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Motivation: Aging of Al Alloys with H
Al Alloys Promising for H-storage

Aluminum alloys: high strength-weight
ratio, good thermal and electrical
conductivities, low cost, high resistance to
corrosion, and very low hydrogen
solubility.

Issues: Long Time Aging Is Not Understood:

1. Long time interaction with hydrogen (e.g., adsorption, absorption,
diffusion) 1s difficult to study with experiments alone.

2. Engineering scale continuum models for Al-H interaction require
atomistic simulations to provide input.

3. To enable atomistic simulations, we develop an Al-Cu-H
analytical bond order potential.



3 Extremely Challenging Atomistic Models
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1. Model must incorporate various

: compound phases to predict the

: precipitate-strengthening effects.

2. Al,Cu compounds (0 and 0’) are
the most important.

3. Precipitate formation: GP zone
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Property Trends of Different Literature Potentials
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ADP: F. Apostol and Y. Mishin, PRB 83, 054116 (2011)
EAM: X.-Y. Liu et. al, Acta Mat. 47, 3227 (1999)

The Al-Cu potential developed by Mishin et al seems to be the best
currently available.




Mishin Potential Observations I:
Energy Wiggling
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® Mishin Potential Observations II: Growth
Simulation of Al,Cu Compounds
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Growth Simulation Enabling Potentials

We aim to meet two criteria:

1. Captures property trends of many phases as determined from
quantum calculations;
2. Predicts correctly crystalline growth during MD simulations.

Note that:

1. Growth simulations test unlimited number of configurations;
2. Interatomic potentials are usually not tested for growth
simulations = rare to satisfy both criteria.



3Growth Simulations Extremely Challenging

*  Wrong configurations should and will nucleate due to random condensation
of adatoms, but they must all evolve to the correct crystal structure;
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 Capturing property trends of a large number of clusters, lattices, and defects

are necessary, but this alone will not ensure successful growth simulations.

 [Extensive iterations are usually needed to develop an growth-enabling
interatomic potential.
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Analytical Bond Order Potential (BOP)
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¢;i(1;): core-core repulsion; B ;:(r;;) and B, ;(1;): o and ©
bond integrals describing electron hopping probabilities
among different orbital's; ®_..and ®_..: c and ®w bond

G, T,1°

orders describing half of difference 1n number of electrons
in the bonding and anti-bonding states. © ;; and O, ;; are

G,

complicated functions of bond length and bond angles.
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Cyrot-Lackmann theorem
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Derived from quantum mechanics theory through systematic coarse-graining;
Separate treatment of ¢ and = bonding energies (products of bond order™ and bond
integral®);

The first two levels of the expanded Green function retained for the ¢ and = bond
orders;

Up to four electron hops are considered, naturally incorporating the 3-member
ring term in the ¢ bonding (R;,) and the dihedral angle (A¢,,.) effect in the p
bonding;

Valence effect is addressed.

Accuracy comparable to quantum mechanics and scale comparable to
conventional molecular dynamics.

* bond order: half the difference of electrons in the bond and anti-boding states.
# bond integral: hopping probability of electrons from one orbital to another.
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BOP Parameterization Methods

. Properties (e.g., energies, geometries, and elastic constants)

of a variety of clusters, lattices, surfaces, and defects are
used to fit the parameters;

. Four different optimization methods (conjugate gradients,

differential evolution, simulated annealing, Nelder Mead
simplex algorithm) are used 1n each fit to maximize
probability of global minimum:;

. Parameters are constrained within first-principle motivated

bounds;

. Hundreds iterations with growth simulations as one of the

drivers to guide the fitting.
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Cu Analytical Bond Order Potential
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Al-Cu Analytical Bond Order Potential

Matches DFT BOP-MD simulation of 0/0’ growth
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H Analytical Bond Order Potential

Cohesive energy trends of
clusters and lattices H,+H—H+H, energy profiles

0
. P -1.50 ‘ ‘
thick lines: DFT
B0 ~+BOP -2.00 - thin lines: BOP
: 60
Efﬂﬁ 90
% g %-2.50 150
208 ‘;: iso
£9.3.00 - 80
N 3 60 BOP
Clusters Lattices E -0l _HOF
2 -3.50 120 BOP
12 - z —150 BOP
U %, ¥ B T Bt % 4 S ~~180 BOP
© 4,00
Atomic volume trends of lattices ‘
450 : e
5
-5.00
i 0 0.5 1 15 2 25 3
45 H---H Distance (A)
_ —BOP
z
g 4
£
I
B35 -
2
<
3 ﬁ\
2.5




1 Hto H, Transformation Dynamics at 300 K
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Conclusions

 Analytical BOPs have been developed for Al-Cu and
separately for H;

* The AI-Cu BOP captures correctly the high stacking fault
energy for Al, have smooth energy functions for elements
and compounds, and predicts correctly the crystalline
growth of both 0” and 6 Al,Cu compounds.

* The H BOP ensures the H, molecular gas as the
equilibrium phase at the room temperature while predicts
accurately the energy barriers for the H + H, > H, + H
reactions with different H atom approaching directions;

* The AI-Cu-H-O BOP i1s currently under development.



