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Since the MetIL compound represents both electrolyte 
and the energy storing (electroactive) species, the 
opportunity to achieve high energy densities is possible.  
Currently, MetIL compounds in our library have electroactive 
species (metal) concentrations on the order of 1.6 M.  These 
concentrations are low compared to what is currently 
achievable in aqueous vanadium redox battery chemistries, 
which is up to 2.5 M vanadium.[16]  However, higher energy 
densities are achievable by decreasing the molar volume of 
the MetIL through the use of smaller ligands, anions, and/or 
cations.  Calculations of some theoretical MetIL compounds 
have shown metal concentrations up to 6.5 M are possible.  
Utilization of metals that can accommodate multi-electron 
processes (i.e. Mn, V, Cr, etc.) is also a path forward to high 
energy densities. 

Increases in energy density should directly translate to 
lower capital costs.  A MetIL based flow battery is attractive 
technology to achieve aggressive capital cost goals of $100 
/kWh.  Ligands such as ethanolamine and diethanolamine 
are readily available in multi-ton quantities because of 
current applications in gas treatment, personal care and 
agricultural industries.[17]  Most metal salts, particularly 
copper ones, are also readily available and low cost. 

Electrochemistry 

Initially the most promising compound in terms of 
viscosity and conductivity was the cerium IL, Ce(EA)8(OTf)3.  
This is most likely attributed in part to the expanded 
coordination number of cerium (eight-coordinate) in contrast 
to the six-coordinate iron or manganese, for example.  In 
addition, the Shannon-Prewitt ionic radius of eight-
coordinate Ce(III) is 114 picometers, nearly double that of 
most first-row transition metals.[18]  However, the high cost 
of cerium and the poor reversibility of the Ce(III)/Ce(IV) 
redox couple (~600 mV) prompted us to return focus to first-
row metals. 

One of the more productive families of MetIL materials 
are those based on copper.  The low symmetry of the 
tetragonally-distorted d9 Cu(II) cation makes it particularly 
amenable to the modification of select physicochemical 
properties (including viscosity and conductivity).  The 
reduction of Cu(II) to Cu(I) can result in an energy 
consuming change from octahedral to tetrahedral geometry.  
Despite this however, several copper MetILs have shown 
good electrochemical reversibility and conductivity. 

For electrochemical studies the typically high viscosities 
of MetILs necessitate their dilution in 
1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIM-
PF6).  BMIM-PF6 was chosen so as to minimize 
solvent/coordination effects.  The absence of vibrational 
frequency shifts in the FTIR when BMIM-PF6 was used as a 
MetIL solvent confirmed its non-interfering nature.  A CV of 
Cu(DEA)6(EHN)2, shown in Fig 3a, demonstrates the utility 
of MetILs in electrochemical processes.  The peak currents 
increase approximately with the square root of the scan rate, 
suggesting a diffusion limited electrochemical redox 
process.  Table 2 summarizes the anodic and cathodic peak 
separation for Cu(DEA)6(EHN)2 at various scan rates.  The 
electrochemical reversibility of Cu(DEA)6(EHN)2 is poor with 
Cu(I)/Cu(II) peaks separated by more than 500 mV.  The 
500+ mV peak separation is likely due in part to the high 
viscosity and low conductivity of the system. 

To determine the effects of the electrode and solvent on our 
electrochemical system, a ferrocene standard was run.  The 
ferrocene/ferrocenium redox couple is known to be fully 

Fig. 3.  CVs of Cu(DEA)6(EHN)2 (a) and ferrocene (b).  Both 
compounds were diluted in BMIM-PF6 prior to analysis and 
the CVs were collected using a glassy carbon working 
electrode. 

reversible, but the degree of anodic and cathodic peak 
separation can vary depending on the working electrode and 
solvent system.[19]  Ferrocene in BMIM-PF6 with a glassy 
carbon working electrode, platinum counter and IL based 
reference electrode had reversibilities ranging from 72 to 
263 mV depending on the scan rate (Table 2).  Peak 
currents for ferrocene also increased with the square root of 
scan rate.  To date we have identified several compounds 
with electrochemical reversibility better than ferrocene, 
including Mn(DEA)6(OTf)2 reported recently.[15] 

Table 2.  Electrochemical reversibility, the difference 
between anodic and cathodic peak potentials, of a Cu MetIL 
and ferrocene at various scan rates. 

Scan Rate 
(mV/s) 

Reversibility (mV)
Cu(DEA)6(EHN)2 Ferrocene

10  72
50 523 149
100 689 203 
200 724 263

 

Viscosity 

It is well known that ILs suffer from high viscosities due 
to intermolecular forces associated with ion pairing, and 
MetILs are no different. The temperature dependence on 
viscosity for MetILs is important since a redox flow battery is 
likely operate under variety of environmental conditions.  
Figure 4 shows a plot of temperature versus viscosity for 
Cu(DEA)6(EHN)2 and its DEA precursor.  Viscosities are 
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greater than 3500 cP at temperatures below 30 oC.  This is 
an order of magnitude greater than the DEA precursor.  Both 
compounds are first order fluids that follow an exponential 
model (Eqn. 1) where A and b are constants,  is viscosity 
and T is temperature.  We have previously shown that the 
nature of the cation and anion in the MetIL can have a 
dramatic effect on viscosity, compounds with viscosities 
ranging from 1300 to 14000 cP at 25 oC have been 
prepared.[15] 

Fig. 4.  Viscosity versus temperature for Cu(DEA)6(EHN)2 
and DEA. 

SUMMARY 

A new family of redox-active ionic liquids for flow battery 
applications has been developed.  The simplicity of the 
MetIL synthesis has allowed a rapid exploration of cation, 
anion and ligand combinations.  Most compounds are 
inexpensive to produce and some show promising viscosity, 
conductivity, and/or electrochemical reversibility.  New 
compounds are continuing to be developed.  Future studies 
include static and flow based electrochemical cell testing to 
establish the viability of these compounds in a flow battery 
regime. 
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