

Photos placed in horizontal position with even amount of white space between photos and header

Photos placed in horizontal position with even amount of white space between photos and header

KokkosArray: Multidimensional Arrays for Manycore Performance Portability

**H. Carter Edwards and Christian Trott
Sandia National Laboratories**

**Sandia
National
Laboratories**

*Exceptional
service
in the
national
interest*

**U.S. DEPARTMENT OF
ENERGY**

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

Diversity of devices and associated performance requirements

Device Dependent Memory Access Patterns

- Performance heavily depends upon device specific requirements for memory placement, blocking, striding, ...
- CPUs with NUMA and vector units
 - Core-data affinity: first touch and consistent access
 - Alignment for cache-lines and vector units
- GPU Coalesced Access *with* cache-line alignment
- “Array of Structures” vs. “Structure of Arrays” ?
 - This is, and has been, the *wrong* question

Right question: Abstractions for Performance Portability ?

Programming Model Concept

two foundational ideas

- **Manycore Device**
 - Distinct execution and memory spaces (physical or logical)
 - Dispatch parallel work to device : computation + data
- **Classic Multidimensional Arrays, *with a twist***
 - Map multi-index (i,j,k,...) \leftrightarrow memory location ***on the device***
 - Efficient : index computation and memory use
 - Map is derived from an array Layout
 - Choose Layout for device-specific memory access pattern
 - Make layout changes transparent to the user code;
 - IF the user code honors the simple API: $a(i,j,k,...)$

Separate user's index space from memory layout

KokkosArray Library

Just arrays and parallel dispatch

- **Standard C++ Library, not a Language extension**
 - *In spirit of* Intel's TBB, NVIDIA's Thrust & CUSP, MS C++AMP, ...
 - *Not a language extension:* OpenMP, OpenACC, OpenCL, CUDA
- **Uses C++ template meta-programming**
 - **Compile-time polymorphism for devices and array layouts**
 - **C++1998 standard; would be nice to *require* C++2011 ...**
- **KokkosArray is not:**
 - **A linear algebra library**
 - **A mesh or grid library**
 - **A discretization library**

Intent: Build such libraries on top of KokkosArray

API : Allocation, Access, and Layout

- **Basic : data allocation and access**

```
class View< double * * [3][8] , Device > a("a",N,M);
```

- Dimension **[N][M][3][8]** ; two runtime, two compile-time
- **a(i,j,k,l)** : access data via multi-index with device-specific map

- **Same 'View' in both host and device code**

- **Access Safety**

- **Compile-time assertion a(i,j,k,l) is used correctly**
 - **Assert device code accesses device memory**
 - **Assert host code accesses host memory**
- **Runtime array bounds checking – in debug mode**
 - **Capability on the GPU as well**

API : Allocation, Access, and Layout

- View semantics (shared pointer semantics)
 - Multiple view objects for the same array, shared ownership
 - Last view deallocates array data

- Advanced : specify array layout

```
class View<double**[3][8], Layout , Device> a("a",N,M);
```

- Override default layout; e.g., force row-major or column-major
- Multi-index access is unchanged in user code
- *Layout* is an extension point for blocking, tiling, etc.

- Advanced : specify memory access attributes

```
class View< const double**[3][8], Device, RandomRead > x = a ;
```

- Use special hardware, if available
- E.g., access 'x' data through GPU texture cache

API : Deep Copy

NEVER have a hidden, expensive deep-copy

- Only deep-copy when explicitly instructed by user code
- Basic : mirror the layout in Host memory space
 - Avoid transpose or permutation of data: simple, fast deep-copy

```
typedef class View<...,Device> MyViewType ;  
  
MyViewType a("a",...);  
  
MyViewType::HostMirror a_host = create_mirror( a );  
  
deep_copy( a , a_host ); deep_copy( a_host , a );
```

- Advanced : avoid unnecessary deep-copy

```
MyViewType::HostMirror a_host = create_mirror_view( a );  
  
▪ If Device uses host memory then 'a_host' is simply a view of 'a'  
▪ deep_copy becomes a no-op
```

API : Parallel Dispatch

parallel_for(nwork , functor)

- Functor : Function + its calling arguments

```
template< class DeviceType > // template on device type
struct AXPY {
    void operator()(int iw) const { y(iw) += a * x(iw); } // shared function
    AXPY( ... ) ... { parallel_for( nwork , *this ); } // parallel dispatch
    typedef DeviceType device_type ; // run on this device
    const double a ;
    const View<const double*,device_type> x ;
    const View<      double*,device_type> y ;
};
```

- Functor is shared and called by NP threads (NP ≤ nwork)
- Thread parallel call to 'operator()(iw)' : iw ∈ [0,nwork)
- Access array data with 'iw' to avoid race conditions

API : Parallel Dispatch

parallel_reduce(nwork , functor , result)

- Similar to parallel_for, with *Reduction Argument*

```
template< class DeviceType >
struct DOT {
    typedef DeviceType device_type ;
    typedef double value_type ; // reduction value type
    void operator()( int iw , value_type & contrib ) const
    { contrib += y(iw) * x(iw); } // this thread's contribution
    DOT( ... ) ... { parallel_reduce( nwork , *this, result ); }
    const View<const double*,device_type> x , y ;
    // ... to be continued ...
};
```

- Value type can be a 'struct', static array, or dynamic array
- Result is a value or View to a value on the device

API : Parallel Dispatch

parallel_reduce(nwork , functor , result)

- Initialize and join threads' individual contributions

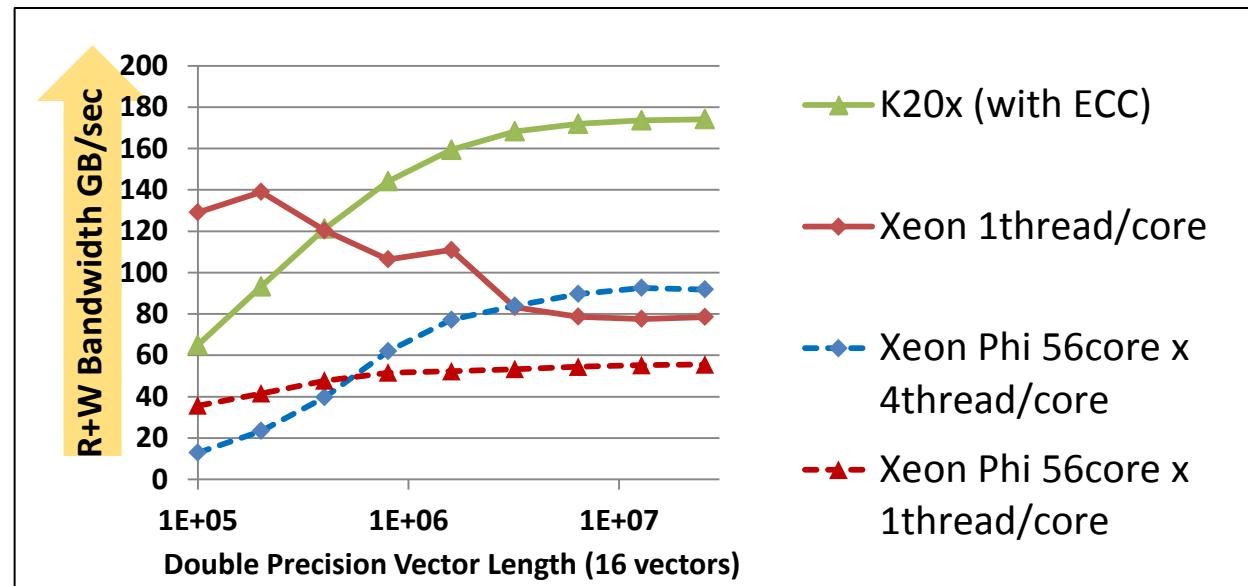
```
struct DOT { // ... continued ...
    static void init( value_type & contrib ) { contrib = 0 ; }
    static void join( volatile value_type & contrib ,
                      const volatile value_type & input )
    { contrib = contrib + input ; }
```

};

- Join threads' contrib via commutative Functor::join
- 'volatile' to prevent compiler from optimizing away the join
- Deterministic result ← highly desirable
 - Given the same device and # threads
 - Aligned memory prevents variations from vectorization

Performance Test: Modified Gram-Schmidt

Simple stress test for bandwidth and reduction efficiency



Intel Xeon: E5-2670 w/HT
Intel Xeon Phi: 57c @ 1.1GHz
NVidia K20x

Results presented here are for pre-production Intel Xeon Phi co-processors (codenamed Knights Corner) and pre-production versions of Intel's Xeon Phi software stack. Performance and configuration of the co-processors may be different in final production releases.

- Simple sequence of vector-reductions and vector-updates
 - To orthonormalize 16 vectors
- Performance for vectors > L3 cache size
 - NVIDIA K20x : 174 GB/sec = ~78% of theoretical peak
 - Intel Xeon : 78 GB/sec = ~71% of theoretical peak
 - Intel Xeon Phi : 92 GB/sec = ~46% of achievable peak

Performance Test: Molecular Dynamics

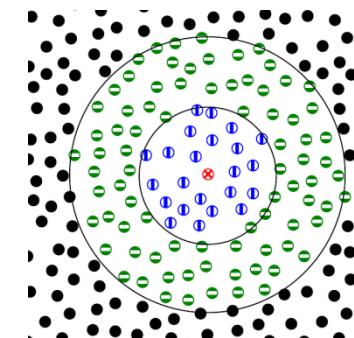
Lennard Jones force model using atom neighbor list

- Solve Newton's equations for N particles

- Simple Lennard Jones force model:
$$F_i = \sum_{j, r_{ij} < r_{cut}} 6\epsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^7 - 2 \left(\frac{\sigma}{r_{ij}} \right)^{13} \right]$$

- Use atom neighbor list to avoid N^2 computations

```
pos_i = pos(i);
for( jj = 0; jj < num_neighbors(i); jj++ ) {
    j = neighbors(i,jj);
    r_ij = pos_i - pos(j); //random read 3 floats
    if ( |r_ij| < r_cut )
        f_i += 6*e*( (s/r_ij)^7 - 2*(s/r_ij)^13 )
}
f(i) = f_i;
```

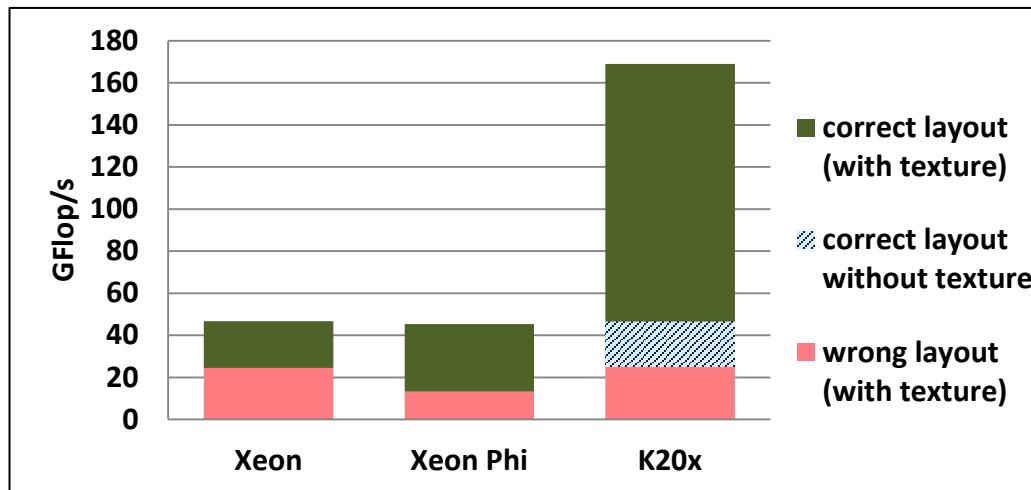


- Moderately compute bound computational kernel
- On average 77 neighbors with 55 inside of the cutoff radius

Performance Test: Molecular Dynamics

Lennard Jones force model using atom neighbor list

- **Test Problem (#Atoms = 864000, #Steps = 100, ~77 neighbors/atom)**
 - Neighbor list array with correct vs. wrong layout
 - Different layout between CPU and GPU
 - Random read of neighbor coordinate via GPU texture fetch



- Large loss in performance with wrong layout
 - Even when using GPU texture fetch

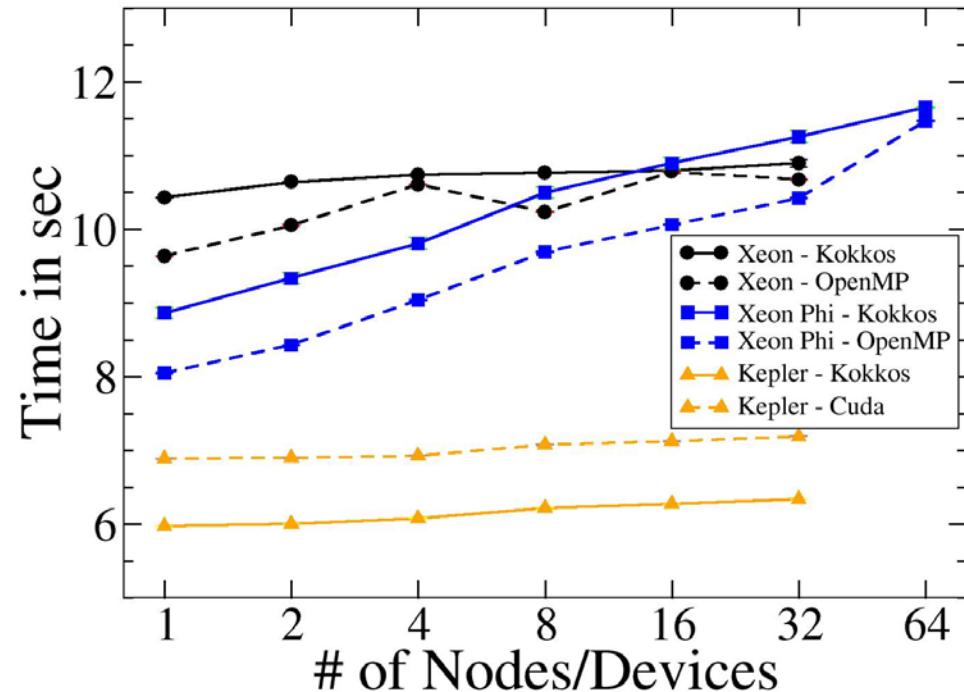
Intel Xeon: E5-2670 w/HT
Intel Xeon Phi: 57c @ 1.1GHz
NVidia K20x

Results presented here are for pre-production Intel Xeon Phi co-processors (codenamed Knights Corner) and pre-production versions of Intel's Xeon Phi software stack. Performance and configuration of the co-processors may be different in final production releases.

MPI+X Performance Test: MiniFE

Conjugate Gradient Solve of a Finite Element Matrix

- Comparing X = Kokkos, Cuda, OpenMP
- One MPI process / device
 - Except OpenMP on Xeon: process/socket due to NUMA
 - GPU-direct via MVAPICH2
- Problem:
 - 3D thermal conduction
 - Compressed row storage
 - Weak scaling
 - 8M elements/device
- Kokkos performance
 - 90% or better of “native”
 - Improvements ongoing



Conclusion

Performance portable manycore programming model

- **Solved: “array of structs” vs. “struct of arrays” ?**
 - By asking the right question: what abstractions are required ?
 - Answer: multidimensional arrays with device-polymorphic layout
 - and coordinated parallel dispatch of computational kernels
- **Kokkos C++ library, not a language extension**
 - Performance evaluation “unit tests” and mini-applications
 - Multicore CPU, NVidia GPU, Intel Xeon Phi coprocessor
 - 90% or better of device-specialized “native” implementation
- **Plans**
 - Analysis and improvement of back-end implementations
 - Advanced layouts such as tiling and blocking
 - Aggregate “scalar” types: automatic differentiation, stochastic variables
 - Hierarchical task-data parallelism
 - Higher level libraries: linear algebra, tensors, containers, ...
 - Map to device optimized libraries via template partial specialization