
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

KokkosArray:
Multidimensional Arrays for
Manycore Performance Portability

H. Carter Edwards and Christian Trott
Sandia National Laboratories

SIAM Annual Meeting
July 10, 2013 | San Diego, California

SAND2013-###C (Unlimited Release)

SAND2013-5312C

1

Manycore Performance Portability Challenge
Diversity of devices and associated performance requirements

Device Dependent Memory Access Patterns
 Performance heavily depends upon device specific

requirements for memory placement, blocking, striding, …

 CPUs with NUMA and vector units
 Core-data affinity: first touch and consistent access
 Alignment for cache-lines and vector units

 GPU Coalesced Access with cache-line alignment

 “Array of Structures” vs. “Structure of Arrays” ?
This is, and has been, the wrong question
Right question: Abstractions for Performance Portability ?

2

Programming Model Concept
two foundational ideas

 Manycore Device
 Distinct execution and memory spaces (physical or logical)
 Dispatch parallel work to device : computation + data

 Classic Multidimensional Arrays, with a twist
 Map multi-index (i,j,k,...) ↔ memory location on the device

 Efficient : index computation and memory use
 Map is derived from an array Layout
 Choose Layout for device-specific memory access pattern
 Make layout changes transparent to the user code;
 IF the user code honors the simple API: a(i,j,k,...)

Separate user’s index space from memory layout

3

KokkosArray Library
Just arrays and parallel dispatch

 Standard C++ Library, not a Language extension
 In spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ...
 Not a language extension: OpenMP, OpenACC, OpenCL, CUDA

 Uses C++ template meta-programming
 Compile-time polymorphism for devices and array layouts
 C++1998 standard; would be nice to require C++2011 ...

 KokkosArray is not:
 A linear algebra library
 A mesh or grid library
 A discretization library

Intent: Build such libraries on top of KokkosArray

4

API : Allocation, Access, and Layout

 Basic : data allocation and access
class View< double * * [3][8] , Device > a(“a”,N,M);

 Dimension [N][M][3][8] ; two runtime, two compile-time
 a(i,j,k,l) : access data via multi-index with device-specific map

 Same ‘View’ in both host and device code

 Access Safety
 Compile-time assertion a(i,j,k,l) is used correctly

 Assert device code accesses device memory
 Assert host code accesses host memory

 Runtime array bounds checking – in debug mode
 Capability on the GPU as well

5

API : Allocation, Access, and Layout

 View semantics (shared pointer semantics)
 Multiple view objects for the same array, shared ownership
 Last view deallocates array data

 Advanced : specify array layout
class View<double**[3][8], Layout , Device> a(“a”,N,M);

 Override default layout; e.g., force row-major or column-major
 Multi-index access is unchanged in user code
 Layout is an extension point for blocking, tiling, etc.

 Advanced : specify memory access attributes
class View< const double**[3][8], Device, RandomRead > x = a ;

 Use special hardware, if available
 E.g., access ‘x’ data through GPU texture cache

6

API : Deep Copy
NEVER have a hidden, expensive deep-copy

 Only deep-copy when explicitly instructed by user code

 Basic : mirror the layout in Host memory space
 Avoid transpose or permutation of data: simple, fast deep-copy

typedef class View<...,Device> MyViewType ;

MyViewType a(“a”,...);

MyViewType::HostMirror a_host = create_mirror(a);

deep_copy(a , a_host); deep_copy(a_host , a);

 Advanced : avoid unecessary deep-copy
MyViewType::HostMirror a_host = create_mirror_view(a);
 If Device uses host memory then ‘a_host’ is simply a view of ‘a’
 deep_copy becomes a no-op

7

API : Parallel Dispatch
parallel_for(nwork , functor)
 Functor : Function + its calling arguments

template< class DeviceType > // template on device type
struct AXPY {
 void operator()(int iw) const { y(iw) += a * x(iw); } // shared function
 AXPY(…) … { parallel_for(nwork , *this); } // parallel dispatch
 typedef DeviceType device_type ; // run on this device
 const double a ;
 const View<const double*,device_type> x ;
 const View< double*,device_type> y ;
};
 Functor is shared and called by NP threads (NP ≤ nwork)
 Thread parallel call to ‘operator()(iw)’ : iw ∈ [0,nwork)
 Access array data with ‘iw’ to avoid race conditions

8

API : Parallel Dispatch
parallel_reduce(nwork , functor , result)
 Similar to parallel_for, with Reduction Argument

template< class DeviceType >
struct DOT {
 typedef DeviceType device_type ;
 typedef double value_type ; // reduction value type
 void operator()(int iw , value_type & contrib) const
 { contrib += y(iw) * x(iw); } // this thread’s contribution
 DOT(…) … { parallel_reduce(nwork , *this, result); }
 const View<const double*,device_type> x , y ;
 // ... to be continued ...
};
 Value type can be a ‘struct’, static array, or dynamic array
 Result is a value or View to a value on the device

9

API : Parallel Dispatch
parallel_reduce(nwork , functor , result)
 Initialize and join threads’ individual contributions

struct DOT { // ... continued ...
 static void init(value_type & contrib) { contrib = 0 ; }
 static void join(volatile value_type & contrib ,
 const volatile value_type & input)
 { contrib = contrib + input ; }
};
 Join threads’ contrib via commutative Functor::join
 ‘volatile’ to prevent compiler from optimizing away the join

 Deterministic result ← highly desirable
 Given the same device and # threads
 Aligned memory prevents variations from vectorization

Performance Test: Modified Gram-Schmidt
Simple stress test for bandwidth and reduction efficiency

10

• Simple sequence of vector-reductions and vector-updates
• To orthonormalize 16 vectors

• Performance for vectors > L3 cache size
• NVDIA K20x : 174 GB/sec = ~78% of theoretical peak
• Intel Xeon : 78 GB/sec = ~71% of theoretical peak
• Intel Xeon Phi : 92 GB/sec = ~46% of achievable peak

0
20
40
60
80

100
120
140
160
180
200

1E+05 1E+06 1E+07

R+
W

 B
an

dw
id

th
 G

B/
se

c

Double Precision Vector Length (16 vectors)

K20x (with ECC)

Xeon 1thread/core

Xeon Phi 56core x
4thread/core

Xeon Phi 56core x
1thread/core

Intel Xeon: E5-2670 w/HT
Intel Xeon Phi: 57c @ 1.1GHx
NVidia K20x

Results presented here are for
pre-production Intel Xeon Phi
co-processors (codenamed
Knights Corner) and pre-
production versions of Intel’s
Xeon Phi software stack.
Performance and configuration
of the co-processors may be
different in final production
releases.

Performance Test: Molecular Dynamics
Lennard Jones force model using atom neighbor list

11

 Solve Newton’s equations for N particles

 Simple Lennard Jones force model:

 Use atom neighbor list to avoid N2 computations

 Moderately compute bound computational kernel

 On average 77 neighbors with 55 inside of the cutoff radius

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);
for(jj = 0; jj < num_neighbors(i); jj++) {
 j = neighbors(i,jj);
 r_ij = pos_i – pos(j); //random read 3 floats
 if (|r_ij| < r_cut)
 f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13)
}
f(i) = f_i;

Performance Test: Molecular Dynamics
Lennard Jones force model using atom neighbor list

12

 Test Problem (#Atoms = 864000, #Steps = 100, ~77 neighbors/atom)
 Neighbor list array with correct vs. wrong layout

 Different layout between CPU and GPU
 Random read of neighbor coordinate via GPU texture fetch

 Large loss in performance with wrong layout

 Even when using GPU texture fetch

0
20
40
60
80

100
120
140
160
180

Xeon Xeon Phi K20x

G
Fl

op
/s

correct layout
(with texture)

correct layout
without texture

wrong layout
(with texture)

Intel Xeon: E5-2670 w/HT
Intel Xeon Phi: 57c @ 1.1GHx
NVidia K20x

Results presented here are for
pre-production Intel Xeon Phi
co-processors (codenamed
Knights Corner) and pre-
production versions of Intel’s
Xeon Phi software stack.
Performance and configuration
of the co-processors may be
different in final production
releases.

13

MPI+X Performance Test: MiniFE
Conjugate Gradient Solve of a Finite Element Matrix

 Comparing X = Kokkos, Cuda, OpenMP
 One MPI process / device

• Except OpenMP on Xeon: process/socket due to NUMA
• GPU-direct via MVAPICH2

 Problem:
• 3D thermal conduction
• Compressed row storage
• Weak scaling
• 8M elements/device

 Kokkos performance
• 90% or better of “native”
• Improvements ongoing

14

Conclusion
Performance portable manycore programming model
 Solved: “array of structs” vs. “struct of arrays” ?

• By asking the right question: what abstractions are required ?
• Answer: multidimensional arrays with device-polymorphic layout
• and coordinated parallel dispatch of computational kernels

 Kokkos C++ library, not a language extension
• Performance evaluation “unit tests” and mini-applications
• Multicore CPU, NVidia GPU, Intel Xeon Phi coprocessor
• 90% or better of device-specialized “native” implementation

 Plans
• Analysis and improvement of back-end implementations
• Advanced layouts such as tiling and blocking
• Aggregate “scalar” types: automatic differentiation, stochastic variables
• Hierarchical task-data parallelism
• Higher level libraries: linear algebra, tensors, containers, ...

Map to device optimized libraries via template partial specialization

	KokkosArray:�Multidimensional Arrays for�Manycore Performance Portability
	Manycore Performance Portability Challenge�Diversity of devices and associated performance requirements
	Programming Model Concept�two foundational ideas
	KokkosArray Library�Just arrays and parallel dispatch
	API : Allocation, Access, and Layout
	API : Allocation, Access, and Layout
	API : Deep Copy�NEVER have a hidden, expensive deep-copy
	API : Parallel Dispatch�parallel_for(nwork , functor)
	API : Parallel Dispatch�parallel_reduce(nwork , functor , result)
	API : Parallel Dispatch�parallel_reduce(nwork , functor , result)
	Performance Test: Modified Gram-Schmidt�Simple stress test for bandwidth and reduction efficiency
	Performance Test: Molecular Dynamics�Lennard Jones force model using atom neighbor list
	Performance Test: Molecular Dynamics�Lennard Jones force model using atom neighbor list
	MPI+X Performance Test: MiniFE�Conjugate Gradient Solve of a Finite Element Matrix
	Conclusion�Performance portable manycore programming model

