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Manycore Performance Portability Challenge 
Diversity of devices and associated performance requirements 

Device Dependent Memory Access Patterns 
 Performance heavily depends upon device specific 

requirements for memory placement, blocking, striding, … 

 CPUs with NUMA and vector units 
 Core-data affinity: first touch and consistent access 
 Alignment for cache-lines and vector units 

 GPU Coalesced Access with cache-line alignment 

 “Array of Structures” vs. “Structure of Arrays” ? 
This is, and has been, the wrong question 
Right question: Abstractions for Performance Portability ? 
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Programming Model Concept 
two foundational ideas 

 Manycore Device 
 Distinct execution and memory spaces (physical or logical) 
 Dispatch parallel work to device : computation + data 

 Classic Multidimensional Arrays, with a twist 
 Map multi-index (i,j,k,...) ↔ memory location on the device 

 Efficient : index computation and memory use 
 Map is derived from an array Layout 
 Choose Layout for device-specific memory access pattern 
 Make layout changes transparent to the user code; 
 IF the user code honors the simple API: a(i,j,k,...) 

Separate user’s index space from memory layout 
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KokkosArray Library 
Just arrays and parallel dispatch 

 Standard C++ Library, not a Language extension 
 In spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ... 
 Not a language extension: OpenMP, OpenACC, OpenCL, CUDA 

 Uses C++ template meta-programming 
 Compile-time polymorphism for devices and array layouts  
 C++1998 standard; would be nice to require C++2011 ... 

 KokkosArray is not: 
 A linear algebra library 
 A mesh or grid library 
 A discretization library 

Intent: Build such libraries on top of KokkosArray 
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API : Allocation, Access, and Layout 

 Basic : data allocation and access 
class View< double * * [3][8] , Device > a(“a”,N,M);  

 Dimension [N][M][3][8] ; two runtime, two compile-time 
 a(i,j,k,l) : access data via multi-index with device-specific map 

 Same ‘View’ in both host and device code 

 Access Safety 
 Compile-time assertion a(i,j,k,l) is used correctly 

 Assert device code accesses device memory 
 Assert host code accesses host memory 

 Runtime array bounds checking – in debug mode 
 Capability on the GPU as well 
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API : Allocation, Access, and Layout 

 View semantics (shared pointer semantics) 
 Multiple view objects for the same array, shared ownership 
 Last view deallocates array data 

 Advanced : specify array layout 
class View<double**[3][8], Layout , Device> a(“a”,N,M);  

 Override default layout; e.g., force row-major or column-major 
 Multi-index access is unchanged in user code 
 Layout is an extension point for blocking, tiling, etc. 

 Advanced : specify memory access attributes 
class View< const double**[3][8], Device, RandomRead > x = a ; 

 Use special hardware, if available 
 E.g., access ‘x’ data through GPU texture cache 
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API : Deep Copy 
NEVER have a hidden, expensive deep-copy 

 Only deep-copy when explicitly instructed by user code 

 Basic : mirror the layout in Host memory space 
 Avoid transpose or permutation of data: simple, fast deep-copy 

typedef class View<...,Device> MyViewType ; 

MyViewType a(“a”,...);  

MyViewType::HostMirror a_host = create_mirror( a ); 

deep_copy( a , a_host ); deep_copy( a_host , a );  

 Advanced : avoid unecessary deep-copy 
MyViewType::HostMirror a_host = create_mirror_view( a ); 
 If Device uses host memory then ‘a_host’ is simply a view of ‘a’ 
 deep_copy becomes a no-op 
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API : Parallel Dispatch 
parallel_for( nwork , functor ) 
 Functor : Function + its calling arguments 

template< class DeviceType > // template on device type 
struct AXPY { 
  void operator()(int iw) const { y(iw) += a * x(iw); } // shared function 
  AXPY( … ) … { parallel_for( nwork , *this ); }  // parallel dispatch 
  typedef DeviceType device_type ; // run on this device 
  const double a ; 
  const View<const double*,device_type> x ; 
  const View<           double*,device_type> y ; 
}; 
 Functor is shared and called by NP threads (NP ≤ nwork) 
 Thread parallel call to ‘operator()(iw)’ : iw ∈ [0,nwork) 
 Access array data with ‘iw’ to avoid race conditions 
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API : Parallel Dispatch 
parallel_reduce( nwork , functor , result ) 
 Similar to parallel_for, with Reduction Argument 

template< class DeviceType > 
struct DOT { 
  typedef  DeviceType   device_type ; 
  typedef double value_type ;  // reduction value type 
 void operator()( int iw , value_type & contrib ) const 
    { contrib += y(iw) * x(iw); } // this thread’s contribution 
  DOT( … ) … { parallel_reduce( nwork , *this, result ); } 
  const View<const double*,device_type> x , y ; 
  // ... to be continued ... 
}; 
 Value type can be a ‘struct’, static array, or dynamic array 
 Result is a value or View to a value on the device 
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API : Parallel Dispatch 
parallel_reduce( nwork , functor , result ) 
 Initialize and join threads’ individual contributions 

struct DOT {  // ... continued ... 
  static void init( value_type & contrib ) { contrib = 0 ; } 
  static void join( volatile value_type & contrib ,  
                              const volatile value_type & input ) 
    { contrib = contrib + input ; } 
}; 
 Join threads’ contrib via commutative Functor::join 
 ‘volatile’ to prevent compiler from optimizing away the join 

 Deterministic result ← highly desirable 
 Given the same device and # threads 
 Aligned memory prevents variations from vectorization 



Performance Test: Modified Gram-Schmidt 
Simple stress test for bandwidth and reduction efficiency 
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• Simple sequence of vector-reductions and vector-updates 
• To orthonormalize 16 vectors 

• Performance for vectors > L3 cache size 
• NVDIA K20x     : 174 GB/sec = ~78% of theoretical peak 
• Intel Xeon         :   78 GB/sec = ~71% of theoretical peak 
• Intel Xeon Phi  :   92 GB/sec = ~46% of achievable peak 
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Results presented here are for 
pre-production Intel Xeon Phi 
co-processors (codenamed 
Knights Corner) and pre-
production versions of Intel’s 
Xeon Phi software stack. 
Performance and configuration 
of the co-processors may be 
different in final production 
releases. 



Performance Test: Molecular Dynamics 
Lennard Jones force model using atom neighbor list 
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 Solve Newton’s equations for N particles 

 Simple Lennard Jones force model: 

 Use atom neighbor list to avoid N2 computations 

 

 

 

 

 Moderately compute bound computational kernel 

 On average 77 neighbors with 55 inside of the cutoff radius 

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);  
for( jj = 0; jj < num_neighbors(i); jj++) { 
  j = neighbors(i,jj);  
  r_ij = pos_i – pos(j); //random read 3 floats 
  if ( |r_ij| < r_cut ) 
    f_i += 6*e*( (s/r_ij)^7 – 2*(s/r_ij)^13 ) 
} 
f(i) = f_i; 



Performance Test: Molecular Dynamics 
Lennard Jones force model using atom neighbor list 
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 Test Problem (#Atoms = 864000, #Steps = 100, ~77 neighbors/atom) 
 Neighbor list array with correct vs. wrong layout 

 Different layout between CPU and GPU 
 Random read of neighbor coordinate via GPU texture fetch  

 
 
 
 
 

 
 Large loss in performance with wrong layout 

 Even when using GPU texture fetch 
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MPI+X Performance Test: MiniFE 
Conjugate Gradient Solve of a Finite Element Matrix 

 Comparing X = Kokkos, Cuda, OpenMP 
 One MPI process / device 

• Except OpenMP on Xeon: process/socket due to NUMA 
• GPU-direct via MVAPICH2 

 Problem: 
• 3D thermal conduction 
• Compressed row storage 
• Weak scaling 
• 8M elements/device 

 Kokkos performance 
• 90% or better of “native” 
• Improvements ongoing  
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Conclusion 
Performance portable manycore programming model 
 Solved: “array of structs” vs. “struct of arrays” ? 

• By asking the right question: what abstractions are required ? 
• Answer: multidimensional arrays with device-polymorphic layout 
• and coordinated parallel dispatch of computational kernels 

 Kokkos C++ library, not a language extension 
• Performance evaluation “unit tests” and mini-applications 
• Multicore CPU, NVidia GPU, Intel Xeon Phi coprocessor 
• 90% or better of device-specialized “native” implementation 

 Plans 
• Analysis and improvement of back-end implementations 
• Advanced layouts such as tiling and blocking 
• Aggregate “scalar” types: automatic differentiation, stochastic variables 
• Hierarchical task-data parallelism 
• Higher level libraries: linear algebra, tensors, containers, ... 

Map to device optimized libraries via template partial specialization 

 
 


	KokkosArray:�Multidimensional Arrays for�Manycore Performance Portability
	Manycore Performance Portability Challenge�Diversity of devices and associated performance requirements
	Programming Model Concept�two foundational ideas
	KokkosArray Library�Just arrays and parallel dispatch
	API : Allocation, Access, and Layout
	API : Allocation, Access, and Layout
	API : Deep Copy�NEVER have a hidden, expensive deep-copy
	API : Parallel Dispatch�parallel_for( nwork , functor )
	API : Parallel Dispatch�parallel_reduce( nwork , functor , result )
	API : Parallel Dispatch�parallel_reduce( nwork , functor , result )
	Performance Test: Modified Gram-Schmidt�Simple stress test for bandwidth and reduction efficiency
	Performance Test: Molecular Dynamics�Lennard Jones force model using atom neighbor list
	Performance Test: Molecular Dynamics�Lennard Jones force model using atom neighbor list
	MPI+X Performance Test: MiniFE�Conjugate Gradient Solve of a Finite Element Matrix
	Conclusion�Performance portable manycore programming model

