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Abstract

We investigate finite pulse effects in self-amplified spon-
taneous emission (SASE), especially the role of coherent
spontaneous emission (CSE) in the start and the evolu-
tion of the free-electron laser (FEL) process. When the
FEL interaction is negligible, we solve the one-dimensional
Maxwell equation exactly and clarify the meaning of the
slowly varying envelope approximation (SVEA). In the
exponential gain regime, we solve the coupled Vlasov-
Maxwell equations and extend the linear theory to a
bunched beam with energy spread. A time-dependent, non-
linear simulation algorithm is employed to study the CSE
effect for a general beam distribution.

1 INTRODUCTION

Coherent spontaneous emission (CSE) has attracted much
attention as the electron bunches become shorter and more
intense in current experiments demonstrating the principle
of self-amplified spontaneous emission (SASE). The one-
dimensional (1D) theory of SASE (1, 2] is based on the
solution of the linearized Vlasov-Maxwell equations, for
the cases of a coasting beam with energy spread [1] and
a bunched monochromatic beam [2]. Attempts have been
made to include the energy spread for a bunched beam,
but only coherent bunching at the resonant wavelength was
considered [3]. In Ref. [4], the evolution of the electric
field is studied with the individual particle formulation for
a bunched monochromatic beam, and the contribution of
the incoherent and the coherent SASE are identified. In
this paper, we extend the linear theory to a bunched beam
with energy spread and calculate the effect of CSE for the
high gain FEL. We also present a time-dependent, nonlin-
ear simulation algorithm that takes CSE into account for an
arbitrary beam distribution.

2 COHERENT SPONTANEOUS
EMISSION

The 1D Maxwell equation for the transverse electric field
of a plane wave propagating along the undulator axis z is
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where py is the permeability of free space, and the charge
density term is absent here due to transverse uniformity.
Writing the transverse currentas J (z,t) = €J(z,t) +c.c.,
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where ¢ is the beam cross section, K is the undulator
strength parameter for the helical undulator and K[JJ] for
the planar undulator after averaging over the undulator pe-
riod k.. We have also assumed that the %% electron enters
the undulator at ¢ = ¢;(§ = 1, ..., N) and z = 0. Thus, the
longitudinal position of the electron is z;(2) = Be(t — ¢;),
where fc is the average longitudinal velocity. ©(%) is the
step function, i.e., ©(t) = 1 for ¢ > 0 and 0 otherwise.

In the absence of FEL interaction, the electric field in the
form B, = &E(z,t) + c.c is found to be
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where K = ecZgK/(4a'yo), Zy = Cly &~ 37711, and the
forward and the backward wavenumbers are
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Equation (3) describes a sum of N forward and backward
wave packets, with the forward wave packets having much
higher amplitude and shorter duration due to relativity.
For coherent spontaneous emission, we can define a rel-
ative position £ = z — et along the bunch and turn the
sum into an integral by using the smooth approximation
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where ng is the maximum line density and x (&) is the initial
bunch. density function (0 < x(€) < 1). For a single-step
pulse, x(&) = ©(—£), the electric field in froat of the pulse
0<é<(1-P2)is
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Only the forward wave component is present as expected.
The constant term terminates the field at the slippage dis-
tance £ = (1 — B)z. The electric field inside the pulse is
given by
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Thus, the coherent radiation comes from the sharp edge at

£ = 0 for such a single-step pulse or from any density gra-

dient for a general bunch distribution. A flat-top bunch can

be constructed from two single-step pulses separated by the

bunch length l;, and the relative intensity of the incoherent

versus the coherent spontaneous emissions can be obtained
Lincon (kf lb)2

from Egs. (3) and (6):
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where A\, = (1 — f)A,/B is the forward resonant wave-
length. Equation (8) was derived in Ref. [5] by considering
the initial coherent bunching factor. For N ~ 100 and
Iy ~ 2mm, A\, < 120 nm makes the incoherent power
larger, while A, > 120 nm favors the coherent power.
Thus, the CSE effect should be negligible for the proposed
x-ray FEL projects, but may play a significant role in cur-
rent experiments in the IR and visible region. We note that

the flat-top model requires the electron density to vanish
within )\, and tends to exaggerate the coherent effect.

3 LINEAR ANALYSIS

For FEL interaction, the backward wave is dropped and the
slowly varying envelope approxlmauon (SVEA)is invoked
in the form

Blz,1) = £(z, )eistz—et),
J(2,8) = T (2, 8)eir =0, ©)

where £ and J are assumed to vary slowly with z and ¢.
The Maxwell equation becomes
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It is convenient to define the electron coordinate as
-k
0 =ki(z—ct) +byz=——=(z—Bct) = k 11

and change the independent variables from (z, ) to (z, 8).
From Eq. (2), the transverse current is

J= -Eﬁk, 25(0 6;)e™%,

j=1
where 8; = —kyct;. Inserting this into Eq. (10), we repro-
duce the forward wave component of Eq. (3).
The phase space distribution of the electron beam is
given by the Klimontovich distribution [1]
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where n = (v—0) /7o is the conjugate variable to . Equa-

tion (10) can now be written as
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The Vlasov equation for the electron distribution is [1, 2]
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where k2 = eK/(29¢mc?) is a constant.

In the exponential gain regime and without external field,
we can regard the electric field in Eq. (15) as a small, first-
order quantity. This includes the coherent and the incoher-
ent spontaneous emissions as well as the stimulated emis-
sion. Hence the distribution function F' consists of two .
terms: the zeroth-order term is the initial smooth distribu-
tion given by

Fo(0,n,2) = x(0 — 2kun2)V (n), (16)
where V' (n) is the initial energy spread of the beam nor-
malized to [dnV(n) = 1, and the first-order term AF
contains both the initial fluctuation AFp and the bunching
behavior through FEL interaction. Approximating F' with
Fy in the third term of Eq. (15) yields

AF = AFy + k2 / ds& (o, s)e"”°-éa;ﬁb(80, 7,5),
0
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where 8y = § — 2k,nz + 2k, ns. Since the FEL gain be-
comes negligible when the width of V() is much larger
than the FEL parameter p [1], where
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we have 2k,nz ~ 2k,pz ~ 27 in the exponential gain
regime. We can therefore make the approximation 8y = 6
in the slowly varying £ and Fj but keep the fast oscillatory
phase e, Inserting Egs. (16) and (17) into Eq. (14) and
applying the Laplace transformation, we obtain
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The A-integration is along a straight path parallel to the
real axis and below all singularities of the integrand, It is
nonzero only when 6 — 8; < kyzor § — &; < & (the slip-
page length). Hence the total electric field at @ is the sum
of fields that originated from the discrete radiators prior to
@ but within the slippage length. The electron gain medium
is treated as a continuous fluid a la Vlasov and is justified
in Ref. [4]. For a monochromatic beam with V() = é(),
Eq. (19) reproduces the result of Ref. [2]. Coherent SASE
can be evaluated by turning the sum into an integral follow-
ing Eq. (5) and calculating the coatribution of the essential
singularity at A = 0 numerically [4].
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Following Ref. [4], one can re-express Eq. (19) as:
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where ¢ is an infinitesimal and positive number,
DO\ 1,6,65) = X = 5 + *u(6,6; )/dndv/d”, @1)
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For the coasting beam, w(@,0') = 1and D(A,v) = Ois the

dispersion relation including the energy spread [1]. Equa-
tion (21) provides a generalization to the bunched beam.
When the bunch distribution does not change appreciably
over the slippage length, w(0,6;) =~ x(8) from Eq. (22),
and the FEL gain is affected only by the local electron cur-
rent as expected.

4 SIMULATION ALGORITHM

In order to handle a general beam distribution and to study
the nonlinear regime, we have developed a simulation code
that is based on the individual particle formulation of FEL
equations:
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where Z = 2kyupz, 7] = n/p, and a = 2ppkuE/(k110)
is the scaled electric field. Equation (25) follows directly
from Eq. (14), where the contribution of the smooth (co-
herent) distribution and the fluctuating (incoherent) part are
explicitly separated into two terms. The partial derivative
with respect to 4 in Eq. (25) describes the slippage between
the electron and the radiation field.

A time-dependent simulation algorithm [6] can be con-
structed to take into account the slippage effect: one first
divides the bunch.into Ny = I/ A buckets and loads each
bucket with simulation particles that are uniform in 8 and
have the proper energy spread. Apply Eqgs. (23), (24) and
(25) without the slippage term in each bucket, and then slip
the computed field one bucket forward after each undula-
tor period. To start up the FEL process, one either gives a
small initial bunching by [6] or uses the shot noise simula-
tion algorithm of Ref. [7]. However, such a discretization
is not adequate for CSE simulation because the bunch dis-
tribution function x(6) is only sampled with a sampling
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Figure 1: Coherent SASE intensity |a.|? versus 208 (p =
1/(40r), Z = 5): (a) without energy spread, (b) with a flat-
top energy spread of width p.

interval A.. Thus, the Fourier transform of x/(6) is defined
only between the Nyquist critical frequency f. = 1/(2),)
or we = cky/2, and the coherent bunching around the res-
onant frequency ck;y is left out.

We modify this time-dependent approach to include the
CSE effect by decreasing the sampling interval to cover
the resonant part of the bunch spectrum. For example, we
can divide the bunch into 8N} sections so that the criti-
cal frequency is 4ck;. The spectral power outside this fre-
quency range should be sufficiently small to eliminate the
effect of aliasing. The electric field is computed and aver-
aged over the resonant wavelength, in consistent with the
slowly varying envelope approximation. Compared with
the multi-frequency approach to CSE simulation [8], the
time-dependent approach is more straightforward and can
include the shot noise in a natural way. Figure 1 shows an
example of simulation where we have intentionally turned
the noise off. The bunch is assumed to be longer than the
slippage length, CSE from the trailing part of the bunch
within the slippage length (i.e., 0 < 2p8 < Z) hasbeen am-
plified and is shown in Fig. 1(a) for a case without energy
spread and in Fig. 1(b) for the case with a flat-top energy
spread of width p. Figure 1(a) agrees very well with the
calculation of Eq. (19). Such a simulation technique is also
capable of studying the nonlinear behavior of the incoher-
ent and the coherent SASE.
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