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Aluminum alloys: high strength-weight 
ratio, good thermal and electrical 
conductivities, low cost, high resistance to 
corrosion, and very low hydrogen 
solubility. 

Motivation: Aging of Al Alloys with H

1. Long time interaction with hydrogen (e.g., adsorption, absorption, 
diffusion) is difficult to study with experiments alone.

2. Engineering scale continuum models for Al-H interaction require 
atomistic simulations to provide input.

3. To enable atomistic simulations, we develop an Al-Cu-H 
analytical bond order potential.

Al Alloys Promising for H-storage

Issues: Long Time Aging Is Not Understood: 



3 Extremely Challenging Atomistic Models
1. Model must incorporate various 

compound phases to predict the 
precipitate-strengthening effects.

2. Al2Cu compounds ( and ’) are 
the most important.

3. Precipitate formation: GP zone 
’ (CaF2)  (Al2Cu).

fcc (Al, Cu, GP zone) ’ (Al2Cu)  (Al2Cu)

Can Model Even Captures These Crystals Structures? 



Property Trends of Different Literature Potentials
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The Al-Cu potential developed by Mishin et al seems to be the best 
currently available.

ADP: F. Apostol and Y. Mishin, PRB 83, 054116 (2011)
EAM: X.-Y. Liu et. al, Acta Mat. 47, 3227 (1999)



Mishin Potential Observations I: 
Energy Wiggling

5

ADP: F. Apostol and Y. Mishin, PRB 83, 054116 (2011)

AlCu L21 structurePair potential functions

(010)

(100)



Mishin Potential Observations II: Growth 
Simulation of Al2Cu Compounds
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ADP: F. Apostol and Y. Mishin, PRB 83, 054116 (2011)
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Growth Simulation Enabling Potentials

1. Captures property trends of many phases as determined from 
quantum calculations;

2. Predicts correctly crystalline growth during MD simulations.

We aim to meet two criteria:

Note that:

1. Growth simulations test unlimited number of configurations;
2. Interatomic potentials are usually not tested for growth 

simulations  rare to satisfy both criteria.
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Growth Simulations Extremely Challenging
• Wrong configurations should and will nucleate due to random condensation 

of adatoms, but they must all evolve to the correct crystal structure;

• Capturing property trends of a large number of clusters, lattices, and defects 
are necessary, but this alone will not ensure successful growth simulations.

• Extensive iterations are usually needed to develop an growth-enabling 
interatomic potential.

……

……
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Analytical Bond Order Potential (BOP)
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ij(rij): core-core repulsion; ,ij(rij) and ,ij(rij):  and 
bond integrals describing electron hopping probabilities 
among different orbital's; ,ij and ,ij:  and  bond 
orders describing half of difference in number of electrons 
in the bonding and anti-bonding states. ,ij and ,ij are 
complicated functions of bond length and bond angles.
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9



10

1. Derived from quantum mechanics theory through systematic coarse-graining;
2. Separate treatment of  and  bonding energies (products of bond order* and bond 

integral# ); 
3. The first two levels of the expanded Green function retained for the  and  bond 

orders;
4. Up to four electron hops are considered, naturally incorporating the 3-member 

ring term in the  bonding (R3) and the dihedral angle (kk’) effect in the p 
bonding;

5. Valence effect is addressed.
6. Accuracy comparable to quantum mechanics and scale comparable to 

conventional molecular dynamics.

* bond order: half the difference of electrons in the bond and anti-boding states.
# bond integral: hopping probability of electrons from one orbital to another.

Cyrot-Lackmann theorem

Analytical Bond Order Potential
10
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BOP Parameterization Methods

1. Properties (e.g., energies, geometries, and elastic constants) 
of a variety of clusters, lattices, surfaces, and defects are 
used to fit the parameters;

2. Four different optimization methods (conjugate gradients, 
differential evolution, simulated annealing, Nelder Mead 
simplex algorithm) are used in each fit to maximize 
probability of global minimum;

3. Parameters are constrained within first-principle motivated 
bounds;

4. Hundreds iterations with growth simulations as one of the 
drivers to guide the fitting.

11



Al Analytical Bond Order Potential
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Smooth energy curvesMatches DFT

BOP-MD simulation of fcc Al growth

EAM1 EAM2 ADP MEAM REAXFF1 REAXFF2 BOP Exp.

γsf(mJ/m2) 5 87 141 142 <1 <1 133 120-144



BOP-MD simulation of fcc Cu growth

Matches DFT
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Cu Analytical Bond Order Potential
Smooth energy curves
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Al-Cu Analytical Bond Order Potential
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BOP-MD simulation of /’ growth

Smooth energy curves

Matches DFT

ADP: F. Apostol and Y. Mishin, PRB 83, 054116 (2011)
EAM: X.-Y. Liu et. al, Acta Mat. 47, 3227 (1999)



H2+HH+H2 energy profiles

H Analytical Bond Order Potential
Cohesive energy trends of 
clusters and lattices

Atomic volume trends of lattices
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thick lines: DFT
thin lines: BOP



H to H2 Transformation Dynamics at 300 K16
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Conclusions

• Analytical BOPs have been developed for Al-Cu and 
separately for H;

• The Al-Cu BOP captures correctly the high stacking fault 
energy for Al, have smooth energy functions for elements 
and compounds, and predicts correctly the crystalline 
growth of both ’ and Al2Cu compounds.

• The H BOP ensures the H2 molecular gas as the 
equilibrium phase at the room temperature while predicts 
accurately the energy barriers for the H + H2  H2 + H 
reactions with different H atom approaching directions;

• The Al-Cu-H-O BOP is currently under development.


