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Microtubules and Tubular Structures

B-tubulin
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* MT dynamic/complex network

= Complex building block: a.—3
tubulin dimer

= Tubule contains 13 protofilaments Wang et al. JACS (2011)
= Helical tubule
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Design Building Blocks for Tubules

 What are the essential ingredients of a
monomer (synthetic or tubulin) to produce
microtubules?

e Specifically, what features are necessary in the
building block to self-assemble into tubules?

 Molecular dynamics with a “macromolecular”
building block:




Wedges as Building Blocks

MD simulations with wedges:

* 3D composite rigid body

* pure repulsion between gray particles
 attraction only between colored sites
 lateral bonding » 13-wedge rings

* vertical bonding & stack rings into
tubules

* independent control of A, and A,
e achiral @ nonhelical tubules
e kT as energy unit

Cheng et al., Soft Matter (2012)



Self-Assembly of Wedges

* 5000 wedge monomers

* wedges shown as spheres

* A,=4.4and A, =2.6

* monomer volume fraction ~ 4%

 start with random distribution of
monomers

many tubules & some fragments
* helical
* defects

w
"]
[ 4
= v owoo
‘ 1K
¥
(“)
. & sl
o
o
o
[
O N

Key Question: When do tubules form? What is the best

condition for tubule formation?




Structure Diagram: No Assembly

A =3.0, A,=0.6
monomers
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Structure Diagram: Oligomers
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Structure Diagram: Arcs
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Structure Diagram: Rings
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Structure Diagram: Tubule/Ring Mixture
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Structure Diagram: Oligomers
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Structure Diagram: Filaments

7 — .
' XXXX X X X X X
6! o X
' X xKx X
X X K x X
AL=1'1’ AV=5'2 5 X X X X
. | X X X X |
filaments = 4k AR
< | + + ++ X |
: T + ]
<,?3;l o o + 4+ C 1
Ki .um m
: oo
I'é: M EOZ. mm ]
/I < =
/ 1t L
ll I o
/ o ]




Structure Diagram: Sheets
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Structure Diagram: Percolated Cluster
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percolated cluster
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Structure Diagram: Multiple Clusters
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Tubule Formation at Weak Bonding

A=3.9, A,=2.6

defect-free tubules (helical)

A /kgT

 Tubules tend to be
helical, but monomer is
not chiral. Why?
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Tubular Structure Characterization

chirality =0

Characterize tubular structure:

Number of protofilaments (N)
Pitch of helix (S)

N S stands for tubules with N
protofilaments and pitch S

Achiral wedges designed for 13 0 tubules




Energy Distribution

* N_S tubules with the same N but different S can
have large overlap in energy distributions
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Twist Deformation of Tubules

e Twist deformation stabilizes
tubules with N S#13 0

twisted
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Twist Deformation of Tubules
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* Twist leads to better packing of wedges & lowers energy
of tubules

 Twist introduces an offset between vertical binding sites
=> constraint on twist

* Need strong vertical interaction to suppress twist



Effect of Interaction Strength on Assembly

* Fewer twisted tubules at A < A, for achiral wedges
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Chiral Wedges

 Shift lateral binding sites to make chiral wedges
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Wedges with Lock & Key Vertical Binding

* Shift vertical binding sites to make lock & key configuration
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Combining Chirality and Lock & Key

chirality 0
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With Vertical Lock & Key

« Shift lateral binding sites = chiral wedges

* Combining chirality and vertical lock & key for structural control:
pitch of tubules = chirality of wedges

* Better control occurs when A <A,

Cheng and Stevens, in preparation




Combining Chirality and Lock & Key

chirality 0
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With Vertical Lock & Key

« Shift lateral binding sites = chiral wedges

* Combining chirality and vertical lock & key for structural control:
pitch of tubules = chirality of wedges

* Better control occurs when A <A,

Cheng and Stevens, in preparation



 Tubules are only formed in a narrow range of
interaction strengths

— Delicate balance between energy and entropy
e Structural control in tubule self-assembly

— Twist deformation

— Interactions: need A <A,

— Lock & key mechanism

— Chiral building blocks

— Helicity of tubules

* |Implications for microtubules and other
macromolecule-assembled tubular structures



