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Microtubules and Motor Proteins:
Dynamic Biomolecular

Microtubules (MTs)

Polar protein filaments
(~25 nm diameter)

Polymerized from ~5 nm
a-tubulin/B-tubulin dimers

Dynamically polymerize
and depolymerize.

Highly specific interactions
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How can we utilize or
mimic the form and
function of these dynamic,
functionally diverse
biomolecular materials?

http://probes.invitrogen.c
om/

Adaptive reorganization of Chromosome positioning and Trafficking of vesicles and
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gment granules in melanocytes  separation during cell splitting macromolecule building blocks




Active Assembly of Dynamic and
Adaptable Materials

Biomolecular cargo transport Kinesin “shackles” Nanoscale templates
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Non-equilibrium assemblies 3D-Microtubule Assemblies

See George Bachand’s Poster

George Bachand, Marlene Bachand, Erik Spoerke, Haiqing Liu, Darryl Sasaki



Artificial Microtubules

Key Characteristics of Microtubules:

1-Dimensional Nanostructures

Assembled from nanoscale building blocks

Building block chemistry and form directs assembled architecture
Dynamic, Programmable Assembly (chemical and thermal)
Secondary Assembly (MT organization)

Biomolecular Polarity (a-3 asymmetry)

Motor Protein Interactions




Thermally-Reversible Dendronized Polymers

Synthetic objective: Create linear assemblies of dendrons,
polymerized together using thermally-reversible “Click” chemistry.

Based on Sequential Huisgen 1,3-Dipolar Cycloaddition and Diels-Alder Reactions

Forward reaction occurs at temperatures up to ~55 °C, with the reverse occurring above ~65 °C
(Anthracene — maleimide: 250 — 300 °C; Dicyclopentadiene: ~215 °C)
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Chromatography (GPC) shows the thermally reversible polymerization of dendritic

building blocks.

reveals the kinetics and extent of both polymerization and depolymerization

processes.

Polaske, McGrath, McElhanon, Macromolecules (2010)



Asymmetric Building Blocks

AA-BB System AB System

Asymmetric dendrimers introduce polarity mimicking MT biochemical polarity




Cyclable Thermal Assembly of AB-Dendronized
Polymers
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Asymmetric building blocks show
promising, reversible assembly.



Theoretical Design Rules for
Microtubule Mimics

Molecular Dynamics simulations were performed
to probe the influences of monomer shapes as
well as strength and geometric distribution of
interaction potentials on each monomer.

Asymmetric assembles into
* Gray spheres are repulsive

* Non-gray spheres are attracted rings (13 monomers), and
to spheres of the same color those rings would stack to
S form tubes.

Asymmetry is
critical!

Mark Stevens, Shengfeng Cheng



Simulating Supramolecular Assembly

Tuning the lateral and vertical interaction parameters drives the
assembly of filaments, rings, and tubes.

A = No assembly E = Rings, short tubes
B = Filaments F = Full tubes
C = Partial Rings G = Curved sheets, helical tubes

D = Full Rings




Simulation-Inspired Peptide Wedges

Asymmetric branched peptides can be
engineered with tunable handles to mimic
simulated wedge particles.




Asymmetric Wedge Assembly

EHT= 100K/ WD=36mm SignalA=Inlens  File Name = EDS1_09tif

Peptide assembled into a self- Scanning electron micrograph (SEM)
supporting gel at ~10 mg/mL at shows the gel is composed of self-
neutral pH in water. assembled nanofibers.

Transmission electron micrograph
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Modifying Hydrogen Bonding

Hydrogen bonding

10

Circular dichroism
shows molecular
disorder (left).

Ellipticity (mdeg)

SEM shows no fiber
wol ] formation (right).
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Modifying Amphiphilicity

Removing the hydrophobic isoleucine
residues from the Wedge also produces
supramolecular disorder (by CD, below) and
prevents nanofiber formation (SEM, above).
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Modifying Wedge Charge
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Self-Assembly of Charged Wedges

Ellipticity (mdeg)

Charge comparison N
20 . . B-sheet component . Disordered component
o 0.35 '
03 - 0.6
20 | . 0.25 | 0.5
0.2 0.4
Wi A i 4 -
0.15 +— 03
-60 | ] 0.1 - 0.2 -
— 2x charge 0.05 -J 0.1 - l
-80 —Wedge 1 | 0 -
— 1-acid 0 -
100 . : o acid Wedgel 1- Acid Noauds Wedgel 1- Acid Noauds
200 250 300 350

Wavelength (nm)

Variation in electrostatic charge has a strong influence on assembly
and molecular order.

TEM (left) and SEM (right)
show strong fiber formation in
wedges with strong [3-sheet
character




Programmable Assembly: Wedge Dimers

Charge-symmetric wedges will
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When mixed, the charged
wedges cooperatively

assemble to form nanofibers

with strong 3-sheet character.
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Photoswitchable Assembly
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Future Directions:

Dendronized polymers:

Increase linear character of polymers
Adapt for agueous assembly

Molecular modeling:
Explore form and function of Wedge peptides

Peptide Assembly:

Extended characterization of Wedge Assemblies (e.g. NMR, Cryo TEM)
Investigate influences of shape, size, and molecular rigidity in the Wedges.
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A “summer dress” made from wedge-nanofiber fabric in a micro-whirlpool
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