock to open authentication credentials to nu-
merous repositories at once. Such an environment would
simplify the users interactions at the cost of some limited
risk as deemed acceptable by the organization.

4 Design

In this section, we present the specifics of how search-
ing a secret share archive is achieved. We describe both
the core file ingestion process as well as how blinded
search is achieved. Each section is followed by a detailed
threat analysis that specifies the security implications of
the particular design choice.

4.1 File Ingestion
The file ingestion algorithm pre-processes each docu-
ment client-side prior to secret sharing. During pre-
processing, the keywords identified for the document are
used to populate unique Bloom filters for each repository.
The document is then secret split, after which each shard
is bundled with a single, unique Bloom filter. These
shard-Bloom filter pairs are each sent to a different repos-
itory in the archive. Figure 2 depicts an overview of this
process.

There are no restrictions on the members of the key-
word set, W ; however in this experiment, all unique,
stemmed words present in the document are used to pop-
ulate W . The purpose of which is to preclude the need to
reindex a document if new keywords become of interest.

Figure 2: Overview of the file ingestion process. Each
file is secret split into N shards (1), each of which is
then bundled with a unique Bloom filter, tailored for each
repository (2). These shard-Bloom filter pairs are then
each distributed to a single repository (3).

During ingestion, each keyword, wi ∈W , is used as
an input for equation 3 to generate a repository specific
unique value, vi, that represents the keyword.

vi = keyedHash (wi, keyr) (3)

This study uses HMAC-MD5, a message authentica-
tion code utilizing the MD5 cryptographic hash func-
tion [14], as the keyed hash function, keyedHash. How-
ever, since the security of the algorithm is not reliant on
the security of the keyed hash function, any other keyed
hash function may be used. Each keyr is kept secret from
the repositories, and is the only secret aspect of this de-
sign. Without these repository specific private keys the
contents of each Bloom filter, i. e. the terms, would be
stored in the clear, as well as the Bloom filters for sibling
shards being identical across repositories.

It is worth noting that the key used in this algorithm
does not necessarily have to be a machine generated,
non-meaningful key. It can just as easily be a user’s
password concatenated with the identifier for that par-
ticular repository, since the goal is simply to require a
unique key for each repository. The tradeoff to this type
of schema is that even though the data sent to each repos-
itory will be different, only a single key is required to
reveal the contents of the Bloom filters.

Recall that traditionally, a Bloom filter is populated by
passing each input value, vi, through k hash functions;
the outputs of which are the indexes, indexi, that are set
to 1 to indicate the presence of the value in the filter.
In our design, however, each value, vi, is transformed
into a bit string, b, by passing it through a SHA hash;
every three bytes of which are used to generate an in-
dex, indexi, based on the size of the Bloom filter, sb f ,
as shown in equation 4. For this study, a SHA-512 hash
was used to generate the indexes, but any desired hash of
sufficient length may be used.

5

indexi = b(i∗3)−((i∗3)+2) % sb f (4)

b0−2 b3−5 ... b(k−2)−k Not Used
24 bits 24 bits ... 24 bits |b|− (k ∗24) bits

Table 1: Breakdown of the bit string used to generate the
indexes set in the Bloom filter for each input value, vi

Finally, the resulting unique Bloom filters, one for
each repository, are paired with a single shard and dis-
tributed to different repositories in the archive. It is worth
noting that the security of this algorithm is not reliant on
the security of the hash functions used. It is assumed that
all fixed key cryptographic functions can be broken given
enough time and computing power. However, breaking
the hash functions used, i. e. finding one or more colli-
sions in their outputs, actually strengthens this algorithm
since it would result in further obfuscating which terms
are represented by a bit group.

The number of hash functions had no significant im-
pact on ingestion time, and it was found that the over-
head ingestion rate this design imposes is approximately
50 ms/MB, or 20 MB/sec.

4.2 Bloom Filter Design
The first step in determining the proper Bloom filter size
for a given implementation is to calculate the minimum
allowable size for the filters. This is accomplished by
understanding the corpus to be stored in the archive, and
determining the typical and maximum number of key-
words, or terms, to be stored in each Bloom filter. The
typical number of terms defines the filter parameter, n.
Recall from Section 2.4, if the size of the filter, m, is too
small relative to the maximum number of terms, the filter
will become saturated and no longer useful.

In this study, the Gutenberg Library [10] and
WikiPedia [22] were used as the test corpora. Figures 3
and 4 show a word count analysis of these repositories.
As expected, an asymptotic bound for the number of
unique words per document was evident. This bound
occurred at approximately 14,000 unique words per doc-
ument for the Gutenberg Library, and at approximately
3,000 words for Wikipedia, with an average unique word
count of 3,000 and 2,000 respectively. The Bible and
a German dictionary are labeled in Figure 3 in order to
provide a context for these values. These show that even
large documents are usually bounded in their number of
unique words, and those that aren’t, are extremely spe-
cialized e. g. dictionaries, etc

Given the average unique word count for a corpus,
equations 1 and 2 can be used to determine the ideal
number of hash functions, assuming a false positive rate

Figure 3: Gutenberg - Comparison of total word count
versus the number of unique words per document. The
Bible and a German dictionary are shown as reference
points.

Figure 4: Wikipedia - Comparison of total word count
versus the number of unique words per document.

of 0.01%, and defined the ratio of m/n for the Gutenberg
Library resulting in a filter size of 100,000 bits. Keeping
the same number of hash functions used when process-
ing the Gutenberg corpus, the overall Bloom filter size
required for the WikiPedia corpus is 40,000 bits.

Table 2 summarizes the ideal Bloom filter parameters
for each corpus.

However, that standard process, which aims to min-
imize the false positive rate, only serves as a starting
point for this design. Since minimizing the false posi-
tive rate is analogous to minimizing the bit group coinci-
dence, i. e. increase the uniqueness of the bit groups, it is

6

Total Size
(bits)

Avg. # of
Words

of Hash
Functions

Gutenberg 100,000 3,000 13
Wikipedia 40,000 2,000 13

Table 2: Optimal Bloom filter parameters for each test
corpus. Chosen sizes result in the same 0.01% false
hit rate when using the same number of hash functions.
However, these design parameters decrease the bit group
coincidence, which potentially exposes the bit groups to
an attacker.

desirable to detune the Bloom filters below this optimal
size as a first step towards obfuscating bit groups from
an attacker. The following section addresses this critical
design change in the context of a threat assessment.

4.3 Threat Analysis
This section discusses the most common attack scenario,
one in which an attacker controls a single repository, and
possible vulnerabilities the file ingestion process has ex-
posed.

With a newly ingested archive that hasn’t yet been
searched, it is not possible for an attacker to uncover the
exact mapping from a particular term to its specific bit
group. Furthermore, unless a Bloom filter only contains
a single term, it is not possible for an attacker to deter-
mine which bits form a bit group simply by analyzing the
static repository.

An attacker can attempt to determine similarities be-
tween the filters attached to shards stored in the compro-
mised repository. For example, Swamidass et al. [19]
showed that the approximate number of terms present in
each Bloom filter can be found using equation 5, where
B is the number of bits set to 1 in the Bloom filter, and
recall that m is the size of the filter and k is the number
of hash functions used during ingestion.

Term Count Estimate =
−m ln[1− B

m]

k
(5)

While this does not inherently reveal anything about
the data, it allows an attacker to organize the shards based
on an estimate of the number of keywords stored in the
Bloom filters.

In classic encryption schemes, an attacker uncovering
the key obviously results in a full release of information.
While this situation is undesirable for any secure archive,
in a Percival system it does not result in catastrophic loss
of security since if an attacker is able to uncover the key
to their compromised repository, only a small amount of
information is revealed. Once an attacker has the key for
a repository, they are able to correlate all terms to their
associated bit group. However, since the Bloom filters

only contain the set of unique stemmed words found in
the data, all contextual and semantic information remains
secure.

As a concrete example, the book Moby Dick [13] con-
tains approximately 200,000 words and has a Shannon
entropy of 4.55 [8, 17]. The Shannon entropy is “the
average unpredictability in a random variable, which is
equivalent to its information content. [22]” In contrast,
the book only has approximately 6,800 unique stemmed
words, which drops the Shannon entropy to 3.15. This il-
lustrates that the real data is indeed greater than the sum
of its parts.

4.4 Searching
Blinded searching is accomplished via the process de-
picted in Figure 5. The search terms, along with any de-
sired chaff, are stored in a unique Bloom filter tailored for
each repository using the appropriate key for that repos-
itory. These Bloom filters are then sent to the archive,
one per repository, for processing. Each repository then
processes the received Bloom filter in order to generate
resultant Bloom filters for any hits and stores them in a
mapping of shard ID to resultant Bloom filter. The client
then correlates the received mappings to determine the
true set of shard IDs that match the requested blinded
search.

Figure 5: Overview of the searching process. A unique
Bloom filter for each repository is generated that con-
tains the search terms and any additional chaff (1). Each
repository then processes the received Bloom filter with
each of its stored shard-Bloom filter bundles (2), and
returns to the client a mapping of shard ID to resultant
Bloom filter for client-side processing (3).

4.4.1 Step 1 : Client Side

The first step in processing a search request is to generate
a unique Bloom filter for each repository containing the

7

search terms using the same algorithm described in sec-
tion 4.1. At this time, random chaff bits unique to each
repository may be added as desired in order to further
obfuscate the hit patterns across repositories. Section 5
discusses the impact of adding chaff to the Bloom filters
stored with each shard.

Once the search Bloom filters are prepared, they are
sent to each respective repository along with a hit thresh-
old that allows the repositories to do pre-filtering prior
to sending the search results back to the client. Sec-
tion 4.4.2 details the use of the hit threshold.

4.4.2 Step 2 : Repository Side

The goal of the server is to generate a mapping of shard
identifiers to resultant Bloom filters; these filters are cre-
ated by and’ing the search Bloom filter provided by the
client with the Bloom filter bundled with each of the
shards being stored by the repository.

The cardinality of the resultant Bloom filter is then
checked against the hit threshold. If it is found to be
greater than or equal to the threshold, the shard ID and
resultant Bloom filter are added to the mapping.

Once all shards in repository have been processed, the
resultant mapping is sent back to the client.

4.4.3 Step 3 : Client Side

The final step in performing a search begins by removing
any chaff bits from each of the Bloom filters in the resul-
tant mappings sent by the repositories. Once the chaff
has been removed, the hit threshold is again checked
against the cardinality of the resultant Bloom filters to
remove any false hits from the mapping.

Since the act of requesting a subset of shard ids can
potentially reveal associations between the requested
shards, it must be done with care. However, since re-
questing shard ids is ultimately a secure communication
problem, it is outside the scope of this research.

4.5 Searching Performance
Since Bloom filter performance, specifically its false pos-
itive rate, is heavily dependent on its core parameters, we
now present the empirical data that can be used to tai-
lor the Bloom filter parameters according to the require-
ments of a specific implementation.

For all experiments, unless otherwise stated, two cor-
pora were used: the Gutenberg Library and Wikipedia.
They contained approximately 25,000 and 4 million doc-
uments respectively. These were chosen because their
differing features required different Bloom filter parame-
ters for each corpus, and therefore allowed for validation
of this design under varying conditions.

Bloom filters inherently have a non-zero false positive
rate, which is compounded by detuning the filters below
optimal in order to improve bit group obfuscation. It is
therefore necessary to quantify the impact of this detun-
ing on the accuracy of the search results. As a refer-
ence point, it was found that a plain text search for the
terms ‘motorcycle’ and ‘Chicago’ yielded 26 hits from
the Gutenberg Library. This reference search was used
as the control group for all subsequent searches using the
Bloom filter search algorithm.

Figure 6 shows the impact on the false hit rate by vary-
ing the number of hash functions and filter sizes com-
pared to a reference plain text search. It can be seen that
as the number of hash functions increases, the false hit
rate increases. This phenomenon only occurs because
the filters are being detuned in an effort to increase bit
group obfuscation. It is also worth noting that the ap-
parent decrease in false hit rate for the 4000 bit Bloom
filter when changing from one to two hash functions is
due to the combination of the high level of saturation in
the filter and the decrease in bit group coincidence when
adding an additional hash function.

Figure 6: Hit counts for various numbers of hash func-
tions and filter sizes when performing the reference
search of ‘motorcycle’ and ‘Chicago’. The true hit count
was found to be 26.

A benefit to this design is that search time is not depen-
dent on the size of the files in the archive, nor the number
of terms for which the user is searching, since searching
simply involves a simple comparison of Bloom filters.
As a result, the average time to search a single file was
found to be just over 5 µs.

8

4.6 Threat Analysis

This section addresses potential vulnerabilities intro-
duced by the search algorithm. Again, we begin by fo-
cusing on the most prevalent attack scenario; that is when
an attacker controls a single repository.

If an attacker is able to obtain the repository key for
their compromised repository, the terms contained in the
search Bloom filters would be in the clear, assuming
no other methods were employed to help obfuscate the
search terms, e. g. adding chaff and or false search terms.
Detuning the Bloom filters while using a low number of
hash functions on their own is not enough to have a sig-
nificant impact on bit group coincidence, i. e. with no
additional steps taken, an attacker will be able to deter-
mine the bit groups present in a search. Additionally,
even though there is a significant number of terms that
share a single bit, as shown in figure 7, the actual bit
group coincidence, which is directly proportional to the
number of hash functions and inversely proportional to
the filter size, is low enough as to not provide enough
obfuscation on its own. For example, in a 4,000 bit filter
using 16 hash functions, only 0.000046% of the terms
share four bits, which is non-zero but hardly significant.

Figure 7: Effect on the average number of terms sharing
an index position in a Bloom filter as a result of varying
the filter size.

Due to Percival’s design, the repository keys are un-
able to be brute forced without at least one term to bit
group correlation. This is because without a correlation
there is no way to validate the output when trying candi-
date keys since every output is valid and equally likely.
Therefore, a logical first step for an attacker is to uncover
at least one correlation.

This could possibly be accomplished using a form of
CCA, or chosen cypher-text attack. An attacker could

cause a real world event or disaster, and then monitor the
search Bloom filters for a shift in the high frequency bit
groups. Additionally an attacker could employ a form of
adaptive chosen cypher-text attack, CCA2. For example,
during the Sturgis motorcycle rally in South Dakota an
attacker might assume that the bit groups with the two
highest frequencies correlate to ‘motorcycle’ and ‘Stur-
gis’. The attacker then causes a real world event or dis-
aster involving motorcycles in Chicago, and monitors for
the shift in bit group frequencies.

If they are able to uncover a bit group correlation, the
upper bound for brute forcing the key is k! ∗ 2|b|−(k∗24)

possible orderings and values for the bits that form a bit
group, which is due to both the unknown ordering of the
indexes, indexi, and the discarded |b| - (k * 24) bits. Each
additional correlation that an attacker is able to discover
lowers this upper bound. It is evident that this upper
bound can be increased by maximizing the length of b,
the output from the hash used for index generation, and
by minimizing k, the number of hash functions used.

5 Chaff

This section discusses the impact of adding chaff to the
system, both during file ingestion as well as search oper-
ations.

5.1 Adding Chaff During File Ingestion

During file ingestion, the addition of chaff to the Bloom
filters stored with each shard has several benefits. These
include obfuscating the bit groups present in each filter
as well as making each filter have the same cardinality,
which negates the potential attack previously described
in section 4.3 using equation 5 in order to estimate the
number of terms present in a given Bloom filter.

This is accomplished by adding chaff to each Bloom
filter up to a desired loading level, as opposed to simply
adding a fixed amount of chaff. The design tradeoff is
that the largest number of terms to be ingested into a fil-
ter must be known at design time so that adequate room
remain open for chaff, as well as ensuring that no filter’s
cardinality is already higher than the desired chaff load-
ing level.

Furthermore, in the event a repository’s key is revealed
to an attacker, it lowers the confidence an attacker will
have in the terms actually present in the filter due to the
addition of random terms. The probability a particular
random term will be added to an individual filter is 0.5k,
which means that the additional percentage of the reposi-
tory that contains a particular term can be found by equa-
tion 6, where |R| is the total number of shards in the
repository, and A% is the percentage of the repository

9

that actually contains the particular term prior to adding
chaff.

Additional % = |R|(1−A%)0.5k (6)

Figure 8: Effect of adding chaff to the Bloom filter stored
with each shard. Using fewer hash functions greatly am-
plifies the effect of chaff loading.

Figure 8 shows the effect on the previous search re-
sults of adding varying levels of chaff to the Bloom filters
during file ingestion. The cost of this obfuscation is an
increase in bandwidth required to handle the responses
from each repository, as well as an increase in the post-
processing now required by the client in order to separate
the false hits from true ones. That process takes the form
of requesting applicable shards from each repository and
attempting their reconstruction, which has the potential
to be a very costly operation depending on the size of the
search results. Section 6 discusses this in more detail, as
well as presenting a solution.

5.2 Adding Chaff During Search Opera-
tions

In addition to adding chaff during file ingestion, it may
be added during search operations in either the form of
random bits added to the search Bloom filters sent to each
repository, or as additional random or deliberately cho-
sen false search terms. As shown in figure 9, even a rel-
atively small amount of chaff added to the search filter
greatly adds to the false hit rate.

The effect of adding chaff during searches differs
greatly from that of adding it during file ingestion. First,
the resulting increase in false hit rate is not dependent on
the number of hash functions used, as was shown in fig-
ure 8. Second, it takes much less chaff to have a large im-

Figure 9: Effect of adding chaff to the search Bloom fil-
ter.

pact on the size of the result set, e. g. the addition of only
100 bits of chaff to the search filter results in roughly a
38% increase in the false hit rate. Lastly, that false hit
rate can be easily mitigated by the client by combining
each resultant Bloom filter in the result set by the real
search filter, i. e. the search filter generated prior to the
addition of chaff.

6 Shard Headers

This section presents a more efficient manner for the
client to mitigate the potentially large result set stemming
from file ingestion chaff.

6.1 Header Design
Recall that in section 5.1 it was mentioned that the client
would need to request the applicable shards and then at-
tempt their reconstruction, which would filter out all hits
in which less than T sibling shards were returned by the
archive. This assumption relies on the low probability
that at least T sibling shards are falsely returned due to
chaff. The main drawback of this process is that it has
the potential to be very costly in terms of workload that
is now shifted to the client from each repository. In or-
der to reduce this computational burden on the client, the
concept of a small header can be introduced into the sys-
tem, and used during the test reconstruction of the hit re-
sults, instead of the full shard, in order to greatly increase
performance.

The header is generated during file ingestion, and con-
sists of the shard IDs for each of the sibling shards that
together form a document as well as the CRC of those
IDs.

10

ID0 ID1 ... IDN−1 CRC

Table 3: Headers consist of the sibling shard IDs and the
CRC of those IDs.

Once generated, the header is secret split and stored
with the Bloom filter that previously would have been
stored with each shard. The introduction of the header
not only assists the client with reconstruction, but also
has several security related benefits. These newly formed
Bloom filter-header pairs can be stored separately from
the shards generated during file ingestion. Furthermore,
the headers can be secret split using different parame-
ters, i. e. a different number of shards, N, and a different
reconstruction threshold, T , as those used when secret
splitting the data. This allows more flexibility when de-
signing the system, since differing threat models can be
addressed at different layers in the system.

6.2 Header Performance
Since the work required to reconstruct a set of sibling
shards is proportional to the size of each shard, it isn’t
feasible to use reconstruction on the shards generated
from the data itself as a way to mitigate the false hit rate.
This is exponentially compounded when the result set is
large.

Performance data was collected using a 64 bit Linux
system, with 24GB of RAM and four hyper-threading
cores. It was found that on average full shards could be
reconstructed at a rate of 2kB per second, which means
that it would take approximately an hour and half to re-
construct a 10MB piece of data. By way of comparison,
using shard headers is not dependent on the size of the
corresponding data they represent, and as a result it was
found that a single header could be reconstructed in ap-
proximately 2ms.

Table 4 shows the time required to reconstruct the
headers for the 28 shards used in the reference search
as the false hit rate increases. The false hit rate is rep-
resented by the number of additional shards in the result
set returned by each repository. These ‘false’ shards have
no siblings, and as such cannot be successfully matched
with any other shards in the result set to form a complete
header.

It can be seen that the number of reconstruction at-
tempts, and as a result the time required, increases ex-
ponentially as the false hit rate increases. Unfortunately,
even a result set containing a few false shards, e. g. 100,
requires the client to spend an unacceptable amount of
time to reconstruct the shard headers. This is because a
false shard must be tested up to N!

T !(N−T)!) times before it
can confirmed as invalid. Section 7 discusses a possible
solution for this problem.

Number of Shards
in Result Set

Reconstruction
Attempts

Elapsed Time
(min:sec)

28 + 0 21,952 0:38
28 + 25 148,877 9:59
28 + 50 474,522 40:52

28 + 100 2,097,152 229:21

Table 4: Header reconstruction times as the false hit rate
increases. The number of shards in the result set indi-
cates the base 28 shards plus varying amounts of ‘false’
shards.

7 Future Work

There are several open areas of research with regard
to Percival. The first of which is an improved search
scheme on each repository, since the development of
which was outside the scope of this study. It is hypothe-
sized that reverse indexing can be leveraged to organize
the shards within a repository based on their attached
Bloom filters. It is in this way that search times could be
reduced to linear time. Furthermore, while we have seen
great successes in data ingestion and look up it would
be informative to develop experiments that provide more
detailed testing and results for complex searches using
realistic query workloads.

Regarding the high reconstruction time required by the
client in order to mitigate the chaff added during file in-
gestion, a technique similar to that employed in POT-
SHARDS [18] will be tested. Specifically the use of ap-
proximate pointers in order to form rings of shards to
greatly narrow down the search space during reconstruc-
tion. They were able to achieve performance improve-
ments of up 95% by employing such a method.

The current design of Percival assumes that once a
user is authenticated into the system, there is no sense
of file ownership. All users authenticated into the system
have full access to all files stored within. This leads to an-
other potential way Percival may be expanded. Meta data
can be injected into the filter at the time of file ingestion.
For example, by automatically injecting the username of
the file owner into the filter attached to each shard, and
then requiring all valid hit results to have the same k
bits set as the username of the current user performing
a search, access controls can be enforced. In this way, all
levels of access control can be implemented, not just at
the user level.

One of the current limitations with Percival’s design
is that it can only ingest text based data, or data that has
been manually tagged with keywords of interest. A use
case that does not fit into this model is Sandia’s Hash-
Ninja project, which is a repository of MD5 hashes. The
project’s purpose is to provide a standard process for
malware triage and analysis while increasing collabora-

11

tion between trusted organizations that analyze malware.
If Percival was extended to ingest MD5 hashes, Hash-
Ninja would be able to share its repository in such a way
that its custodian is blinded to all searches on the reposi-
tory.

8 Conclusion

Even though secret sharing removes many of the issues
present in fixed key encryption schemes, they are diffi-
cult to search without compromising security. This pa-
per presents a highly customizable method to implement
blinded search on a secret share archive by utilizing pre-
indexing, Bloom filters, and keyed hashing. It is done in
such a way that even if a private repository key is dis-
covered by an attacker, there is no catastrophic release of
information.

Chaff is added to the Bloom filters, both during file in-
gestion as well as during search operations, in order to
further obfuscate the keywords stored within each filter.
This keeps an attacker from learning the relative number
of keywords stored in each filter, which could possible
reveal something about the underlying data, as well as
colluding in order to make correlations across compro-
mised repositories.

Percival’s use of headers during the test reconstruction
phase greatly improves the bandwidth requirement when
searching, the time required by the client to mitigate the
false hit rate introduced by chaff, and the overall security
of the system by allowing the Bloom filter-header pairs to
be stored physically separate from the shards themselves.

References

[1] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken,
G. Cermak, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. Wattenhofer. FARSITE: Fed-
erated, available, and reliable storage for an incom-
pletely trusted environment. In Proceedings of the
5th Symposium on Operating Systems Design and
Implementation (OSDI), Boston, MA, Dec. 2002.
USENIX.

[2] S. Bellovin and W. Cheswick. Privacy-enhanced
searches using encrypted bloom filters. In Tech-
nical Report 2004/022, IACR ePrint Cryptography
Archive, 2004.

[3] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and
G. Persiano. Public key encryption with keyword
search. In Advances in Cryptology - EUROCRYPT
2004, International Conference on the Theory and
Applications of Cryptographic Techniques, 2004.

[4] Y. C. Chang and M. Mitzenmacher. Privacy pre-
serving keyword searches on remote encrypted
data. In Applied Cryptography and Network Secu-
rity Conference, 2005.

[5] Y. Chen, J. Edler, A. Goldberg, A. Gottlieb,
S. Sobti, and P. Yianilos. A prototype implemen-
tation of Archival Intermemory. In Proceedings of
DL ’99, pages 28–37, 1999.

[6] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubi-
atowicz. Tiered fault tolerance for long-term in-
tegrity. In FAST ’09 Proccedings of the 7th confer-
ence on File and storage technologies, 2009.

[7] R. Curtmola, J. Garay, S. Kamara, and R. Ostro-
vsky. Searchable symmetric encryption: Improved
definitions and efficient constructions. In Proceed-
ings of the 13th ACM Conference on Computer and
Communications Security, 2006.

[8] R. S. Ellis. Entropy, Large Deviations, and Statis-
tical Mechanics. Springer; 1 edition, 1985.

[9] K. M. Greenan, E. L. Miller, T. J. E. Schwarz, and
D. D. Long. Disaster recovery codes: increasing re-
liability with large-stripe erasure correcting codes.
In StorageSS ’07, pages 31–36, New York, NY,
USA, 2007. ACM.

[10] Gutengerg. Project gutenberg – project gutenberg
literary archive foundation, 2013.

[11] A. Haeberlen, A. Mislove, and P. Druschel. Glacier:
Highly durable, decentralized storage despite mas-
sive correlated failures. In Proceedings of the
2nd Symposium on Networked Systems Design and
Implementation (NSDI), Boston, MA, May 2005.
USENIX.

[12] T. M. Kroeger, J. C. Frank, and E. L. Miller. The
case for distributed data archival using secret split-
ting with percival. In 1st International Symposium
on Resilient Cyber Systems, San Francisco, Califor-
nia, Aug. 2013.

[13] H. Melville. Moby-Dick. Richard Bentley (Britain)
and Harper and Brothers (US), 1851.

[14] B. Preneel and P. C. van Oorschot. Mdx-mac and
building fast macs from hash functions. In Ad-
vances in Cryptology - CRYPTO ’95, 15th Annual
International Cryptology Conference, Santa Bar-
bara, California, USA, August 27-31, 1995, Pro-
ceedings, volume 963, pages 1–14, 1995.

[15] A. Shamir. How to share a secret. Communications
of the ACM, 22(11):612–613, Nov. 1979.

12

[16] D. X. Song, D. Wagner, and A. Perrig. Practical
techniques for searches on encrypted data. In Pro-
ceedings of the 2000 IEEE Symposium on Security
and Privacy, pages 44–55, May 2000.

[17] M. S. Stoler. RE-Engineering the Enigma Cipher.
ProQuest, UMI Dissertation Publishing, 2011.

[18] M. W. Storer, K. M. Greenan, E. L. Miller, and
K. Voruganti. POTSHARDS: secure long-term
storage without encryption. In Proceedings of the
2007 USENIX Annual Technical Conference, pages
143–156, June 2007.

[19] S. Swamidass and P. Baldi. Mathematical correc-
tion for fingerprint similarity measures to improve
chemical retrieval. Journal of Chemical Informa-
tion and Modeling (ACS Publications), 47:952–
964, 2007.

[20] Q. Wang and N. Borisov. Octopus: A secure and
anonymous dht lookup. CoRR, 2012.

[21] H. Weatherspoon. Design and evaluation of dis-
tributed wide-are on-line archival storage systems.
Technical report, University of California Berkeley,
2006.

[22] Wikipedia. Wikipedia, the free encyclopedia, 2013.

[23] J. J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R.
Ganger, H. Kiliççöte, and P. K. Khosla. Surviv-
able storage systems. IEEE Computer, pages 61–
68, Aug. 2000.

[24] D. Zage and J. Obert. Utilizing linear subspaces to
improve cloud security. In Dependable Systems and
Networks Workshops (DSN-W), 2012 IEEE/IFIP
42nd International Conference on, pages 1–6, June
2012.

13

