DE-FG02-02ER86146 — Final Report

Graphical Environment Tools for Application to
Gamma-Ray Energy Tracking Arrays

Richard A. Todd
RIS Corp.

David C. Radford
ORNL Physics Division

Abstract

In this STTR, Oak Ridge National Laboratory (ORNL) assisted RIS Corporation
of Knoxville, TN, in the development of graphical environment tools for the
development and programming of high speed real-time algorithms to be
implemented in a Field-Programmable Gate Array (FPGA). The primary
application was intended to be digital signal processing for gamma-ray
spectroscopy, in particular for Gamma-Ray Energy Tracking Arrays such as the
GRETINA project. Key components of this work included assembling an
evaluation platform to verify designs on actual hardware, and creating various
types of Simulink functional blocks for peak-shaping and constant-fraction
discrimination.

Statement of Objectives

This DOE-STTR effort sought to develop a set of user-friendly graphical tools
for developing and programming high speed real-time digital signal-processing
algorithms for FPGAs. It also sought to expand and refine the number and
types of digital nuclear signal-processing algorithms available to the nuclear
physics community and provide these functions and algorithms within a set of
reusable libraries. This effort should allow experimenters to easily adapt the
functionality of signal digitizers for nuclear physics experiments, without the
need to learn the complex VHDL programming language and techniques. It
made use of graphical FPGA development tools based on the Simulinkm
graphical development environment from The Mathworks and the System
Generator™ FPGA development add-on tool from Xilinx.

Benefits to DOE Office's Mission

Highly segmented, position-sensitive germanium detector systems, such as
Gamma-Ray Energy Tracking array GRETINA, are being developed for nuclear

physics research where traditional electronic signal processing with mixed analog
and digital function blocks would be either impossible, or enormously complex
and costly. Future systems will be constructed using pipelined processing of
high-speed digitized signals as is done in the telecommunications industry.
Techniques which provide rapid algorithm and system development for future
systems are desirable, especially if they do not require expert knowledge of HDL
programming languages. This effort resulted in graphical environment toolsets
and modular libraries of nuclear physics functions to enhance digital pulse
processing capabilities for next-generation detector arrays at DOE nuclear
physics research sites, and allowing the nuclear physics community to generate
their own customizable algorithms.

The benefits of this graphical approach to FPGA programming include:
* Interactive approach provides immediate performance feedback
» Simulation functionality provides scope view of signals
* A variety of Matlab and Simulink functions can be used to analyze
results or provide stimulus to the algorithm
» Extensive knowledge of VHDL is not required
» System Generator will produce VHDL for the targeted Xilinx FPGA
 Makes extensive use of Xilinx cores including Virtex hardware
multipliers
* Makes use of synchronous design with one system clock
* Subsystems and custom libraries permit design re-use
» Drag and drop of Xilinx library functions
» Drag and drop of User library functions
» Drag and drop of Simulink functions for creation of stimulus (e.g. a
model of a detector, including noise)

Technical Discussion of Work Performed

Software licenses for Matlab™ and Simulink™ from The Mathworks were
purchased, and these tools were used in conjunction with System Generator
from Xilinx. Together, these tools used a block-diagram approach for algorithm
and system design, and directly generate VHDL code which is optimized for
Xilinx FPGAs.

An evaluation platform was assembled to verify designs on actual hardware,
using evaluation boards for an ADC, a Xilinx FPGA, and a DAC to allow digitized
signals to be manipulated with the resulting waveforms viewable directly on an
oscilloscope (See figure 1).

Simulink blocks along with Xilinx In/Out blocks were used to provide input signals
to the functions and to specify the FPGA pinout. Another System Generator block
was used to generate the corresponding VHDL code for specific Xilinx FPGA
targets. It also allows setting the global clock sample period.

ADC |12 FPGA DAC

il 2

3 S
STTR WTERCOMMECTION BOARD.
RS 10140 RO

Figure 1. The evaluation platform constructed to verify implementation of
programmed algorithms and proper programming of a target FPGA. It combines an
ADC (Analog Devices AD9432, 12 bits, 105 MSPS), an FPGA (Xilinx Spartan IIE,
300K gates, 100 MHz clock) and a DAC (dual Texas Instruments DAC2904, 14
bits,125 MSPS).

A number of functional blocks implementing specific operations were developed,
and these were then combined to create blocks for specific signal-processing
functions. The functions developed included:

» Signal shaping functions, such as
o Trapezoidal shaper, with adjustable rise time and dwell time
0 Quasi-Gaussian shaper, with adjustable number of poles and rise time
o Parabolic quasi-cusp shaper
o0 True exponential cusp shaper, for comparison purposes

» Exponential cancellation (“pole-zero” correction) with adjustable time
constant

* A baseline restorer to correct for fluctuating DC offsets

» A constant-fraction discriminator (CFD) for amplitude-independent timing;
includes adjustable CFD delay and fraction

* A pile-up rejection function, for discarding events that are distorted by
being too closely spaced

* Histogramming memory, for creating and storing energy spectra
(histograms), with variable resolution and dynamic range

Using the Simulink and System generator tools, it was then relatively simple to

» Draw a block diagram for the entire design, by dragging and dropping the
functional blocks and connecting them to specify the flow of data

e Simulate the design and observe the response of the algorithms to
measured stimuli, using the simulation and “scope” capabilities

* Modify the diagram as needed to achieve the desired responses

* Generate VHDL code for the desired FPGA platform, and

e Compile the VHDL code to create a bit file, and download this into the
FPGA

E‘E‘ =] Presentation_Example

File Edit Wiew Simulation Format Tools Help

0 & 4 find || D= HS s @ | D » B RE
System Generator: Inteiface to the Xin System Generator to generate HOL code far
the subspstem hierarchy in which the token resides. The token aksa gives coase drain
(subsystem wide] control over capabiliies such as overriding with doubles. }7
— Di iminator F ti
= B simuiink S ISCriminator runcrtrion
Be] Continious System Generator Generator

2] Discontinuities

2] Discrete

25] Look-Up Tables

Addressable Shit
Fiegister

P3| Math Operations
22 Model verification
22 Model-wide Utilities
1 Ports & Subsystems

Black Box

% dhl it a
= I ?>b fot dbl
Sine Wave ekl s Gateway Out Output_Scope
Relational

m

Clock Enable Probe

23] signal Attributes

C t
2] Signal Routing onea C
P2 Sirks onstant
] Sources Constant

#3] User-Defined Functions 125%
= W Fixed-Point Blockset
= W RIS Blockset
+- 23] Detector Sources
¥ 7| FPGA_Interfaces
= *3| FPGA_Processin a

Convert

Courter

-
v vy po N B
& = o a

Delay
2 Discriminators
2 Memary
- 2] Miscellaneous 4z Dewin Sample

22| shapers
= T S-function demos
= B Simulink Extras
= T il Blockset
3| Basic Elements

Muzx

Parallel to Serial

#| Communicat tion

d z'q) Register
2] psp
P Math
force| Reinterpret
23] Matlab 10 !
2] Memory
2 State Machine PN duiade =2 300 400 500 500 700 a00 300 1000

Ready

Figure 2: Example of graphical environment showing a simple function and signal
displays.

Trapezoid Math

Reset_Accumulator DFEO YT L IETEEA R MR AT daAnAE

T REEtERESEANBRTANEERLNUNTRSS3RsESaS

i*

According to Black Settings =
According to Black Settings -

Figure 3: Example of graphical environment showing an implementation of a
trapezoidal shaper.

T R T Y emYV B M Ss EXE 5 1.016 W
Ref1 20mv Sus

Figure 4: Trapezoidal shaper outputs, both simulated and measured from the
evaluation platform, and both with and without the pole-zero correction function.

Commercialization Possibilities
We anticipate four areas of commercialization for this technology.

1. Direct application of the algorithms to DOE-sponsored research experiments
will immediately add value to researchers by bringing the FPGA-simulation
and programming tools into a graphical environment, saving countless hours
in VHDL code generation. RIS Corp. will provide contract services or specific
Intellectual Property (IP) to implement these algorithms on an individual basis.
Some of the functions developed as part of this effort have already been
provided (as VHDL code) to the GRETINA electronics group at LBNL, for
implementation in the GRETINA digitizer board FPGA.

2. RIS Corp. has been already contacted by two commercial companies that
produce digitizer hardware. Discussions have centered around RIS Corp.
providing custom firmware for these companies to make the use of their
products much easier for their customers.

3. RIS has identified applications for this technology that are outside of the
physics research community. In particular, they have teamed with an office of
the U.S. Army Corps of Engineers in Huntsville in proposing an improved
signal processing algorithm platform development system for the detection
and classification of unexploded Ordnance (UXO).

4. RIS has applied this graphical technique to the implementation of other
prototype instruments, such as random amplitude and frequency pulsers,
spectrum generators, and pulse-shape discrimination circuitry

C 438
1400 — 2 m
- 22
- 15
= 10
- e |
ol 5
12002 i
o 2
= 1m
C 1
1000 [
goo £
- {
oo - %
= 3
=
— !‘ s
400 £ &
- i
= %-:
E 2
200 [=
OZIIIIIIIII|IIIIIIIII|IIIIIJ.JJ.I.IJ._IlJ.IIlIIlIIIIIIIII|IIIIIIIII|IIIIIII
! 0 400 [=jelu] 200 1000 1200

Figure 5: Real-time neutron-gamma discrimination plot using graphical environment
toolsets showing amplitude vs. timing figure-of-merit with gammas (left) and
neutrons (right) detected in large liquid scintillators.

Conclusions

In this DOE-STTR, Oak Ridge National Laboratory (ORNL) assisted RIS
Corporation in the development of graphical environment tools for the
development and programming of high speed real-time FPGA algorithms for
gamma-ray spectroscopy. Various types of functional blocks for digital signal
processing were created and tested. This effort resulted in modular libraries of
nuclear physics functions to enhance digital pulse processing capabilities for
next-generation detector arrays at DOE nuclear physics research sites. It also
facilitates generation of customized algorithms by the nuclear physics
community.

The benefits of this graphical approach to FPGA programming include:
1. The interactive approach provides immediate performance feedback,
2. Extensive knowledge of VHDL is not required,
3. Subsystems and custom libraries permit design re-use, and
4. Drag and drop of library functions and user-created functional blocks
allows high-level programming of DSP algorithms by non-specialists.

However, the design and programming of FPGA circuits still requires familiarity
with the tools and concepts while the commercial toolsets are in a state of
constant revision. Efficient utilization of the graphical techniques requires more
than casual usage of the toolsets, and in the optimum would be implemented in
a team approach where the graphical illustration clarifies the signal processing
algorithm and the black box or wrapper file is designed with detailed knowledge
of the hardware or board-level circuitry.

While intended primarily for application to detector systems such as GRETINA,
the technology can be readily commercialized for numerous other applications,
due to the extensive use of FPGAs in modern systems.

RIS Corp. has continued to develop products based on the concepts initiated in
this research. Signal processing algorithms have been applied to segmented
germanium detectors, position-sensitive silicon strip detectors, neutron-gamma
discrimination in liquid scintillators, and with other scintillating crystals such as
Nal(Tl) in a 1024-channel dual MCA implementation.

