
On Parallelization of Energy 
Minimizing Multigrid

Andrey Prokopenko

Jeremie Gaidamour, Jonathan Hu, Ray Tuminaro

 
SIAM Annual Meeting

8 July 2013

Sandia National Laboratories
Sandia National Laboratories is a multi-program laboratory operated by Sandia Corp, a wholly owned subsidiary of 
Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under 
contract DE-AC04-94AL85000.

SAND2013-5320C



Outline

• Introduction

• Energy-minimization based AMG 

– Motivations

– Algorithm

• Parallel implementation

• Setup amortization

• Conclusion



3

AMG

• Iterative method for solving linear equations
• Commonly used as a preconditioner
• Idea: capture error at multiple resolutions using grid transfer operator:
– Smoothing damps the oscillatory error (high energy) 
– Coarse grid correction reduces the smooth error (low energy)

Restriction
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loop
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by solving Ae = r
on the coarser grid

Calculate the residual r = f – Au

Correct v (v  v+e)

Solving Au = f with initial guess v

Pre-smoothing

Post-smoothing
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Prolongator requirements

Few desired properties

• preservation of null space:  the span of basis functions on each 
coarse level should contain zero energy modes

• minimization of energy: basis functions on the coarse levels should 
have as small energy as possible

• bounded intersection: the supports of the basis functions on the 
coarse levels should overlap as little as possible.



Smoothed Aggregation

SA prolongator is constructed in a few 
steps

• Construct aggregates
– Select a set of root nodes
– Group unknowns into aggregates

•  Construct tentative prolongator and 
coarse nullspace
– Restrict fine nullspace onto aggregates
– Do QR decomposition

We satisfy 

• Decrease energy of         by smoothing

May not satisfy 

aggregates
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Energy minimization



Energy minimization

Advantages:
• Flexibility (input): 
– accept any sparsity pattern (arbitrary basis function support)
– enforce constraints: important modes requiring accurate interpolation
– choice of norm for minimization and search space

• Robustness

Energy minimization is a general framework.

Idea: construct the prolongator P by minimizing the energy of each column 
Pk while enforcing constraints.

Find P:

subject to
• specified sparsity pattern;
• nullspace preservation.



Constraint matrix

• Sparsity pattern
• B,     fine and coarse mode(s) requiring accurate interpolation

Preservation of the nullspace: for instance 

• Representation of the constraints in the algorithm:

inputs



Constraint matrix

Two nullspace vectors:



Solve AP = 0 
in a constrained Krylov space

Energy-minimization algorithm

Find P:

subject to
• specified sparsity pattern;
• nullspace preservation.

• Definition of energy        depends on Krylov method
– A for CG
– ATA for GMRES
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Energy minimization algorithm
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• SA: 6 DOFs/node
• Energy Minimization: 3 DOFs/node, 6 nullspace vectors

Tab. : Iteration count and complexity (lower complexity = faster run 
time) for increasing mesh sizes and stretch factors.

∑i
nnz Ai

nnz A 
complexity:

Comparison with Smoothed Aggregation

3.85x
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Parallel implementation
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Energy minimization algorithm
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Energy minimization algorithm



Parallel aggregation

Two choices: coupled and uncoupled aggregation
• Uncoupled aggregation aggregates only inside a subdomain
• Coupled aggregation allows aggregates to cross subdomain 

boundary
• Coupled aggregation is more expensive, but has convergence 

similar to the serial case

             Uncoupled                                            Coupled



Constraints in parallel

Let P have the following pattern and nullspace consist of two vectors



Constraints in parallel

What does each block correspond to?

Consider a row of P with three nonzeros

            Prolongator row                                       Coarse nullspace

 Block of the constraint corresponding to the row



Energy minimization algorithm (updated)



MueLu

• Future package of the Trilinos project (to replace ML)
– Massively parallel
– Multicore and GPU aware
– Templated types for mixed precision calculation (32-bit – 64-bit) and 

type complex

• Objective is to solve problem with billions of DOF on 100Ks of 
cores...

• Leverage the Trilinos software stack:

• Currently in development...

Tpetra – distributed linear algebra

Kokkos – single node kernels

Belos
Krylov methods

Anasazi
Eigen-solvers

Tifpack
Algebraic precond.

… MueLu
MG solver
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Numerical results – Laplace 3D

• Laplace 3D, 7 point stencil
• Energy minimization
– 2 CG iterations
– Initial guess: tentative prolongator
– Sparsity pattern: same as SA
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Numerical results – Elasticity 3D

• Elasticity 3D, Poisson ratio 0.25
• Energy minimization
– 2 CG iterations
– Initial guess: tentative prolongator
– Sparsity pattern: same as SA
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Setup amortization



Setup amortization: reuse

• Emin setup may be expensive (several times that of SA)

• Typically, we need multigrid for each linear iteration of Newton, 
therefore it is reasonable to assume that the system does not 
change too much

• Many components of the setup phase can be reused
– Initial prolongator
– Sparsity patterns (assuming no filtering)
– Matrix graphs (assuming fixed mesh)



Strategies for a sequence of systems

• No reuse: construct multigrid anew for each iteration

• Simple reuse: construct multigrid only for the first iteration, 
and then use the same preconditioner for all iteration

• Fast reuse: construct multigrid with multiple iterations on the 
first step, and use fewer iterations for consecutive step, reusing 
constructed prolongators and graphs



Numerical example: icesheet model

System of two coupled non-linear PDEs

with Glen’s law viscosity

Discretization: classical Galerkin FEM with structured or 
unstructured mesh.

Nonlinear solver: Newton’s method 



Numerical results: icesheet model

 

Step Emin(6) Emin(1) Emin(6,1)

2 17 30 17

8 16 32 17

12 17 33 18

18 17 36 18

23 17 36 18

28 17 34 18



Summary

• Energy minimization AMG is flexible

• Energy minimization AMG is suitable for parallelization
– Standard parallel operations (MxM, BLAS1) are well known
– Constraint application could be done locally storing ghost info

• Preliminary results show promise

• There are ways to reduce setup cost
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