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-2 d AMG

* Iterative method for solving linear equations

« Commonly used as a preconditioner

» Idea: capture error at multiple resolutions using grid transfer operator:
— Smoothing damps the oscillatory error (high energy)
— Coarse grid correction reduces the smooth error (low energy)
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Prolongator requirements

Few desired properties

* preservation of null space: the span of basis functions on each
coarse level should contain zero energy modes

 minimization of energy: basis functions on the coarse levels should
have as small energy as possible

* bounded intersection: the supports of the basis functions on the
coarse levels should overlap as little as possible.
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Smoothed Aggregation

SA prolongator is constructed in a few N
steps || | L L |

* Construct aggregates
— Select a set of root nodes ©
— Group unknowns into aggregates

- Construct tentative prolongator and
coarse nullspace

— Restrict fine nullspace onto aggregates
— Do QR decomposition
We satisfy P B. = B

—_

1
1
1
« Decrease energy of P,.,, by smoothing B=|1| =% 1
1
1

P=(I-wD AP,
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Energy minimization

Energy minimization is a general framework.

Idea: construct the prolongator P by minimizing the energy of each column
P while enforcing constraints.

Find P:
P = argmin ) || P/
subject to

 specified sparsity pattern;
* nullspace preservation.

Advantages:
* Flexibility (input):
— accept any sparsity pattern (arbitrary basis function support)
— enforce constraints: important modes requiring accurate interpolation
— choice of norm for minimization and search space

* Robustness :
Sandia
National
Laboratories



=~

Constraint matrix

* Sparsity pattern

* B, B.fine and coarse mode(s) requiring accurate interpolation

Preservation of the nullspace: for instance P1 =1

o ¥ X X
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* Representation of the constraints in the algorithm:
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0 0 0 0 0 0 0
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i" Constraint matrix

Two nullspace vectors:

D11 big
[ s L b b
p |’ Y2 21 D29
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Energy-minimization algorithm

Find P:
P = argmin Y |IP4],

subject to
» specified sparsity pattern;
* nullspace preservation.

Solve AP =0
in @ constrained Krylov space

- Definition of energy | - ||xdepends on Krylov method
— A for CG
— A'A for GMRES
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Energy minimization algorithm

Construct aggregates

N = AP0
D = diag(A)
R=—ApPY

R = enforce(R, \)
R = project(R, X)

for i to iter do

Z=D'R
v=< R, Z >p
if 7 1s 1 then

Y =27
else

B =/ Vold;

Y =/4+73Y
end if
“old = 7Y
Yi=AY
Y, = enforce(Y4,N)
Y, = project(Yy, B.)
a=r7/<Y,Yq>p
PO = Pi=1) L qy
R=R—aYy

> Select sparsity pattern

> Diagonal preconditioner

> Initial residual
> Enforce sparsity on R
> Enforce RB. =0

> New search direction

> Enforce sparsity on Y4
> Enforce Y4 B. =0

> Update prolongator
> Update residual

(&)
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}" Comparison with Smoothed Aggregation

 SA: 6 DOFs/node

* Energy Minimization: 3 DOFs/node, 6 nullspace vectors

Tab. : Iteration count and complexity (lower complexity = faster run

time) for increasing mesh sizes and stretch factors.

Mesh e=1 e = 10 e = 100
SA Emin SA Emin SA Emin
10° 6 1.30 | 7 1.071] 8 281 | 8 1.22 (9 321 | 8 1.24)
153 8 1.19 | 9 1.05 | 10 2.32 |10 1.15 ||12 2.5/ | 12 1.16
20° 8 1.24 19 1.06 |10 259 | 9 1.18 |13 305 | 10 1.20
253 9 1.26 | 8 1.07 || 11 2.76 | 9 1.20 || 14 3.04 | 10 1.20
30° 10 1.22 |11 1.05 || 12 2.52 | 12 1.17 || 15 3.06 | 13 1.19
353 10 1.24 | 10 1.06 || 12 2.66 | 12 1.18 || 16 3.03 | 13 1.19
403 10 1.26 | 9 1.06 || 12 2.77 | 12 1.19 |\16 3.21 | 11 1.21
3.85x
A
complexity: Zinnz( )
nnz(A) .
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Parallel implementation
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Energy minimization algorithm

Construct aggregates

N = AP0
D = diag(A)
R=—ApPY

R = enforce(R, \)
R = project(R, X)

for i to iter do

Z=D'R
v=< R, Z >p
if 7 1s 1 then

Y =27
else

B =/ Vold;

Y =/4+73Y
end if
“old = 7Y
Yi=AY
Y, = enforce(Y4,N)
Y, = project(Yy, B.)
a=r7/<Y,Yq>p
PO = Pi=1) L qy
R=R—aYy

> Select sparsity pattern

> Diagonal preconditioner

> Initial residual
> Enforce sparsity on R
> Enforce RB. =0

> New search direction

> Enforce sparsity on Y4
> Enforce Y4 B. =0

> Update prolongator
> Update residual
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Energy minimization algorithm

Construct aggregates

N = |A|| PO
D = diag(A)
R=—ApPY

R = enforce(R, \)
R = project(R, X)

for i to iter do
Z=D'R
=< R, £ >
if 7 1s 1 then
Y =27
else
B =/ Vold;
Y =/4+73Y
end if
“old = 7Y
4 =AY
Y, = enforce(Y4,N)
Y4 = project (Y, B.)
a=~/<Y,Yy>p
PO = P61 4 qy
R=R—aYy

> Select sparsity pattern

> Diagonal preconditioner

> Initial residual

> Enforce sparsity on R
> Enforce RB. =0

> New search direction

> Enforce sparsity on Y4
> Enforce Y4 B. =0

> Update prolongator
> Update residual
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Parallel aggregation

Two choices: coupled and uncoupled aggregation
* Uncoupled aggregation aggregates only inside a subdomain

* Coupled aggregation allows aggregates to cross subdomain
boundary

* Coupled aggregation is more expensive, but has convergence
similar to the serial case

- Uncouplved - - Coupled
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Constraints in parallel

Let P have the following pattern and nullspace consist of two vectors

by b

i [b bsj

B 0 0 b, 0 0]
0 5, 0 0 0 0
0 0 b, 0 b, 0
0 0 0 0 0 b
K, 0 0 5, 0 0
0 5, 0 0 0 0
0 0 b5, 0 b, 0
000 0 0 0 b

P11 'Pl:z—
p— pa1 O
P31 P32
_ 0 P41 |
_b'fl b5;, 0 0 0 O i
b, b5, 0 0 0 O
0O 0 (b5, 0 0 O
0O 0 /65,1 0 0 O
0 0 0 [bf; 05| O
0 0 0 [bfy 05| O
0O 0 0 0 0]
O 0 0 0 0 b5

P
N2
Pa
P32
Pau

| P42
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Constraints in parallel

What does each block correspond to?

O Olf

Consider a row of P with three nonzeros

Prolongator row Coarse nullspace

=
L I B
R

L I B # # @ 6 L I B # & @
L I I
# @

Block of the constraint corresponding to the row
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Construct aggregates
N = |A||PO)

Import ghost components of nullspace vectors

> Select sparsity pattern

> Diagonal preconditioner

D = diag(A)
R=—-ApPUY
R = enforce(R, \N)
R = project(R, X)

for i to iter do
Z=D'R
V=< R} Z >y
if i 1s 1 then
Y =274
else
B = v/ Youd;
Y =7+3Y
end if
Yoid = 7Y
=AY
Y, = enforce(Y4,N)
Y, = project(Yy, B.)
o = "}/ < Y. Yy >p
PO = PiD 4 qy
R=R—aYy4

> Initial residual
> Enforce sparsity on R
> Enforce RE. =0

> New search direction

> Enforce sparsity on Y4
> Enforce Y, B. =0

> Update prolongator
> Update residual

Energy minimization algorithm (updated)
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Z MuelLu

* Future package of the Trilinos project (to replace ML)

— Massively parallel

— Multicore and GPU aware
— Templated types for mixed precision calculation (32-bit - 64-bit) and

type complex

* Objective is to solve problem with billions of DOF on 100Ks of

cores...

* Leverage the Trilinos software stack:

* Currently in development...

(. )

Belos Anasazi Tifpack MuelLu

- %, Krylov methods Eigen-solvers Algebraic precond. e MG solver

£ 8

O a

T2 - ]

-3 Tpetra— distributed linear algebra

. b Kokkos — single node kernels
Sandia
National
Laboratories



=72 .
Numerical results - Laplace 3D

* Laplace 3D, 7 point stencil

* Energy minimization
— 2 CG iterations
— Initial guess: tentative prolongator
— Sparsity pattern: same as SA

3.5
3
25
2 B =
== Setup
=¢=—Solution
1.5
1
0.5

0
24 192 648 1536 3000 5184 8232 12288
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}" Numerical results - Elasticity 3D

* Elasticity 3D, Poisson ratio 0.25

* Energy minimization
— 2 CG iterations
— Initial guess: tentative prolongator
— Sparsity pattern: same as SA

3.5
3
2.5
2
== Setup
=== Solution
1.5 I W =]
T .‘ —— —
e S — ——
18—
0.5
0
24 192 648 1536 3000 5184 8232
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Setup amortization
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Setup amortization: reuse

* Emin setup may be expensive (several times that of SA)

* Typically, we need multigrid for each linear iteration of Newton,
therefore it is reasonable to assume that the system does not
change too much

* Many components of the setup phase can be reused
— Initial prolongator
— Sparsity patterns (assuming no filtering)
— Matrix graphs (assuming fixed mesh)
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i;" Strategies for a sequence of systems

* No reuse: construct multigrid anew for each iteration

* Simple reuse: construct multigrid only for the first iteration,
and then use the same preconditioner for all iteration

* Fast reuse: construct multigrid with multiple iterations on the
first step, and use fewer iterations for consecutive step, reusing
constructed prolongators and graphs
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Numerical example: icesheet model

T . . . .
System of two coupled non-linear PDEs & =( 26as +épy, €ny )
) 3 Ei; = ( é.r:y-_u €xr + 25yy~ €yz )
{ =V (2ué) = —ﬂggffﬂ e o
—V (2ue2) = —pga . 1 i +fuj
o Cij 2 \dz; Oz
with Glen’s law viscosity A = flow rate factor ‘
n = Glen’s law exponent =3
1 2 2 2 2 2 ( L 1—} = regularization parameter
b= AT (E, 4+ by + 2, FE HEE y) Tl ! 5 paramete
/ 9 ( Tr yy TEEYY T Ty Tz vz T) A = sliding coefficient > 0

Discretization: classical Galerkin FEM with structured or
unstructured mesh.

Nonlinear solver: Newton’s method
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Numerical results: icesheet model

2
8
12
18
23
28

17
16
17
17
17
17

30
32
33
36
36
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17
18
18
18
18
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4;" Summary

* Energy minimization AMG is flexible
* Energy minimization AMG is suitable for parallelization
— Standard parallel operations (MxM, BLAS1) are well known
— Constraint application could be done locally storing ghost info

* Preliminary results show promise

* There are ways to reduce setup cost
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