SAND2013-5301C

A Proposal for Task-Generating
Loops in OpenMP*

Xavier Teruel', Michael Klemm?, Kelvin Li?, Xavier Martorell®,
Stephen L. Olivier?, and Christian Terboven®

! Barcelona Supercomputing Center 2 Intel Corporation 3 IBM Corporation
4 Sandia National Laboratories 5 RWTH Aachen University
xavier.teruel@bsc.es,michael.klemm@intel.com,kli@ca.ibm.com,
xavier.martorell@bsc.es,slolivi@sandia.gov, terboven@rz.rwth-aachen.de

Abstract. With the addition of the OpenMP* tasking model, program-
mers are able to improve and extend the parallelization opportunities of
their codes. Programmers can also distribute the creation of tasks us-
ing a worksharing construct, which allows the generation of work to be
parallelized. However, while it is possible to create tasks inside workshar-
ing constructs, it is not possible to distribute work when not all threads
reach the same worksharing construct. We propose a new worksharing-
like construct that removes this restriction: the taskloop construct. With
this new construct, we can distribute work when executing in the con-
text of an explicit task, a single, or a master construct, enabling us
to explore new parallel opportunities in our applications. Although we
focus our current work on evaluating expressiveness rather than perfor-
mance evaluation, we present some initial performance results using a
naive implementation for the new taskloop construct based on a lazy
task instantiation mechanism.

Keywords: OpenMP, Task, Worksharing, Loop, Fork/Join

1 Introduction

The proliferation of multi-core and many-core architectures necessitates wide-
spread use of shared memory parallel programming. The OpenMP* Applica-
tion Program Interface [9], with its cross-vendor portability and straightforward
directive-based approach, offers a convenient means to exploit these architectures
for application performance. Though originally designed to standardize the ex-
pression of loop-based parallelism, the addition of support for explicit tasks in
OpenMP has enabled the expression of divide-and-conquer algorithms and ap-
plications with irregular parallelism [1]. At the same time, OpenMP worksharing
has been recast in the specification to use the task model. A parallel region is
said to create a set of implicit tasks equal to the number of threads in the team.
Each implicit task is tied to a different thread in the team, and iterations of a
worksharing loop are executed in the context of these implicit tasks.

2 X. Teruel, M. Klemm, K. Li, X. Martorell, S.L. Olivier, C. Terboven

However, no interaction has been defined between explicit tasks and work-
sharing loops. This leads to an asymmetry since the implicit tasks of a workshar-
ing construct can create explicit tasks, while explicit tasks may not encounter a
worksharing construct. Hence it becomes cumbersome for programmers to com-
pose source code and libraries into a single application that uses a mixture of
OpenMP tasks and worksharing constructs.

We aim to relieve this burden by defining a new type of worksharing construct
that generates (explicit) OpenMP tasks to execute a parallel loop. The new
construct is designed to be placed virtually anywhere that OpenMP accepts
creation of tasks, making the new construct fully composable. The generated
tasks are then executed through the existing tasks queues, enabling transparent
load balancing and work stealing [3] in the OpenMP runtime system.

The remainder of the paper is organized as follows. Section 2 discusses the
rationale and the design principles of the new task-generating worksharing con-
struct. In Section 3, we describe the syntax and semantics of the new construct.
We evaluate the performance of the new construct in Section 4. Section 5 presents
related work, and Section 6 concludes the paper and outlines future work.

2 Rationale and Design Considerations

OpenMP currently offers loop-based worksharing constructs (#pragma omp for
for C/C++ and !'$omp do for Fortran) only to distribute the work of a loop
across the worker threads of the current team. When OpenMP 3.0 introduced
the notion of task-based programming, the effect of the parallel construct
was recast to generate so-called implicit tasks that are assigned to run on the
threads of the current team. Hence, the existing worksharing constructs now
assign loop iterations to these implicit tasks. While this generalizes OpenMP
semantics and also simplifies the implementation of an OpenMP compiler and
runtime, it still maintains the traditional semantics and restrictions of the work-
sharing constructs [9].

A worksharing region cannot be closely nested inside another worksharing
region. This becomes an issue when not all source code is under control of the
programmer, e.g., if the application code calls into a library. Today, the only
solution is to employ nested parallelism to create a new team of threads for the
nested worksharing construct. However, this approach potentially limits paral-
lelism on the outer levels, while the inner parallel regions cannot dynamically
balance the load on their level. It also leads to increased synchronization over-
head due to the inner barrier. Furthermore, current OpenMP implementations
cannot maintain a consistent mapping of OpenMP threads to native threads
when nested parallel regions occur, which may lead to bad performance, partic-
ularly on systems with a hierarchical memory and cache architecture.

The threading and tasking model in OpenMP is not symmetric for workshar-
ing constructs and tasks. All OpenMP worksharing constructs can arbitrarily
create tasks from their regions. However, the reverse is not permitted: workshar-
ing constructs may not be encountered from the dynamic extent of a task.

A Proposal for Task-Generating Loops in OpenMP* 3

OpenMP tasks on the other hand provide an elegant way to describe many
different algorithms. Tasks are not restricted to regular algorithms and may
be used to describe (almost) arbitrarily irregular algorithms. Unfortunately,
OpenMP does not offer an easy-to-use construct to express parallel loops with
tasks. Programming languages like Intel® Cilk™ Plus or libraries such as Intel®
Threading Building Blocks define keywords or C++ templates to generate tasks
from a parallel loop. This is a very convenient approach to express loop paral-
lelism on top of a task-based parallel programming model. In OpenMP this is
not possible with the current specification of worksharing constructs.

Today, programmers are forced to use a work-around. Listing 1.1 shows the
manual task implementation of a simple loop. The traditional worksharing con-
struct is in the function daxpy_parallel_for. The parallel loop with man-
ual tasking is rather cumbersome, since it involves a lot of boilerplate code. In
daxpy_parallel_explicit_tasks, a for loop runs over the individual chunks
of the iteration space to create explicit tasks. Programmers are responsible for
computing a chunk’s lower (1b) and upper bound (ub). The typical parallel-
single pattern is used to only have one producer create tasks. The code of func-
tion daxpy_parallel_taskloop shows how the syntax of the proposed taskloop
construct eases the implementation and makes the code more concise.

A task-based loop construct for OpenMP can solve these issues with existing
worksharing constructs and increase expressiveness. Since tasks in OpenMP are
(by definition) nestable, an OpenMP loop construct that generates tasks from
a loop is also nestable. Load balancing is performed automatically as tasks are
scheduled onto the threads by the runtime system, often by work stealing [3].
Mixing regular tasks and task-generating loop constructs is also possible. The
generated tasks of a loop are inserted into the task queue; threads eventually
schedule the loop tasks and execute them intermixed with all other tasks created.

3 The Task-Generating Loop Construct

This section describes the syntax and semantics of the proposed taskloop con-
struct. We use the same syntax description format as the OpenMP specification.

3.1 Syntax

The syntax of the taskloop construct is syntactically similar to the existing
worksharing constructs:

#pragma omp taskloop [clausef, | clause] ...]
for-loops

where clause is one of the following:

— if (scalar-expression)
— shared(list)

e
= O © WO oA W N

[I I N = S STy
AW RO 0K O W

4 X. Teruel, M. Klemm, K. Li, X. Martorell, S.L. Olivier, C. Terboven

void daxpy_parallel_for (float* x, float* y, float a, int length) {
#pragma omp parallel for shared(x,y) firstprivate(a,length)

for (int i = 0; i < length; i++) x[i] = a * y[il;
}

void daxpy_parallel_explicit_tasks(float* x, float* y, float a, int length) {
#pragma omp parallel shared(x,y) firstprivate(a,length)
{

#pragma omp single
{
int 1b = 0; // initial loop start
for (1b = 0; 1b < length; 1lb += chunksz) {
int ub = min(lb + chunksz, length);
#pragma omp task firstprivate (lb,ub)

for (int i = 1lb; i < ub; i++) x[i]l = a * y[il;
} 3
#pragma omp taskwait

} 1}

void daxpy_parallel_taskloop(float* x, float* y, float a, int length) {
#pragma omp parallel taskloop shared(x,y) firstprivate(a,length)
for (int i = 0; i < length; i++) x[i] = a * y[il;

}

Listing 1.1. Implementation overhead of explicit tasking for a parallel for loop.

— private(list)

— firstprivate(list)

— lastprivate(list)

— partition(kind[, chunk_size])
— collapse(n)

— taskgroup

— nowait

In line with the existing worksharing constructs and for completeness, we
also define a combined version of the parallel and the taskloop construct.
The parallel taskloop construct is a shortcut for specifying a parallel con-
struct containing one taskloop construct with its associated loops and no other
statements.

#pragma omp parallel taskloop [clausef[, [clause] ...]
for-loops

The Fortran syntax is similar to C/C++ and the clauses are the same as

C/C++:

!$omp taskloop [clauseff, | clause] ...]
do-loops
[t$omp end taskloop /nowait|taskgroup//

!$omp parallel taskloop [clausef/, [clause] ...]
do-loops

A Proposal for Task-Generating Loops in OpenMP* 5

[t$omp end parallel taskloop /nowait|taskgroup/ |

3.2 Semantics

All loops that are supported by the traditional worksharing constructs are also
supported by taskloop. The taskloop construct requires the same restrictions
on the for and do loops as the existing worksharing constructs. Although very
similar in syntax to the do/for worksharing construct, the proposed taskloop
construct does not follow the definition of an OpenMP worksharing construct,
as instead of defining units of work to be executed by threads, it generates
tasks. Hence, restrictions on worksharing constructs, such as the requirement to
be encountered by all threads of a team, do not apply, nor could the existing
do/for construct be extended to provide this functionality.

When an if clause is present on a taskloop construct and its expression
evaluates to false, the encountering thread must suspend the current task region
until the whole loop iteration space is completed.

The collapse clause has its well-known OpenMP semantics specifying the
number of nested loops that are associated with the taskloop construct. The
parameter of the collapse clause indicates the number of loops which must
collapse into a single iteration space.

The data-sharing attributes are slightly reinterpreted for the taskloop to
fit the notion of task creation. In today’s OpenMP semantics, data-sharing
clauses are defined in terms of implicit and explicit tasks (and SIMD lanes in
OpenMP 4.0 RC2 [10]). For the taskloop construct, the shared clause declares
a list of variables to be shared across the tasks created by the taskloop con-
struct. Variables marked as private, firstprivate, or lastprivate are private
to the created tasks. The loop index variable is automatically made private.

The partition clause defines the way the iteration space is split to generate
the tasks from the loop iterations:

— partition(linear) is the analog to the dynamic schedule of existing loop
constructs, i.e., the iteration space is split into (almost) equally sized chunks
of the given chunk size.

— partition(binary) uses a binary splitting approach in which the iteration
space is recursively split into chunks. Each chunk is assigned to a new task
that continues binary splitting until a minimal chunk size is reached.

— partition(guided) is the analog of the guided schedule of existing loop con-
structs, i.e., tasks are generated with continually decreasing amounts of work.

The chunk_ size parameter defines the chunk size of the generated tasks:

— If partition(linear) is specified, then the value determines the exact size of
each chunk, as it does in the dynamic schedule of existing loop constructs.

— If partition(binary) or partition(guided) is specified, then the value de-
termines the minimal size of a chunk, as it does in the guided schedule of
existing loop constructs.

6 X. Teruel, M. Klemm, K. Li, X. Martorell, S.L. Olivier, C. Terboven

— The default chunk size is 1 (if the chunk_ size parameter is not present).

When an implicit or explicit task encounters a taskloop construct, it pre-
computes the iteration count and then starts creating tasks according to the split
policy specified in the partition clause. For the 1inear case, the encountering
tasks computes the work distribution and creates the tasks to execute based on
the distribution computed. For the binary case, the encountering task cuts the
iteration space into two partitions and creates a child task for each of the par-
titions. This continues recursively until the threshold is reached and the tasks
start to execute loop chunks. The guided policy forces the encountering task to
create a series of loop tasks of decreasing size.

The default synchronization at the end of the taskloop region is an implicit
taskwait synchronization. Thus, only tasks generated directly by the taskloop
construct must have been completed at the end of the taskloop region. The
taskgroup clause instead establishes a task group for all the tasks that are gener-
ated from the task-generating loop construct and enforces an implicit taskgroup
synchronization at the end of the taskloop region.! A taskgroup synchroniza-
tion requires completion of all tasks: not only those tasks generated directly by
the taskloop construct, but also all descendants of those tasks. The nowait
clause removes the implicit taskwait synchronization at the end of the tasking
loop construct. Only one of the nowait or taskgroup clauses may be specified.

4 Evaluation

In this section, we discuss some parallelization patterns that benefit from the new
construct. The main goal for this new construct is to increase the expressiveness
of OpenMP, but we present some performance results that demonstrate that
increasing such expressiveness can sometimes also improve performance.

4.1 Parallelization Approach

The first benchmark is Cholesky factorization. Cholesky decomposition is a com-
mon linear algebra method which is also used to solve systems of linear equa-
tions. Our implementation is based on the LAPACK library version and uses
four different kernels: potrf, trsm, gemm and syrk (Listing 1.2).

A possible parallelization of the algorithm creates a different task for each
kernel. In this parallelization we already use task dependences, set to be in-
cluded in OpenMP 4.0 [10], in order to solve some imbalance problems when
using traditional worksharing constructs [6]. Listing 1.2 includes this baseline
parallelization.

Holding constant the number of tasks generated (which usually is related
to the problem size) while changing the number of threads (which is related
to available resources) may greatly impact performance. Some applications can

! Taskgroups are not part of OpenMP 3.1, but have been added to the draft specifi-
cation of OpenMP 4.0 RC2 [10].

e
= O © WO oA W N

[I I N = S STy
AW RO 0K O W

25
26
27
28
29
30

A Proposal for Task-Generating Loops in OpenMP* 7

void omp_gemm(double *A, double *B, double *C, int ts, int bs) {
int i, j, k;
static const char TR = ’T’, NT = ’N’;
static double DONE = 1.0, DMONE = -1.0;

for(k=0; k<ts ;k+=bs)
for(i=0; i<ts;i+=bs)
for(j=0; j<ts; j+=bs)
dgemm_ (&NT, &TR, &bs, &bs, &bs, &DMONE, A[kx*ts+il,
&ts, Blkxts+j], &ts, &DONE, C[j*ts+il, &ts);
}

#pragma omp parallel
#pragma omp single
for (int k¥ = 0; k < nt; k++) {
#pragma omp task depend(inout:Ah[k][k])
omp_potrf (Ah[k][k], ts);
for (int i = k + 1; i < nt; i++) {
#pragma omp task depend(in:Ah[k][k],inout:Ah[k][il])
omp_trsm (Ah[k][k], Ah[k][i], ts);
}
for (int i = k + 1; i < nt; i++) {
for (int j =k + 1; j < i; j++) {
#pragma omp task depend(in:Ah[k][i],Ah[k][j],inout:An[jI[i])
omp_gemm (Ah[k][i], Ah[k][jl, Ah[jl[il, ts, ts/BLOCK_SIZE);

#pragma omp task depend(in:Ah[k][i], inout:C[il[il)
omp_syrk (Ah[k][il, Ah[il[il, ts);

Listing 1.2. Cholesky’s baseline parallelization code.

benefit from an extra level of parallelism to alleviate load imbalance. In order to
include this extra level of parallelism, we can create a task for each loop iteration
(including loop body) but the granularity issue remains: we still have a constant
number of tasks and constant task granularity.

Following with that solution we can handle the inner loop chunk size and
transform this inner loop into a task. If we use the available number of threads
as part of the chunk-size computation, we can effectively manage the trade-off be-
tween task number and task granularity according to the availability of resources.
This approach is demonstrated in function omp_gemm_tasks () in Listing 1.3.

The same result can be achieved using a guided policy with the new loop con-
struct (see function omp_gemm_loop(), the second function in Listing 1.3). This
last solution does not require adding extra code into the user’s program, allowing
equivalent behavior by including just a single OpenMP pragma directive.

Our second benchmark is the Conjugate Gradient (CG) iterative kernel. The
conjugate gradient method is a numerical algorithm to solve systems of linear
equations and is commonly used in optimization problems. It is implemented
as an iterative method, providing monotonically improving approximations to
the exact solution (i.e., the method converges iteration after iteration to the real
solution). The algorithm completes after it reaches the required tolerance or after
executing some maximum number of iterations. The tolerance and maximum
iteration count are fixed as input parameters.

8 X. Teruel, M. Klemm, K. Li, X. Martorell, S.L. Olivier, C. Terboven

1| void omp_gemm_tasks (double *A, double *B, double *C, int ts, int bs) {
2 c

3 for (k=0; k<ts ;k+=bs) {

4 for(i=0; i<ts;i+=bs) {

5 lower = O0;

6 nthreads = omp_get_num_threads();

7 while (lower < ts) {

8 upper = compute_upper (lower, nthreads, bs, ts);

9| #pragma omp task firstprivate(x,k,i,ts,bs) nowait

10 for(j = lower; j < upper; j+=bs)

11 dgemm_ (&NT, &TR, &bs, &bs, &bs, &DMONE, A[kx*ts+il],
12 &ts, Blkxts+j]l, &ts, &DONE, C[j*ts+il, &ts);

13 lower = upper;

14 }

15 }

16| #pragma omp taskwait
18| }
20| void omp_gemm_loop (double *A, double *B, double *C, int ts, int bs) {

22 for (k=0; k<ts ;k+=bs) {

23 for(i=0; i<ts;i+=bs) {

24| #pragma omp taskloop partition(guided,1) firstprivate(k,i,ts,bs) nowait
25 for(j=0; j<ts; j+=bs)

26 dgemm_ (&NT, &TR, &bs, &bs, &bs, &DMONE, A[k*ts+il,

27 &ts, Blkxts+jl, &ts, &DONE, C[j*ts+il, &ts);

28 }

29| #pragma omp taskwait

31| }

Listing 1.3. Parallelization approaches of the GEMM code.

Initial parallelization of this code comprises a sequence of parallel regions
and a worksharing construct which computes each of the component kernels
used in the algorithm. In Listing 1.4, we show only the matvec function, the
most important kernel in the CG benchmark, but other kernels follow the same
pattern. This approach incurs the overhead costs of creating a parallel region
to execute each kernel.

Using our proposed loop construct, we only need to create one team using the
OpenMP parallel construct before starting the iterative computation. We also
enclose the parallel region (i.e., the user’s code associated with the parallel
construct) with an OpenMP single directive. This approach is shown in List-
ing 1.5. A team of threads is created, but only one thread executes the code
inside the parallel region due to the closely nested single directive. We simi-
larly modify all the other kernels, replacing the existing loop construct with the
new loop construct. Although the code still includes a worksharing construct, we
eliminate the overhead costs of opening and closing successive parallel regions.

4.2 Performance Results

We evaluate all our benchmarks on the MareNostrum III supercomputer, located
at the Barcelona Supercomputing Center and on Gothmog, a machine at the
Royal Institute of Technology in Stockholm. Due the nature of our evaluation
all benchmarks are executed on a single node.

[e R R N

e e
No U A W= O ©

18
19
20
21
22
23
24
25
26
27
28
29
30
31

A Proposal for Task-Generating Loops in OpenMP* 9

void matvec (Matix *A, double *x, double *y)
{
#pragma omp parallel for private(i,j,is,ie,jO,y0) schedule(static)
for (i = 0; i < A->n; i++) {
yo = 0
is = A->ptrl[il;
ie = A->ptr[i + 1];
for (j = is; j < ie; j++) {
jO = index[jl;
yO += valuel[j] * x[joOl;
}
y[il = yo;
}
}
for (iter = 0; iter < sc->maxIter; iter++) {
precon(A, r, z);
vectorDot(r, z, n, &rho);
beta = rho / rho_old;
xpay (z, beta, n, p);
matvec (A, p, q);
vectorDot(p, q, n, &dot_pq);
alpha = rho / dot_pgq;
axpy (alpha, p, n, x);
axpy(-alpha, q, n, r);
sc->residual = sqrt(rho) * bnrm2;
if (sc->residual <= sc->tolerance) break;
rho_old = rho;
}

Listing 1.4. CG baseline implementation

Each MareNostrum node is a 16-core node with two Intel® Xeon® processors
E5-2670 (former codename “Sandybridge”), running at 2.6 GHz (turbo mode at
3.3 GHz) and with 20 MB L3 cache. Each node has 32 GB of main memory, which
is organized as two NUMA nodes. Gothmog is a 48-core machine with four 12-
core AMD Opteron* 6172 processors (codename “Magny-Cours”), running at
2.1 GHz, with 6 MB L2 and 12 MB L3 caches. The machine has 64 GB of main
memory organized as eight NUMA nodes. We use the Nanos+ -+ runtime library?
and Mercurium compiler® [2].

In the next subsections, we detail the results obtained for Cholesky and CG.

Cholesky. Figure 4.2 summarizes the results obtained by executing Cholesky
on MareNostrum III and Gothmog. We executed three different versions of
Cholesky: The first version, labeled 1-level tasks, uses a single level of paral-
lelism. The second version, labeled nested, includes an additional level of nested
parallelism with tasks. In the final version, labeled taskloops, the nested paral-
lelism is implemented using the taskloop construct with guided partitioning.

2 Based on git repository (http://pm.bsc.es/git/nanox.git) revision nanox 0.7a (git
master 37f3a0d 2013-02-26 15:14:11 40100 developer version)

3 Based on git repository (http://pm.bsc.es/git/mcxx.git) revision mexx 1.99.0 (git
b5lallc 2013-04-10 09:27:34 +0200 developer version)

e
= O © WO oA W N

[I I N = S STy
AW RO 0K O W

25
26
27
28
29
30
31
32

10 X. Teruel, M. Klemm, K. Li, X. Martorell, S.L. Olivier, C. Terboven

void matvec (Matix *A, double *x, double xy) {

#pragma omp taskloop private(i,j,is,ie,jO,y0) partition(linear)
for (i = 0; i < A->n; i++) {
yo = 0
is = A->ptrl[il;
ie = A->ptr[i + 1];
for (j = is; j < ie; j++) {
jO = index[jl;
yO += valuel[j] * x[jO];
}
yl[il = yo0;

}

#pragma parallel
#pragma single
for (iter = 0; iter < sc->maxIter; iter++) {
precon(A, r, z);
vectorDot(r, z, n, &rho);
beta = rho / rho_old;
xpay(z, beta, n, p);
matvec (A, p, q);
vectorDot(p, q, n, &dot_pq);
alpha = rho / dot_pgq;
axpy (alpha, p, n, x);
axpy (-alpha, q, n, r);
sc->residual = sqrt(rho) * bnrm2;
if (sc->residual <= sc->tolerance) break;
rho_old = rho;

Listing 1.5. CG implementation based on the taskloop construct

The MareNostrum results show that adding a new level of parallelism im-
proves the performance when we reach a given number of threads, in this case
16. These nested versions (nested and taskloops) have a similar behavior on
MareNostrum, though we expected some improvement due to guided schedul-
ing reducing the overhead of task creation. On Gothmog, the taskloops version
has better performance than nested beyond 16 threads. This improvement is a
result of decreased overhead of spawning work using taskloops compared to cre-
ating independent tasks. In our implementation, a taskloop is represented by a
single task descriptor structure that is enqueued using a single enqueue operation
rather than using a number of individual task enqueues.

On Gothmog, using the nested versions does not improve the performance
compared to the I-level tasks version. One explanation of that performance
degradation is that although nesting reduces application imbalance (i.e., the
ratio between the number of tasks and threads), it degrades data locality. The
first level of parallelism distributes large matrix blocks among cores. If we ap-
ply a second level of parallelism, we break large matrix blocks into smaller ones
that are then spread among all cores, potentially breaking data locality in the
NUMA nodes. Since a discussion about NUMA nodes, data locality and nested
parallelism is not the main goal of this study, we leave further analysis of this
issue to future work.

A Proposal for Task-Generating Loops in OpenMP* 11

Cholesky at MareNostrum Ill Cholesky at Gothmog

0 0
= 1-level tasks] = 1-level tasks
500 - *nested tasks 500 -+ nested tasks

taskloops / taskloops
400 A 400
°

Gflopis

7
P
12 16 1 2 4 8 16 24 32 40 48
threads threads
(a) MareNostrum III (b) Gothmog

Fig. 1. Cholesky performance results.

CG. In order to benchmark the CG kernel we use two matrices of different size.
Figure 2(a) shows the results for a small matrix. In an experiment with work of
such small granularities, the OpenMP fork/join overhead is noticeable, and the
taskloops implementation performs better.

Figure 2(b) shows the shape of the larger matrix problem. This is the Fluo-
rem/RMO7R Matrix, used in computational fluid dynamics problems. This ma-
trix is publicly available at The University of Florida Sparse Matriz Collection*
web site. Figure 2(c) shows that for this larger problem, in a 16-core node, the
behavior of both approaches is almost the same. In this case, the larger data set
makes the fork/join overhead comparatively smaller. In larger nodes with higher
NUMA memory distances, (e.g., on Gothmog, see Figure 2(d)) the loss of data lo-
cality caused by the taskloops approach substantially degrades its performance.
Again, this will be a focus of our future work.

5 Related Work

The idea of generating tasks to execute a parallel loop is not new and has been
implemented in various other parallel programming languages and libraries.

Intel® Cilk Plus and its predecessor Cilk++ [7] implement their cilk_for
construct by recursively splitting the iteration space down to a minimum chunk
size, generating tasks using cilk_spawn at each level of recursion.” A similar ap-
proach is taken by the parallel_for template of the Intel® Threading Building
Blocks [11]. The loop is parallelized by splitting the iteration space recursively
until the task granularity reaches a threshold. As part of the .NET 4.5 framework,
the Task Parallel Library [8] offers task-parallel execution of for and foreach
loops (through Parallel.For and Parallel.ForEach). All of these approaches
only support C and/or C++ and are not applicable for Fortran; they also do
not blend well with OpenMP.

Ferrer et al. [5] show that with minimal compiler assistance, for loops con-
taining task parallelism can be successfully unrolled and aggregated for better

4 http://www.cise.ufl.edu/research /sparse/matrices
® The Cilk Plus run time system is now open source, available at http://cilkplus.org.

12 X. Teruel, M. Klemm, K. Li, X. Martorell, S.L. Olivier, C. Terboven

CG (Small Matrix) at MareNostrum lll _\ J" .
400 '\\
- openmp
350 -+taskloop
300 \\
£ 250 .
g
S
8
@ 200 '\\
£ 150 >
@
E 100 \‘-.\

50 ”~,

0 ‘L‘-“"""'—-.
1 2 4 6 8 10 12 14 16
threads
(a) MareNostrum III (b) RMO7R Matrix
100 CG (RMO7R) at MareNostrum [ll 250 CG (RMO7R) at Gothmog
%0 - openmp - openmp
~+taskloop -+taskloop

12 14 16 1 2 4 8 12 16 24 32 40 48
threads

(c) MareNostrum IIT (d) Gothmog

6 8
threads

Fig. 2. CG performance results.

performance. Ferrer [4] proposes an extension of the while loop that gener-
ates chunked parallel tasks. Employing this approach “by hand”, Terboven et
al. [12] found multi-level parallelism with tasks to be more profitable than nested
OpenMP for several applications. The proposed construct is a short-cut for the
programmer to avoid extensive code patterns and to give the compiler more
information about the code structure and the intent of the program.

6 Conclusions and Future Work

In this paper, we have introduced the task-generating loop construct, which
avoids the limitation on the number of threads reaching a worksharing con-
struct, increasing opportunities for the expression of parallelism. We have also
demonstrated the new construct in two different situations. In the first scenario,
we exploit a new level of parallelism by using the worksharing construct inside
an explicitly created task. Such mechanisms mitigate the imbalance that results
from increasing the number of threads and adapt the task granularity to the
number of threads. In the second scenario, we use the new construct to avoid
creating and closing successive parallel regions. With the new approach we
create just one parallel region with a nested single construct, creating the
team of threads but allowing only a single thread to execute the enclosed code.

A Proposal for Task-Generating Loops in OpenMP* 13

To generate the tasks in each kernel, we replace all the inner parallel worksharing
constructs with the new task-generating loop construct.

We evaluate both scenarios against baseline implementations of the applica-
tions using the Nanos+-+ run time library and Mercurium compiler infrastruc-
ture. The results demonstrate that in addition to improving expressiveness, the
new construct improves performance for some, but not all, applications.

As future work we plan to further evaluate our taskloop proposal imple-
mentation with other benchmarks and on other platforms. We especially seek
to explore further the behavior of taskloop in the context of NUMA, and ana-
lyze more advanced implementation techniques to exploit data locality. We also
plan to explore the possibility of nested taskloop regions and how these tech-
niques can impact the performance and application load imbalance. Another
future topic is the extension of taskloop to also support irregular loops such as
while loops and for loops that do not adhere to the restrictions of the current
OpenMP worksharing constructs.

Acknowledgments

We would like to acknowledge the support received from the European Comission
through the DEEP project (FP7-ICT-287530), and the HIPEAC-3 Network of Excel-
lence (ICT FP7 NoE 287759), from the Spanish Ministry of Education (under contracts
TIN2012-34557, TIN2007-60625, CSD2007-00050), and the Generalitat Catalunya (con-
tract 2009-SGR-980).

We thankfully acknowledge the Royal Institute of Technology in Stockholm and
the Barcelona Supercomputing Center for the use of their machines (Gothmog, and
Marenostrum IIT).

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

Intel, Xeon, and Cilk are trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

* Other brands and names are the property of their respective owners.

Software and workloads used in performance tests may have been optimized for
performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more information go to http://www.intel.
com/performance.

References
1. Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel, X.,

Unnikrishnan, P., Zhang, G.: The Design of OpenMP Tasks. IEEE Trans. Parallel
Distrib. Syst. 20(3), 404-418 (Mar 2009)

14

10.

11.
12.

X. Teruel, M. Klemm, K. Li, X. Martorell, S.L. Olivier, C. Terboven

Balart, J., Duran, A., Gonzalez, M., Martorell, X., Ayguadé, E., Labarta, J.: Nanos
Mercurium: a Research Compiler for OpenMP. In: Proc. of the 6th European
Workshop on OpenMP (EWOMP’04). pp. 103-109 (October 2004)

Blumofe, R.D., Leiserson, C.E.: Scheduling Multithreaded Computations by Work
Stealing. Journal of the ACM 46(5), 720-748 (Sep 1999)

Ferrer, R.: Task Chunking of Iterative Constructions in OpenMP 3.0. In: Proc.
of the 1st Workshop on Execution Environments for Distributed Computing. pp.
49-54 (July 2007)

Ferrer, R., Duran, A., Martorell, X., Ayguadé, E.: Unrolling Loops Containing Task
Parallelism. In: Languages and Compilers for Parallel Computing. Lecture Notes
in Computer Science, vol. 5898, pp. 416-423. Springer Berlin/Heidelberg (2010)

. Kurzak, J., Ltaief, H., Dongarra, J.J., Badia, R.M.: Scheduling for Numerical Lin-

ear Algebra Library at Scale. In: Proc. of the High Performance Computing Work-
shop. pp. 3-26 (June 2008)

Leiserson, C.E.: The Cilk++ Concurrency Platform. The Journal of Supercomput-
ing 51(3), 244-257 (March 2010)

Microsoft: Task Parallel Library (2013), http://msdn.microsoft.com/en-us/
library/dd460717.aspx, last accessed 2013-06-21

OpenMP Architecture Review Board: OpenMP Application Program Interface,
Version 3.1 (July 2011)

OpenMP Architecture Review Board: OpenMP Application Program Interface,
Version 4.0: Public Review Release Candidate 2 (March 2013)

Reinders, J.: Intel Threading Building Blocks. O’Reilly, Sebastopol, CA (July 2007)
Terboven, C., Schmidl, D., Cramer, T., an Mey, D.: Task-parallel Programming
on NUMA Architectures. In: Euro-Par 2012 Parallel Processing, Lecture Notes in
Computer Science, vol. 7484, pp. 638-649. Springer Berlin/Heidelberg (2012)

